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BY FREDHOLM'S INTEGRAL EQUATION 

1. Introduction 

The paper deals with the optimal control problem of the 

system whose state is described by Fredholm's integral 

equation. The functions appearing in this equation and in 

the performance index are of class . 

In order to find the necessary conditions of optimality 

for the above system, the results obtained by Walczak 

(Ref. 1) concerning the properties of cones in normed spaces 

will be applied. The method presented there can be 

considered ¡as a generalization of Dubovitski-Milyutin 

theorem (Ref. 2) and enables us to investigate the extremal 

problem with more than one (in this paper-two) equality 

constraints. 

For the above optimization problem the problem of 

existence of the solution can be solved in the case where 

additional assumptions concerning the linearity of the 

function appearing in the state equation will be accepted. 

2. Formulation of the problem 

Let us consider in the space X = L^ x L™ the following 

optimization problem : 
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Find the minimum of the functional 

(1) I(x,u) = f g((x(t),u(t),t) dt 
o 

for the system described by the state equation 

(2) x(t) = [ f(x(x),u(t),x,t) dx 
oJ 

with imposed constraint 

(3) u(t) e U 

where t e R, T e R denote the time, x,u - are the state -
and control vectors of dimensions n x 1 and m x 1 
respectively. The functions g :R > R, f:R >R 
and the set U are given. The scalar function g(x(t),u(t),t) 
is of the form : 

(4) g(x(t),u(t),t) = vT(t) HQ(t)v(t) + pQ(t)v(t) 

where H (t) is the (n+m) x (n+m) matrix, and v(t) = o 
tx(t),u(t)] . We assume that the elements of H (t) are o 
measurable and bounded, and the elements of PQ(t) belong to 
the space L . 

The vector function f(x(t),u(x),x,t) is of the form : 

f(x(t),u(T),T,t) = [f (x,U,T,t), f (x,U,T,t),...,f (x,U,T,t)]T 
1 2 n 

and its components are : 

f^(x,u, T,t) = mT(x,t) H^ (t,t) m(x,t) + 

+ p^x.t) m(x,t) + q (x.t), i = l,2,...,n 

where H (x,t), i = 1,2 n are (n+m) x (n+m) matrices, 
p (x,t), q^ix.t) , i = l,2,...,n are 1 x (n+m) matrices, 
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m(x,t) = [x(x),u(t)]T , t,x € [0,1]. 

We assume that the elements of the matrices H^x.t), i 

= 1,2 n are measurable and bounded and that the elements 

of the matrices p (x,t), q (x,t), i = 1,2 n belong to 

3. The necessary condition of optimality 

For the considered system we shall prove the following : 

T h e o r e m 3.1. If v (t) = [x (t),u (t)]T is the 
0 0 0 

solution of the above formulated optimization problem and if 

the following additional assumption holds 

then there exists a real number A a 0 and the vector 

The set U is a closed convex set in R™. The vectors u(*) 

and x(*) belong to L m and L n respectively. 

(5) 
o o 

l l 

J J l F
X
( X O ( T ) > U O ( T ) ' T , T ) I 2 d t d T < 1 

0 

0 

and 

( 7 ) < - f fT(/x(t,x),t,x)^(T)dt + A b (v (t) , x), u-u (x) > £ 0 
J u 0 u 0 0 0 

for x e [0,1] a.e. where 

v Q(x) = [xQ(x), u q(x)]
T , 

M(T,t) = [x0(x), uQ(t)]
T , 

M(t,x) = [xQ(t), u q ( x ) ]
T , 
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f(FI(T,t),X,t) = f(xo(x), uo(t),T,t) , 

f(H(t,T),t,T) = f(XQ(t), Uo(x),t,T) , 

g(VQ(x),x) = g(XQ(x), UQ(t),t) , 

g(vo(t),t) = g(xo(t), u0(t),t) . 

P r o o f . First we shall specify the characteristic 
cones, according to (Ref. 3) which enable us to obtain some 
Euler-Lagrange equation. We consider the cartesian product 
of spaces 

X = Ln
 x L" 2 2 

denote by Z , the following sets 

(8) Zt - { [x,u]T € X : u(t) e U > , 

(9) Z = { [x,u]T € X : x(t) = f f(x(T),u(t),x,t) dx } 
2 oJ 

and we observe that our optimization problem becomes : 
Find the minimum of the functional 

I(x,u) = f g(x(t),u(t),t) dt 
o 

where 
[x,u]T € Z r\ Z . 

