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OPTIMIZATION OF THE SYSTEM DESCRIBED.
BY FREDHOLM’S INTEGRAL EQUATION

1. Introduction

The paper deals with the optimal control problem of the
system whose state is described by Fredhoim’s integral
equation. The functions appearing in this equation and in
the performance index are of class Lé .

In order to find the necessary conditions of optimality
for the above system, the results obtained by Walczak
(Ref.1) concerning the properties of cones in normed spaces
will be applied. The method presented there can be
considered as a generalization of Dubovitski-Milyutin
theorem (Ref. 2) and enables us to investigate the extremai
problem with more than one (in this paper-two) equality
constraints.

For the above optimization problem the problem of
existence of the solution can be solved in the case where
additional assumptions concerning the 1linearity of the

function appearing in the state equation will be accepted.

2. Formulation of the problem

n

Let us consider in the space X = L2 x L: the following

optimization problem :
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Find the minimum of the functional

1
(1) Ix,u) = [ glix(t),ut),b) at
(o}
for the system described by the state equation
1
(2) ﬂU=IfuhLMUJJ)M
o

with imposed constraint
(3) u(t) e U

where t € R, T € R denote the time, x,u - are the state -
and control vectors of dimensions n x 1 and m x 1
respectively.The functions g :an*“l—) R, f‘:IanV'l—)Rn
and the set U are given. The scalar function g(x(t),u(t),t)

is of the form :
(4) glx(t),ult),t) = vi(t) H (t)v(t) + p (£)v(t)

where H (t) is the (n+m) x (n*m) matrix, and. v(t) =
[x(t),u(t)]’. We assume that the elements of Ho(t) are
measurable and bounded, and the elements of po(t) belong to
the space Lz'

The vector function f(x(t),u(t),T,t) is of the form :

f(x(t),ulx),1,t) = [fI(X,u,T,t), fz(x,u,r,t),...,fn(x,u,'t,t)]T
and its components are :

£,(x,u,17,t) = m(t,t) H (t,t) mlz,t) +

+ px(T’t) m(t,t) + ql(r,t), i=1,2,...,n
where Hi(t't)’ i=1,2,...,n are (n+m) x {(n+m) matrices,
p‘(t.t), ql(r,t) , 1i=1,2,...,n are 1 x (n+m) matrices,
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m(z,t) = [x(r),u(t))’ , t,tr e [0,1].

We assume that the elements of the matrices HI(T't)' i
=1,2,...,n are measurable and bounded and that the elements
of the matrices pl(T,t), qi(t,t), i = 1,2,...,n belong to
L.

27
The set U is a closed convex set in R". The vectors u(s)

and x(+) belong to L: and L: respectively.

3. The necessary condition of optimality

For the considered system we shall prove the following :
Theorem 3.1. If v(t) = [xo(t),uo(t)]T is the
solution of the above formulated optimization problem and if

the following additional assumption holds
1.1 .
(5) II [f (x (T),u (t),7,t)|" dt dr < 1
0’0 x O [s]

then there exists a real number Ao zZ 0 and the vector

function ¥(-) € L] such that A+ (<)} > 0 and
1
(6)  w(t) = -2 g(t)+ oj £ (rlz,t),7,t) y(r) dr
and
1 T
(7) <—OI £ (u(t,T),t, DY(T)dE + A g (v (1), 7),u-u (7) > = O

for T € [0,1] a.e. where

VO(T) = [xo(t), ub(t)] ,

u(z,t) = [x (1), uo(t)]T,

u(t,T) [xo(t), UO(T)]T ,
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flulr,t), T, t) f(xo(r), uo(t),t,t) )

f(ult,T), t,T) f(xo(t), u (), t, 1),

g(vo(t),t) g(xo(t), uo(T),T) )

g(vo(t),t) g(xo(t), uo(t).t) .

