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ON ANNULI CONTAINING THE ZEROS OF POLYNOMIALS 

The paper extends some results of E. Deutsch [1] 
concerning bounds for the zeros of polynomials as functions 
of all the coefficients. The first contributors to this 
problem were C. F. Gauss and A. L. Cauchy. Since then many 
other mathematicians have taken part in the further growth 
of the subject, see [2], and this article is a slight 
contribution to the mentioned problem. 

Consider a complex polynomial 

(1) C B z i » a + a z + . . . + a z n = f(z), n £ 2 , 
0 1 n 

with a a * 0 so that o n 

(2) f(z) s a (z-z ) ... (z-z ) and z * 0 for 1 s j < n. 
n 1 n j 

It is trivial that each theorem saying that 

(3) |z I s <p (a a a ) for j = 1 n 
J n O 1 n 

is equivalent to the following 
(4) |z | a 1 /<p (a , a a J for J = 1 n . 1 J 1 n n n-1 0 
Indeed, in (3) or (4) put z i > zn f(l/z) instead of f. 
To obtain a little stronger form of (3)-(4) consider the 
family {z i » f(cz) : c e C }. Then we get 
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( 3 ' ) Iz I s i n f { |c|«> (a , a c , . . . , a c n ) : c € C } 
1 J 1 • • n 0 1 n 

f o r J = 1 n , 

and 

( 4 ' ) | z I a sup { | c | / © ( a c n , a c n _ 1 a ) : c € C > 
1 J ' 1 1 n n n-1 0 

f o r J = 1 n. 

Moreover, i f we know t h a t <p (a , a a ) fc 1 f o r a l l n 0 1 n a , a a € C wi th a a * 0 and t h a t t h e theorems ( 3 ) , 0 1 n O n (4) ho ld f o r po lynomia l s ( l ) - ( 2 ) and n = 2 , 3 t h e n f o r 

(2) we have 

(5) |z | s <p ( a , a - a a - a , - a ) i f j = 1 n , 1 J 1 n+l 0 1 0 n n-1 n 

and 

(6) |z I fc 1 /<p ( - a , a - a a - a . a J i f j = 1 n. 1 J 1 n+l n n n-1 1 0 0 

R e a l l y , i t i s enough t o app ly ( 3 ) - ( 4 ) w i th n+l i n p l a c e of n 

t o t h e polynomial z i » ( l - z ) f ( z ) . 

We l e t add t h a t t h e c l a s s i c a l r e s u l t s of Cauchy have t h e 

form ( 3 ) , s e e [ 2 ] . Now we f o r m u l a t e t h e b a s i c lemma. To t h a t 

purpose c o n s i d e r t h e f o l l o w i n g r e a l po lynomia l s 

k+l !*"-( I Kl} 
s=k+l J 

(7) Ak(x) = | a j - | a j x - . . . - ^ 

and 

(8) u (x) = " f V | + | a J x + . . . + | a |x k - | a |x k + 1 , 
k u 1 s 1 1 n-k1 1 n-1 1 1 n1 

s=0 
k = 0 , 1 n -1 . 

Each polynomial X s t r i c t l y d e c r e a s e s on [0,co) and t h e 
k+l polynomial x i » x ^ ( 1 / x ) s t r i c t l y i n c r e a s e s on [0,oo). 

Hence any f rom t h e po lynomia l s ( 7 ) - ( 8 ) has t h e o n l y ze ro i n 
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A n n u i i c o n t a i n i n g t h e z e r o s 

t h e I n t e r v a l [ 0 , « ) . D e n o t e t h e p o s i t i v e z e r o s o f ( 7 ) a n d ( 8 ) 

b y r ^ a n d p ^ , r e s p e c t i v e l y , a n d l e t 

r = 
k 

m l n { l , r > f o r k = 0 , 1 , . . . , n - 2 
k 

r = r 
n - 1 

f o r k = n - 1 , 

p k = 

m a x i l . p ^ } f o r k = 0 , 1 n - 2 

p = p f o r k = n - 1 . 
n — 1 

T h e n w e h a v e 

L e m m a . r s r s . . . s r = r s z s 
0 1 n - 1 1 j 1 

S O = p S p S . . . S p S p 
n - 1 n - 2 K 1 K 0 

f o r a i l j = 1 , . . . , n . 

P r o o f . S i n c e ( 3 ) 1 s e q u i v a l e n t t o ( 4 ) , i t i s 

s u f f i c i e n t t o c h e c k a l l t h e l o w e r b o u n d s f o r t h e z e r o s . 