1 2 
The cone Cq of decrease of the functional I(x,u) at the 
point v(») = [x(*),u(')]T and the conjugate cone Cq are, 
according to ([3], Th. 7.4) and ([3], Th. 10.2) of the form 
(10) C = { [x,u]T € X : 
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f g*(v (t),t) x(t) + gT(v (t),t) u(t))dt < 0 > 
oJ u 

(11) C* = { f e X* : f (x,u) = 
0 0 0 

- -\Q f (g^(vo(t),t)x(t) + gj(v0(t).t) ïï(t))dt; Xo£ 0 > 
o 

where by x, u we denoted the vectors in the neighbourhood of 
x ,u Next, we denote by C the set of functionals o o * 1 
supporting the set Z a t the point n(*,«). It is known ([3], 
Th. 10.5) that the cone C is the cone conjugate to a cone 
tangent to the set at the point fx(»,*). Hence 

(12) C* = {fje X* : f (x,u) = f'(u)> 

where f| is the functional supporting the set V = {u € L™ : 
u(t) e U> at the point u (•). o 

Applying the Lusternik theorem ([3], Th. 9.1) we shall 
find the cone conjugent to at the point fi(»,«). Let us 
consider the operator P : Ln x Lm » Ln of the form 2 2 2 

(13) P( X,u) = x ( t ) - J f ( x(T),u ( t),T , t ) dT. 

It can be checked that operator P(x,u) is of the class C1 

and that its Frechet derivative is of the form 

( 1 4 ) P»(x,u) (x,u) = x(t) - f f (x(x),u(t),T,t) x(t) + 
oJ x 

+ f (x(x),u(t),T,t) u(t)) dr. u 

We show that P'(x,u) maps L^ x L™ onto the whole space L^ . 
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It means that the equation 

(15) x(t) - f (f (x(x),u(t),x,t) x(x) + 
oJ x 

+ f (x(x),u(t),x,t) u(t)) dx = a(t) 

u 

has the solution (x, u) for any function a(t) e L™ . If we 

put u(t) = 0, formula (15) takes the form 

(16) x(t) - f f (x(r),u(t),t,t) x(x) dx = a(t). 
o x 

It is knovm ([4], Chapt. II § 10, Th. 1) that Fredholm's 

linear equation (16) has a unique solution x(t) for any 

function a(t) € L n in the case where (5) is satisfied. 
2 

Hence, the cone tangent to Zg at the point fi(*,«) is of the 

form 

(17) C = { (x,u) € X : x(t) = f (f (fi(T,t),T,t) x(x) + 
2 J x 

0 

+ f (fi(x,t),x,t) u(t)) dx } u 

and the conjugate cone 

(18) C* = {f € X* : f (x.u) = 0 ; (x,u) 6 C > . 
2 2 2 2 

We observe that : 

- the cone CQ is open and convex , 

- the cones C and C are convex , 
1 2 • • 

- the cones and C are of the same sense, according to 

Theorem 3.4 in (Ref. 1). 

In Lemma 3. 1 we shall prove that the intersection of 
cones C and C is a subset of a cone tangent to Z n Z 1 2 1 2 
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This enables us to apply the Euler-Lagrange equation of the 

form 

(19) -A f (g (v (t)!t) x(t) + g (v (t),t) u(t)) dt + 
0 J x O u 0 0 

+ f'(u) + f (x,u) = 0 1 2 

where f^u) - as in the formula (12). 

Equation (19) is satisfied for any (x,u) € X. According 

to (17) for any (x,u) € we find 

x(t) = f (f (n(x,t),x,t) x(x) + f (M(T,t),T,t) u(t) dx . 
o J X 

Changing t to x and x to t we obtain 

(20) x(x) = f (f (n(t,x),t,x) x(t) + f (/i(t,x), t,x) u(x) dt 
o J X 

Because f2(x,u) = 0 for (x,ù) e the equation (19) for any 

(x,u) e C takes the form 
2 

(21) fx(u) = Aq J (g x (v o ( t ) , t )x ( t ) + gu (vQ ( t ) , t )u(t ) )dt = 
o 

