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ON ANNULI CONTAINING THE ZEROS OF POLYNOMIALS

The paper extends some results of E. Deutsch
concerning bounds for the zeros of polynomials as functions
of all the coefficients. The first contributors to this
problem were C. F. Gauss and A. L. Cauchy. Since then many
other mather;naticians have taken part in the further growth
of the subject, see [2], and this article is a slight

contribution to the mentioned problem.
Consider a complex polynomial

n df

<

(1) Cazn——>ao+alz+...+anz = f(z), nz 2,
with aa # 0 so that
o n
(2) f(z) =a(z-z) ... (z-=z ) and z_ # 0 for 1 < j
n 1 n J

It is trivial that each theorem saying that

(3) |zj| =¢(a,a,...,a) for j=1,...,n

1

is equivalent to the following

(4) |zj| = 1/¢n(an,an_1,...,ao) for j=1,...,n.

Indeed, in (3) or (4) put z — z" £(1/z) instead of f.

To obtain a little stronger form of (3)-(4) consider the

family {z > f(cz) : ¢ € € }. Then we get
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(3°) |zj| s inf {|c|¢n(a°.aic,...,ahcn) rcetC }

for j=1,...,n,
and
(4’) |zJ| z sup {|c|/¢n(ahc",ah_1cn-1,...,ab) :ceC}

for j=1,...,n
Moreover, if we know that ¢n(ab,a1,....ah) 2 1 for all
a,a,...,a € C with aa # 0 and that the theorems (3),
(4) hold for polynomials (1)-(2) and n = 2,3,... , then for

(2) we have

(5) |zj| s ¢n+1(ao,a1-ao,...,ah-ah_l,-an) if j=1,...,n,

and

1,...,ai-a.o,ao) ifj=1,...,n

(6) |zJ| z 1/¢n*1(-an,an-an_
Really, it is enough to apply (3)-(4) with n+1 in place of n
to the polynomial z —— (1-z)f(z).

We let add that the classical results of Cauchy have the
form (3), see [2]. Now we formulate the basic lemma. To that

purpose consider the following real polynomials

K L K+l
(M AL = Ja] - [afx - ... - |a|x -[ ) |as|]x+
s=k+1

and

nok-1 k+1
(8) uk(x) = Z; ]asl + |ah_k|x + ...+ |ah_1|x - Ja | ,

8=

k=20,1,...,n-1.

Each polynomial Ak strictly decreases on [0,o) and the
polynomial x r— xkuuk(l/x) strictly increases on [0,®).

Hence any from the polynomials (7)-(8) has the only zero in
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the interval [0,®). Denote the positive zeros of (7) and (8)

by ;k and Sk, respectively, and let

"
min{l,rk} for k =0,1,...,n-2
r = 4
k ~
r =r for k = n-1 ,
L n-1
max{l,zk} for k =0,1,...,n-2
P, = 1 B
i P_, =P for k = n-1
Then we have
Lemma.- r sp s...sr_=rs|z|s
0 1 n-1 J
= = =
=p pn—l = pn—2 = = p1 Po
for all j=1,...,n.

Proof. Since (3) is equivalent to (4), it is

sufficient to check all the lower bounds for the zeros.

Indeed, if we denote r.= ¢(ao,a1,...,an), P= w(ab,a ,...,an),

1

then by Ak(;k) = 0, pk(sk) =0 we obtain easily that
w(ab,ai,...,ah) = 1/¢(ah,ah_1,...,ab), whence the mentioned

conclusion follows.

Observe now that for k = 0,1,.., n-2 we have
n

_ kel _ ~
AL, (r) = Alr) + r rk)j_Z+2|a| =0 =2, (F ),

because A (r )z A (; ) =0and r= 1. Hence r s min{l,; }=
k  k k k k k k+1

=r for k = 0,1,...,n-2. It remains to show that |zj|= r

k+1 n-1

for J = 1,...,n. Assume that f(g) = 0, |{| = 1. Then
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k
0= £ = |a] - [ag] - ... - |ag"] - |f(&) - Lal’| =

s=0

za(|g]), that is |g] zr =

Remsarks.

(1) The upper bounds in

(9) rs|zJ|Sp,lstn,
and
n
(10) r, = min { 1,|ab|/ Zl|as| } s |zj| <
s=

n-1
< ma.x{l, z |as|/|an|} =0, 1<j=n,
8=0

are known as classical results due to Cauchy, see [2].

(ii) Let M = max{las/anl :s =1,...,n-1}. Then 0 = —un_l(p)z
n

=|an|(p p)(l—M/(p—l))+|an|p—|ao|, whence p= max{|ao/an|,1+M)

an one more result of Cauchy, see [2]. Thus for j = 1,...,n
we have
(11)  min{ |a°/an[, |a.°|/( |a°|+|a1|), e |ao|/( |a0|+|an_1|)}5

=< |zj| < max {|a0/an|, 1+|a1/an|,...,1+|an_1/an|}.