I n d e e d , i f w e d e n o t e r = œ ( a , a a ) , p = t f r ( a , a , . . . , a ) , 
k 0 1 n k 0 1 n 

t h e n b y A , ( r , ) = 0 , n ( p ) = 0 w e o b t a i n e a s i l y t h a t 
k k k k 

0 ( a , a a ) = l / t y ( a , a a ) , w h e n c e t h e m e n t i o n e d 
0 1 n n n-1 0 

c o n c l u s i o n f o l l o w s . 

O b s e r v e n o w t h a t f o r k = 0 , 1 , . . , n - 2 w e h a v e 

k+l 
l i - r j 

J = k + 2 
\ . , ( r J = + r ï + 1 d - r J f l a I fc 0 = X ( r ) , k * l k k k k k L 1 J 1 k+l k+l 

b e c a u s e A ( r X ( r ) = 0 a n d r s 1 . H e n c e r s m i n { l , r > = 
k k k k k k k+l 

= r f o r k = 0 , 1 n - 2 . I t r e m a i n s t o s h o w t h a t | z l a r 
k+l 1 J 1 n-1 

f o r j = 1 n . A s s u m e t h a t f ( C ) = 0 , k | * 1 . T h e n 

- 757 -



M. Szaplel 

0 = |f(C)| * |a | - |a C| ~ |akCk| - |f(C) - E a * 
H — 0 

s Ak(|C|) , that is |<| 2: r n i = r. 

R e m a r k s , 

(i) The upper bounds in 

(9) r a |z | a p , l s j s n , 

and 

(10) rQ = min { l ,|ao|/ [ |a j } * | z | * 
^ S = 1 J 

s max-jl, I |a |/|a - p , 1 s J s n , 
8 = 0 J 

are known as c lassical results due to Cauchy, see [2]. 

( i i ) Let M = max{ la /a I :s = 1 n-l>. Then 0 = -fi (p)fc 1 s n1 n-1 
a la |(pn- p)(l-M/(p-l))+|a |p-|a I, whence ps max{la/a 1,1+M> 1 n1 , n l l 0 l ' O n ' 
an one more result of Cauchy, see [2]. Thus for j = 1 n 

we have 

(11) min{|ao/aJ(|ao|/(|ao| + | a i |) |a0|/( |aj + ^ | )>* 

* | Z j | s max {|ao/an|, l+|a/aJ 1+lan_/aJ>-

C o r o l l a r y 1. For any k e {1 n-2> and j = 

1 n (n i 3) we have 

| 2 j |s m a x j j |a s/aj, H a
k + / a J 1 + l a

n-/ anI}' S e e [ l 1 , 

and 
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Annuii con ta in ing the zeros 

| z > m i n { | a o | / £ |a | . | a | / ( | a | + | a | ) | a | / ( | a | + | a j )}. 
s=k+l J 

P r o o f . To the polynomial (7) apply (11) with n = k+1. 
Then we get an e s t ima t i on f o r from below. S i m i l a r l y , 
applying (11) to the polynomial (8) we o b t a i n an upper bound 

f o r p . Next use Lemma. 
n-2 

o r o 1 1 a r y 2. Let = £ | a j and = J] | a j . 

Then f o r any j = 1 n wè have 

2 la I 
1. min 

h S M K I + 4 |a 0 |M t ) 
1/2 

s=2 

• - Z. s 

s =0 

s maw 1. 
la | + ( l a I 2+4la |M ) I n-i I I n-1 1 1 n1 2 

2 la I 

1 / 2 

P r o o f . This i s e x a c t l y the i n e q u a l i t y : r j s | z p^ 
f o r 1 s j < n, see Lemma. 

Hence, in p a r t i c u l a r , we ob t a in 
C o r o l l a r y 3. For a l l 1 s j s n , 

(12 ) 

(13) 

(14) 

(15) 

|Zj j fc min { l , ( | a 0 | / Z | a s | ) 1 / 2 } 
s = 2 J 

n-2 ,1/2 

i f a = 0 , 1 

Iz^ j s ma« i1' [s?0|a/aJ) I ̂  Vl = ° ' 
n 

|z | £ 1 i f | a | £ E |a | (A. Cohn, see [2] ) 
s = l 8 

n-1 
|z | s 1 i f | a n | s £ | a j (A. Cohn, see [2 ] ) 

s=0 
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C o r o l l a r y 4. Let N = |a | + J |a -a |, 
n s = 2 8 8 ~ 