= J Aq gx(vo(t),t) x(t)dt + J a o gu(vo(t),t) u(t))dt. 
0 0 

According to (6) we obtain 

(22) Xq g x (v o ( t ) , t ) = - 0 ( t ) + f f * ( | i ( t ,x ) , t ,T ) ^(x) dx . 
x o 

Introducing (24) into (23), changing the sequence of 

integration we obtain - according to the properties of the 
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scalar product 

(25) f (S> = - f1 L(x) 
0 ^ 0 

+ \Q J gu(vo(t),t) u(t) dt = 

l l _ 
= J < J -fT(n(t,x),t,x) 0(T) dt + \ g (v (x),T), U(T) > dx 
0 oJ u u 

Denoting by A(x) the integral 

A(x) = -f fT(M(t,x),t,x) 0(x) dt + \ g (v (x),x) J u 0 u 0 0 

we can write (25) in the form 

f (u) = f <A(x),u(x)> dx . 
1 o 

This means ([3], Example 10.5) 

(26) <A(x), U-UQ(X)> — 0 for a.e. t. 

Hence 

< f-fT(n(t,x),t,x) tf»(x) dt + A g (v (x),x), u-u (x)> a o 
J 0 u 0 0 

o 
for a.e. t. 

This completes the proof. 
L e m m a 3. 1. The intersection of cones C and C is 1 2 

a subset of a cone tangent to Zjn . 
P r o o f . The operator P from formula (13) is 

differentiable and the operator P'(x,u) from formula (14) 
maps L^ x L™ onto the whole space L^ . We also observe that 

J fu(ji(t,x),t,x) u(x) dtl dx + 
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the mapping 

P ' ( x ,u ) x = x ( t ) - f ( f ( x ( t ) , u ( t ) , t , t ) x (x)dx 

oJ x 

Is isomorphic. 

From the fact that f o r any function a ( t ) € Ln there 2 

exists a unique x ( t ) 6 L^ such that with assumption (5) the 

fol lowing formula holds 

x ( t ) - f ( f ( x ( T ) , u ( t ) , T , t ) x ( r ) dx = a ( t ) 
oJ x 

we conclude that P ' ( x , u ) is inversible. Hence, because Ln 
x 2 

[0 ,1 ] and L [0,1] are Banach spaces and P ' ( x , u ) is l inear 
2 x 

and continuous, we f ind ( [ 6 ] , Th. 41.1) that the inverse 

operator is also l inear and continuous. We conclude that P 

s a t i s f i e s the assumptions of the implicit function theorem 

( [ 7 ] , Chapter 0.2.3) in some neighbourhood V of (x ,u ). o o o 
Hence the set can be represented in this neighbourhood in 

the form 

(27) Z2 = { (x .u ) e X : x = f ( u ) > 

where <p : L* » L^ is the C1 class operator satysfying the 

condition P(<p(u),u) = 0 f o r a l l u such that (^>(u),u) e Vq . 

Hence we deduce that the cone C can be represented in the 

form 

(28) C = { (x ,u ) € X : x = <p (u )u) >. 
2 u 0 

Let (x ,u ) be an arbitrary element of the set C n C . 
2 

Then there exists an operator v : R » U such that 

- 781 -



J. Pelczewski 

v2(e) 
lim — - = 0 

+ e 
e — X ) 

and the formula 

(29) (x ,u ) + e(x,u) + (v2(e),v2(e)) e Z, 
0 0 x u 1 

2 
holds for sufficiently small e and any v (e) such that 

v (e) 
lim — = 0 . 

+ e 
e — x > 

Hence, according to (27) we observe that for sufficiently 

small c the following formula holds 

(30) (<p(u + eu + v2(e)), u + eu + v2(e)) € Z . 
0 u 0 u 2 

^(u) is different!able operator, hence 

2 1 
(31) <p(u + eu + v (e)) = ®(u ) + e«p (u )u + v (e) 

o u o u o x 

for some v1(c) such that 

v1 (e) 
lim — = 0 . 

+ e 
e — X ) 

From (27) and (28) we obtain 

(32) (x ,u ) + e(x,u) + (v1(e),v2(e)) e Z . 