Pr oo f. First we shall specify the characteristic
cones, according to (Ref. 3) which enable us to obtain some
Euler-Lagrange equation. We consider the cartesian product

of L2 spaces

denote by 21, Z2 the following sets

(8) 21 ={ [x,ul eX: ult) e U} .
1
(9) 2, = { [xul” e X: x(t) = J' £(x(t),ult),t,t) dr }
0

and we observe that our optimization problem becomes :
Find the minimum of the functional
1
I(x,u) = J' g(x(t),u(t),t) dt
o

where

[x,u]T €Z2n2Z.
1 T2

The cone Co of decrease of the functional I(x,u) at the
point v(+) = [x(+),u(+)]” and the conjugate cone C; are,
according to ([3], Th. 7.4) and ([3], Th. 10.2) of the form

(10) c, = (x,ql" € X :
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1
f g (v (£),t) X(t) + gl(v (£),t) G(t))dt < 0 )
0

L ] * — —
(11) C0 = { foe X : fo(x,u) =

1
=2, oj (gI(vo(t),t)i(t) + g:(vo(t).t) u(t))dt; Az 0}

where by X, u we denoted the vectors in the neighbourhood of
xo,uo . Next, we denote by C: the set of functionals
supporting the set Z1 at t?e point p(-,+). It is known ([3],
Th. 10.5) that the cone C1 is the cone conjugate to a cone
tangent to the set Z1 at the point p(+,+). Hence

(12) c: = {f e X" £ (x,0) = £ (D)

where f; is the functional supporting the set V = {u e L: :
u(t) € U} at the point uo(').

Applying the Lusternik theorem ([3], Th. 9.1) we shall
find the cone conjugent to Z2 at the point up(+,¢<). Let us

consider the operator P : L: x L: — L; of the form
' 1
(13) P(x,u) = x(t) - I f(x(t),ult), T, t) dr.
0

It can be checked that operator P(x,u) is of the class C1

and that its Frechet derivative is of the form
(14) - P'(xuw (X,3) = x(t) - I £ (x(T),ult),7,t) X(z) +
Y .
+ £ (x(7),u(t),,t) u(t)) dr.
We show that P’ (x,u) maps L: x L: onto the whole space L: .
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It means that the equation
1 —
(15) x(t) - I (f_(x(7),ult),7,t) X(v) +
0

+ fu(x(t),u(t),t,t) u(t)) dr = a(t)
has the solution (X,u) for any function a(t) e L: . If we

put u(t) = 0, formula (15) takes the form

1
(18) %) - £ (x(v),ult),7,t) X() dv = a(t).
(o}

It is known ([4], Chapt. II § 10, Th. 1) that Fredholm’s
linear equation (16) has a unique solution x(t) for any
function a(t) e L: in the case where (5) 1is satisfied.
Hence, the cone tangent to Z2 at the point p(+,+) is of the

form

1
(17)  C, = { (X,W € X : x(t) = j (£ (u(z,t),7,t) X(z) +
0

+ fu(u(t,t),t,t) u(t)) dr }
and the conjugate cone
(18) C ={f eX : £(X,u) =0 ; (X,u) € C}
s = 2 € I X,u ; (x,u) e 2
We observe that :
- the cone Co is open and convex ,
- the cones C1 and C2 are convex ,

- the cones C: and C; are of the same sense, according to
Theorem 3.4 in (Ref. 1). .
In Lemma 3.1 we shall prove that the intersection of

cones Cl and C2 is a subset of a cone tangent to Zln 22 .
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This enables us to apply the Euler-Lagrange equation of the

form
1 —
(19) A, oj (g (v (£),t) X(t) + g (v _(t),t) W(t)) dt +
+ f;(ﬁ) + fz(i.ﬁ) =0

where fl(ﬁ) - as in the formula (12).
Equation (19) is satisfied for any (x,u) € X. According
to (17) for any (x,u) € C, we find

1
x(t) = I (fx(u(T.t),T.t) x(t) + fu(u(t.t),T.t) u(t) dr .
0
Changing t to T and T to t we obtain