Corollary 1. For any k € {1,...,n-2} and j =

1,...,n (n =2 3) we have

Kk
|zJ|s max{szolas/anL 1+|ak+1/an|,...,1+|an_1/an|}, see [1],
and
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n
|z’|z min{laol/ Zi*las|,|ab|/(|a°|+|a1|),...,|a0|/(|a°|+|ak|)}.
8=

Proof. To the polynomial (7) apply (11) with n = k+1.
Then we get an estimeztion for ;k from below. Similarly,
applying (11) to the polynomial (8) we obtain an upper bound
for P, - Next use Lemma.

Corollary 2. Let M1 =

-2
|as| and M, = J |as|.
8 8=0

i

Then for any j = 1,...,n wé have

2|a |
min { 1, p vt ]zj| <
|a1|+(|a1| +4|a0]M1)

2 172
s | Ian_1|+(|an_1| +4|an|M2)
2la_|
n

Pr oo f. This is exactly the inequality : rislzj|s P,
for 1 = j = n, see Lemma,
Hence, in particular, we obtain

Corollary 3. Forallls= j=n,

o 172
(12) |zJ| z min { 1, (|ao|/ 22|as|) } if a = o,
s=
n-2 1/2
(13) |zJ| < max { 1, [ )X las/anl] } ifa =0,
s8=0
: n
(14) |zj| 21 if |ab| z Zl|as| (A. Cohn, see [2]) ,
8=
n-1
(15) |zj| =1 if [a| = s§L|as| (A. Cohn, see [2]) .
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n
Corollary 4. LetN = |ah| + ¥ |as—as_1|,
8=2
,n-1
N2 = |ao| + Zilah-as_1|. For any j = 1,...,n we have then
s=
2 172
(16) |zj| z 2|ao|/(|a1—ao|+(|a1-ao| + 4|a0| Nx) )

and
2 172
(17) |zj| s (|a an_1|+(|an—an_1|. + 4fa | NDTH/(2(a ]).
Proof. Observe‘{irst that there is the same kind of
the connection between Corollaries 2 and 4 as between

(3)-(4) and (5)-(6). One should only notice that

lelall’ szlah-1|'

1/2

2
|a1—ao|+(]a1-ao| + 4|a°| N1) 2 |a1—ao|+|a1+ao| z 2|ab|

and, similarly,

2 172
|an—an_1|+(|ah-ah_l| + 4|an| Nz) = 2|ah|.
In particular, we get
Corollary 5 Forany j=1,...,n,
172 _
(18) |zj| = (|a°|/N1) if a =a ,
172 _
(19) |zj| < (N2/|an|) ifa =a ,
(20) |z,| 2 a/max{a ,a} if a>0andazaz...za> 0
] o 0’1 0 1 2 n

(a slight generalization of the Enestrom-Kakeya theorem, see
[21),

172
(21) ab/max{ao,al} < |zj| = (2max{a°,a1}/an—1) if a > 0

and a Z2a = ... zZ a =a >0,
1 2 n-1 n
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= = .. >
(22) |z |= max{a  .a}/a if a>0 anda za =..>ap>0,

(23) (a()/(Zma:v({an_l,an}-a.o))1/2 < |zJ| < max{a.n_l,an}/an
if an> 0 and ah_lz ah—zz"'z a = ao> 0.
Let now all the coefficients of (1) be positive and let
m = min{aj/aj+lzj=0,1,...,n—l}, M= max{aj/aj’1:J=0,1,...,n—l}.
Applying (20) and (22) to the polynomials z +—— f(mz) and
z - f(Mz), respectively, we have also
Corollary 6. ms |zj| < M for all je{1,...,n},
cf. [2].
Examples.
(i) Consider first the following example of Deutsch [1]:
£(z) = 0.7 + 0.7z + 0.32° + z° . Then
0.35 = |z | = 1.7 by (10), 0.5 |z | = 1.7 by (11),
0.5= |z | = 1.4 by Corollary 1 and 0.577... = 3725 |z,| =
= 1.45... by Corollary 4.
Let us add that the exactly values of the zeros are : z
-0.7079..., |z,| = |z,| = 0.9943...
(11) £(z) = 0.9 + 0.9z + z° + 0.92° + z* + 2z°. For this

1

polynomial we have :
9/19 = |zj| = 2 by (10) or by Corollary 1, 3/16 = |ZJ|'5 4.7

by (11) and 4 8/13" = |2,| = 112" by 18)-(19).

(1i1) f(z) = 2 + 2z + p22 + qz3 + 28+ 2° , where

2zp2q21. In this case we have : 0.5 = |zj| < 3 by (10)

and 1 = |zJ| s J 3 by (16)-(17) or by (18)-(18) or else by
(21). For instance, if p = 2, q= 1, then an easy calculation

173
implies that |zl| = |22| = 1 and |zs| = |z4| = |zs| = 2173
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