0 0 x u 2 
2 1 If we take v (e) = v (e) we conclude from (29) and (32) that 
X X 

the arbitrary vector (x,u) € C^n is tangent to the set 

Z^n Z z . That completes the proof. 
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4. The existence theorem 

The existence theorem will be proved with additional 

assumption concerning the function In the state equation 

(2). We assume that the function f(x(x),u(t),x,t) Is linear 

with respect to (x,u). We also assume that the set U Is a 

compact convex set In Rm. With notation 

A = {(x, u) e x L" , P(x, u) = 0 , u(t) e U for a.e. t> 

where P(x,u) Is the operator (13), our optimization problem 

becomes : 

Find the minimum of the functional 

I(v) = J vT(t) HQ(t)v(t) + pQ(t)v(t) dt 

where v e A. The form of the set A and the convexity of IteR 

enable us to formulate : 

L e m m a 4.1. The set A e L n x L m is convex. 
2 2 

The function g(v) = vT(t) H (t)v(t) + p (t)v(t) is a 
0 0 

continuous and convex function with respect to v. That gives 

us : 

L e m m a 4.2. The functional I(*) is lower semiconti-

nuous in the weak topology of the space Ljj+*. 

L e m m a 4.3. The set A e L° x L* is bounded In the 2 2 

norm of the space L \ l " . 

P r o o f . Let (x,u) € A. We know that u(t) € U for a. 

e. t. The convexity of the set U € R m Implies the existence 

of real number c > 0 such that |u(t)\s c for a.e. t € [0,1]. 

Hence 
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||u| B = (f1 |u(t) I2 dt)1/2 S (j'c2 dt)1/2 = c. 
L 0 0 2 

It can be easily shown (Ref. 5) that in the set A the 
operator P(x,u) satisfies the assumptions of the implicit 
function theorem. That implies the existence of the linear 
operator <p : L* > L^ of the class C1 , such that the 
conditions x = ^p(u) and P(x,u) = 0 are equivalent. The 
boundness of ?>(•) implies 

M = |,(U)| * M M s m c < » • 
L 2 

r i — r ~ i Then, there exists the ball K of the radius -Ic + c where X u 
c^ = c, c^ = ||P|c such that A c K. That completes the proof. 

L e m m a 4.4. The set A is closed in the strong 
topology of the space L^ x L™ . 

P r o o f . Let us consider the sequence (x ,u )e A such k k 
that 

II(x ,u ) - (x ,u ) II > 0 . 11 k* k 0 0 11 k—» eo 

We shall prove that (xo,uq) € A. 
From l(x ,u ) - (x ,u ) II » 0 we conclude that II k k o o 11 k—> oo 

||x - x || > 0 and ||u - u || » 0 . Hence there 11 k O11 k—> 00 11 k o" k—> 00 
exists an integer kQ , such that for any k a kQ we find 

f |u (t) - u (t) |2 dt » 0 J 1 k 0 1 k—> oo 

Let us suppose that UQ(t) < U on some measurable set of 
positive measure M. The set U 6 Rm is compact, hence there 
exists a real number a > 0 and the set C of positive measure 
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m, such that 

|u(t) - u (t)I > a for t e C and some k s k 1 k o 1 o 

Hence for some k a 0 we have 

J |uk(t) - UQ(t) | 2 dt = J |uk(t) - UQ(t)|2 dt £ 
0 CC[0,1] 

2 2 t a mes(C) = a m > 0 . 

We have obtained a contradiction to (27) and we conclude 
that u (t) e U for a.e. t. o 

For any k Is y(uk), where <p is a continuous 
operator. 
According to this result and to the definition of the set A 
we conclude that (x ,u ) € A. That completes the proof. o o 

L e m m a 4.5. The set A c Ln x Lm is compact in the 2 2 
weak topology of L^ x L™ . 

P r o o f . Lemmas 4.1 and 4.4 imply that A is convex 
and closed in the strong topology of the space L^ x L™ . We 
deduce that A is closed in the weak topology because it is 
bounded and closed in the weak toplogy of the reflexive 

. n . m space L x L . 2 2 
We can formulate now : 
T h e o r e m 4. 1. If all above mentioned assumptions 

hold then there exists the point (x ,u ) € A such that : K o' o 
o r1 
lu xQ(t) = I f(x (t),u (t),x,t) dx , 

0 
2° u (t) € U for a. e. t € [0,1] , 
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3° I(x (t),u (t)) s I(x,u) for any (x,u) e A. 
0 0 

The proof is based on the Weierstrass theorem and the 

Lemmas 4.2 and 4.5. 
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