1
(20) X(t) = j (£ (u(t,7),t,7) X(t) + £ _(u(t,7),t,7) Ulr) at
0

Because fz(i,ﬁ) = 0 for (x,u) € C, the equation (19) for any

(x,u) € c2 takes the form

1
(21)  £,(@) = A o[ (g, (v (£), £IX(t) + g (v (), t)U(t))dt =

1 1
=0I A, 8 (v, (1),t) X(t)dt + of A, g (v (t),t) U(t))dt.
According to (B) we obtain

1
(22) A g (v (£),) = - y(t) + I £1(u(t,0),t,7) $(x) dr
0

Introducing (24) into (23), changing the sequence of
integration we obtain - according to the properties of the
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scalar product

(25) f£.(Q) = - I [w(r) If (u(t, ), t,v) () dt] dt +
1 0 o u
1 —
£ o.f g, (v (t),t) U(t) dt =

1 1
= J' < I-fz(u(t.t).t.t) Y(T) dt + A g (v (¥),7), UlT) > dr
0 (o]

Denoting by A(t) the integral

1
Alt) = ~J' £1u(t,7),t,7) Yl7) dt + A g (v (1),7)
(o]

we can write (25) in the form

1
£ (Q) = f <A(T),u(T)> dt .
1 (o)

This means ([3], Example 10.5)

(26) <A(T), u—uo(t)> =20 for a.e. t.

Hence

1
< J'-f"(u(t,z).t.z) W(T) dt + A g (v (1),7), u-u(T)> = 0
0

for a.e. t.
This completes the proof.
Lemma 3.1. The intersection of cones C1 and C2 is
a subset of a cone tangent to 21n 22.
Pr oo f. The operator P from formula (13) is
differentiable and the operator P’(x,u) from formula (14)

maps L: x L: onto the whole space L: . We also observe that
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the mapping
1
P (x,u) X = X(t) - j (£ (x(),u(t),7,t) X(v)de
>0

is isomorphic.

From the fact that for any function a(t) e L: there
exists a unique x(t) e L;' such that with assumption (5) the
following formula holds

1
ﬂw-j(guuumwnm)ﬂﬂdr=aw
0

we conclude that P;(x,u) is inversible. Hence, because L;
[0,1] and L: [0,1] are Banach spaces and P;(x,u) is linear
and continuous, we find ([6], Th. 41.1) that the inverse
operator 1s also linear and continuous. We conclude that P
satisfies the assumptions of the implicit function theorem
([7], Chapter 0.2.3) in some neighbourhood Vo of (xo,uOL
Hence the set Z2 can be represented in this neighbourhood in

the form

(27) z, = { (x,u) € X: x = ¢(u) }

where ¢ : L; s ] L: is the C1 class operator satysfying the
condition P(¢(u),u) = O for all u such that (¢(u),u) e v, -

Hence we deduce that the cone C2 can be represented in the

form

(28) C, = { (x,u) e X: x= ¢u(uo)ﬁ) }.

Let (X,u) be an arbitrary element of the set cncC, .

Then there exists an operator vi : R—— U such that
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vZ(e)
lim . =0
€—0
and the formula
(29) (x,u) + e(x, ) + (v3(e),v2(e)) € Z
[o RO o ] x u 1

holds for sufficiently small € and any v2(e) such that

vZ(e)
=0 .

lim .
£—0

Hence, according to (27) we observe that for sufficiently
small £ the following formula holds

(30) (plu, + eu + vj(e)). u+ eu + vi(e)) €z, .

¢(u) is differentiable operator, hence

(31)  plu +eu+ vi(e)) = plu) + ep (u)u + vi(e)

for some vi(e) such that

vi(e)
lim =0 .
e—0"
From (27) and (28) we obtain
- = 1 2
(32) (xo,uo) + e(x,u) + (vx(e),vu(e)) € 22 .