. n-l 
N = |a| + £ | a -a |. For any J = 1 n we have then 

s=i 8 8~ 

( 1 6 ) | Z J | * 2 |a o |/ (| V a o | + (|a-a o| 2 + 4|aJ N / / 2 ) 

and 

( 1 7 ) I z I s ( l a -a l + ( la -a I2 + 4|a I N )1/2 )/(2|a I ) . 1 J1 1 n n-l1 1 n n-l1 1 n1 2 1 n' 

P r o o f . Observe f i r s t that there Is the same kind of 

the connection between Corollaries 2 and 4 as between 

( 3 ) - ( 4 ) and ( 5 ) - ( 6 ) . One should only notice that 

N £ la I, N & la I, l 1 l1 2 1 n-i1 

|ai-ao| + C |ai-ao|2 + 4|ao| N ^ " " a |a_-a_ | + |a_+a_| £ 2|a 1/2 
1 01 1 1 01 1 01 

and, s imilar ly, 

l a - a I + ( Ia -a I2 + 4 la I N )1/2s 2 la I. 1 n n-l 1 1 n n-l 1 1 n1 2 1 n1 

In particular, we get 

C o r o l l a r y 5. For any j = 1 n , 

(18) | 2 j| * (|a o|/N/ / 2 i f a o = a i ( 

(19) |z I a (N /la l )1 / 2 i f a = a 1 J 1 2 1 n' n n-l 

(20) |z I £ a /max{a ,a } i f a > 0 and a i a i . . . i a > 0 1 j1 o o' 1 o 1 2 n 

(a s l ight generalization of the Enestrom-Kakeya theorem, see 

[ 2 ] ) , 

(21) a /max{a ,a } =s \z \ s (2max{a ,a >/a -1 ) i f a > 0 0 0 1 ' J 1 O l n 0 

and a £ a £ . . . £ a = a > 0 , 1 2 n-l n 
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(22) |z Is max{a , a >/a i f a >0 and a s a a . . a >0, 1 J 1 n-l n n n n-1 n-2 0 

(23) (a /(2max{a , a } - a ) ) 1 / 2 s |z I s max{a , a >/a O n-l n 0 1 J 1 n-l n n 

i f a > 0 and a £ a a. . . £ a = a > 0 . n n-l n-2 1 0 
Let now a l l t h e c o e f f i c i e n t s of (1) be p o s i t i v e and l e t 

m = m i n { a / a : j = 0 , 1 , . . . , n - l } , M= max{a / a : J=0 ,1 n - l } . 
Applying (20) and (22) t o the polynomials z i » f(mz) and 
z i » f(Mz), r e s p e c t i v e l y , we have a l s o 

C o r o l l a r y 6. m s ^ M f o r a l l j€<l n}, 
c f . [2 ] . 

E x a m p l e s . 
( i ) Consider f i r s t t he fo l lowing example of Deutsch [1] : 
f ( z ) = 0 .7 + 0 .7z + 0 . 3 z 2 + z 3 . Then 

0 .35 s | Z j | s 1 .7 by (10) , 0 . 5 s | Z j | s 1.7 by (11), 
0 . 5 s |Z j | s 1 .4 by Coro l l a ry 1 and 0 . 5 7 7 . . . = 3~1 /2* |z | s 
s 1 . 4 5 . . . by Coro l l a ry 4. 

Let us add t h a t the e x a c t l y va lues of the ze ros a r e : z 
= - 0 . 7 0 7 9 . . . . |z | = | z 3 | = 0 . 9 9 4 3 . . . . 

( i i ) f ( z ) = 0 . 9 + 0 .9z + z 2 + 0 . 9 z 3 + z4 + zS . For t h i s 
polynomial we have : 

9/19 s | Z j | s 2 by (10) or by Coro l l a ry 1, 3/16 * | z | s 4 .7 

by (11) and J 9 /13 ' < | Z j | s \ 1.2 ' by (18 ) - (19 ) . 

( i i i ) f ( z ) = 2 + 2z + pz2 + qz3 + z4 + zS , where 
2 a p £ q £ 1. In t h i s case we have : 0 . 5 s ¡ z j s 3 by (10) 

and 1 s | z | s by (16)- (17) or by (18)- (19) or e l s e by 
(21) . For i n s t ance , i f p = 2, q= 1, then an easy c a l c u l a t i o n 
impl ies t h a t | z j = ¡ z j = 1 and | z j = | z j = | z j = 2 1 / 3 . 
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