If we take vi(e) = vi(e) we conclude from (29) and (32) that
the arbitrary vector (x,u) € C,n C, is tangent to the set

Zln Z2 . That completes the proof.
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4. The existence theorem

The existence theorem will be proved with additional
assumption concerning the function in the state equation
(2). We assume that the function f(x(t),u(t),t,t) is linear

with respect to (x,u). We also assume that the set U is a

compact convex set in R™. With notation

A= {(x,u) € L: x L: , P(x,u) =0, u(t) e U for a.e. t}

where P(x,u) is the operator (13), our optimization problem
becomes :
Find the minimum of the functional

1
I(v) = J‘ vi(t) H (£)v(t) + p (£)v(t) dt
0

where v € A. The form of the set A and the convexity of UeR
enable us to formulate :

Lemma 4.1. The set A e L: x L: is convex.

The function g(v) = vi(t) Ho(t)v(t) + po(t.)v(t) is a
continuous and convex function with respect to v. That gives
us :

Lemma 4.2. The functional I(+) is lower semiconti-
nuous in the weak topology of the space L:+m.

Lemma 4.3. The set A e L) x L) is bounded in the
norm of the space L: x L:

Proof. Let (x,u) € A. We know that u(t) € U for a.
e. t. The convexity of the set U € R" implies the exlistence
of real number c > O such that |u(t)|= c for a.e. t € [0,1].

Hence
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Ju _ = (Illutt)l2 at)'? = (J’lc2 at)'? = c.
L, 0 ]

It can be easily shown (Ref. 5) that in the set A the
operator P(x,u) satisfies the assumptions of the implicit
function theorem. That implies the existence of the linear
operator ¢ : L; — L: of the class C' , such that the
conditions x = ¢(u) and P(x,u) = 0 are equivalent. The
boundness of ¢(+) implies

IIXIL,, = Jetw | = fefful = fo} ¢ < = .
2
Then, there exists the ball K of the radius Jc: + ci where
c =c, c = |Pjc such that A ¢ K. That completes the proof.

Lemma 4.4, The set A is closed in the strong
topology of the space L: x L:

Proof. Let us consider the sequence (xk,uk)e A such
that

I(x,u) - (x,, )|| =

We shall prove that (xo,uo) € A.
From |(x ,u) - (x_,u)| — &> 0 we conclude that
k' k o' o ")
Ix - x| ——> 0 and ||u -u || P 0 . Hence there
k ol k> w

exists an integer ko , such that for any k = ko we find
! 2
[ e - ww|®a .50
o k [o] k—> ©

Let us suppose that_ub(t) ¢ U on some measurable set of
positive measure M. The set U € R" is compact, hence there

exists a real number a > 0 and the set C of positive measure
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m, such that

lu(t) —u(t)| >a for t e C and some k = k_ .
k o o

Hence for some k = O we have

1
[la® -u@®at= [ Ju® -uw|®a:=
° cclo,1]

z a2 mes(C) = a’m > 0 .

We have obtained a contradiction to (27) and we conclude
that uo(t) € U for a.e. t.

For any k is X = w(uk), where ¢ 1is a continuous
operator.

According to this result and to the definition of the set A
we conclude that (xo,uo) € A. That completes the proof.

Lemma 4.5. The set A ¢ L; x L: is compact in the
weak topology of L: x L: .

Proof. Lemmas 4.1 and 4.4 imply that A is convex
and closed in the strong topology of the space L: x L: . We
deduce that A is closed in the weak topology because it is
bounded and closed in the weak toplogy of the reflexive
space Lg x L; .

We can formulate now :

Theorem 4.1. 1If all above mentioned assumptions
hold then there exists the point (xo,uo) € A such that :

. 1
1° x (1) =Oj £(x, (T),u (t),7,t) dr ,

2° u (t) € U for a. e. t e [0,1],
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30

I(xo(t),uo(t)) s I(x,u) for any (x,u) € A.

The proof §s based on the Weierstrass theorem and the

Lemmas 4.2 and 4.5.

(1]

(2]

(3]

(4]

[5]

(6]

(7]
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