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ON SOME PROJECTIVELY RECURRENT SPACES

1. Introduction

An n-dimensional (n = 3) Riemannian space (M,g) not
necessarily of definite metric is called a projectively
recurrent space, when the Weyl’'s projective curvature tensor
WTJR of the space defined by

(1.1) w =g ——1-—-[6hR - "R ]
1jk 1k n-1 k 1) J ik

is recurrent, that is, the W' satisfies VW' = k
1jk 1 1jk 1 13k

for a non-zero vector kl which is said a recurrence vector,
where Vi denotes covariant differentiation with respect to
the metric connection of the space, Rhuk and RU denote
respectively the curvature tensor and Ricci tensor of the

space.
The NTJk is zero if and only if (M,g) is of constant
curvature, 1l.e.,

r® - R 5" -5t
1jk n(n - 1) k gij j €k
vwhere R is the scalar curvature of (M,g). It is obvious
that a recurrent space is a projectively recurrent. E.Glodek
[1] and T. Miyzawa [3] proved that every projectively

recurrent space is necessarily a recurrent space.
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M. Matsumoto was proved ([2], Theorem 3.6) that in projective
recurrent space the recurrence vector kl is a gradient
vector.

Let M be an n-dimensional Riemannian space with metric
tensor glj and a semi-symmetric metric connection f? . It is
known (see [6]) that a semi-symmetric metric connection f?j
is given by

13 = r?j * 8? pj - ph glj
where TTJ denotes the Christoffel symbol and P, is a
gradient vector and ph = ghrpr , and that the curvature
tensors ﬁ:j of fh and RP of FTJ are related is such a

k 1k 1]k
way that

(1.2) A" =R" -3&"A +a8"A -g A+ g A",
1k 1jk k i) J 1k 1) k itk )

where AU is a tensor field of type (0,2) defined by

_ _ 1 r
(1.3) AU = VJPl p.,l-"1 *3P P, 8“ ’

and A: = ghrArk .From (1.3) we have

(1.4) ﬁU = ﬁUr R,-(n2) A -Ag .
where

_ r n-2 r
(1.5) A - Vrp + T p pr .

If we now put

o=/ —L[a"ﬁ -s" R ]
ijk 1jk n-1 k 1) 3 ik
at each point of M, then by means of (1.1), (1.2) and (1.4),

we see that
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(1.8) W =w -1 [a" (A

h
—_ - - - +
1k 13k n-11"«x A 811) 63 (Alk A 8lk)]

J
h h
* 8ix Aj glj Ak :

The tensor ﬁ?n: we shall call the projective curvature
tensor corresponding to the connection f?J . We have the

following theorem (see [4]).
Theorem A If the vector field p in (1.3) is

concircularly, i.e., satisfies the condition

v pl = pmpi +F gml :

then ﬁh .
1)k 1k

Def init1ilon An n-dimensional Riemannian space
is called special projectively recurrent (S.P.R. in short)
with respect to the metric semi-symmetric connection fTJ ,
when the proJjective curvature tensor corresponding to this

connection has the following properties

(1.7) T
1jk 1 jk
(1.8) " =a W ,
m 13k m 1k

where Vn denotes the covariant differentiation with respect
to the connection f?j and a is a vector field.
The purpose of this note is to study the S.P.R. spaces
with respect to the connection f?}.
All spaces under considerations are assumed to be not of
constant curvature, connected and analytic. The metric are

not assumed to be definite.
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2. Preliminary

In the sequel we need the following well-known results.

Lemma 1. [5] The curvature tensor of a Riemannian
manifold (M,g) satisfies the identity

VVR -VVR + VVR - VVR +
s m hijk m s hijk J k mshi k J mshi
+ VVR - VVR =0 .
i h jkms h i Jkms
Lemma 2. [5] If Tbc , W _are numbers satisfying
T =T |,
be cb
w T +w T +w T =0
a be c ba b ca
for a,b,c = 1,2,...,n, then all the Tbc are zero or all wa
are zero.

T he or emn 1. Suppose that (M,g) admits a
concircularly vector fleld. The projective curvature tensor
corresponding to the connection f?j is equal to the
projective curvature tensor corresponding to the Levi-Civita

connection if and only if
(2.1) vp, =p P *+Fg,

where F is a scalar function.

Proof. If we put ﬁ’l‘Jk = w’l‘Jk , then (1.8) is of the

form

h h
(2.2) 8, (A, -Ag )-8 (A -Ag))+

h h _
+ (n 1)(Ak gU AJ glk) =0 .

J

Transvecting (2.2) with gi , we get

- 732 -



Projectively recurrent spaces

h h
(n-2)(n A - A3 ) =0

whence, by making use of (1.3) and (1.5) we obtain (2.1).
Now, Theorem A completes the proof.

Theorem 2. If (Mg) admnits the connection f':'j
such that M is S.P.R. with respect to this connection, then
F is a constant.

Pr oo f. Differentiating (2.1) covariantly with

respect to Vk and using Ricci-identity, we obtain

r
(2.3) P Ruk = (F pJ - FJ) 8.~ (F P, - Fk) 8U ’

where Fj = GJF. Transvecting (2.3) with pk and using p’ p°

”Js-p p RJl , we find
a) Fp, -F =2ap_ ,
) P, ] P,
r = _
(2.4) 1 Pp R, =Ap g, -p g,
r - -
~c)p Rrk-l(ln)pk.

where A is a scalar function. From (1.1) and (2.4), we have

r = - -1 -
a) p wrljk B Mp] Ex ~ Py g”) n-l(kau pJRu:)’
r =
b) p Whrjk 0,
(2.5) ¢ . 1
c) p whlrk = ph(h &y " 0 T Ru) ’
d) p* W =-p (A g +—1—R)
hi jr h 1] n-1 135"’
where L w;lk . From (1.7) and (1.8) it follows
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(2.6) vm“%ijk ™ whljk+ Py w;ljk+ P w;mjk+ P, whlnk *
r
* Py “;ijn P [8mh w;ljk+ €t erjk+ Eas w;lrk+ & w£ljr]'
Differentiating (2.5) b) covariantly with respect to VIIl and
using (2.1), (2.5) and (2.6), we get (F + p" p) L

But W # 0, hence we have
hi Jk

(2:7) F+p p =0.
Therefore 2p° Vjpr + FJ = 0. Using (2.1) we have
2(p" p_ + F)p, + F, = 0 and from (2.7) F = 0.

Lemmma 3. Suppose that (M,g) admits the
connection ffj such that M is S.P.R. with respect to this
connection. Then
(1) VR = an[le + (n-1)F glk] +

-+ pl[Rmk+ (n-1)F gnk] + pk[Rl_ + (n-1)F glm],
(2.8) A
(11) R- = [R + n(n-l)F]a- ,

(111) arpr +2F=0.

Proof. Applying V- to the both sides of (2.5) c¢)
and using (2.1), (2.5), (2.6), (2.7) and F = A = const., we
get (2.8)(1), whence, by (2.4) and contraction with glk, we
obtain (ii). Contracting now (2.8)(i) with g"'l and using
(i1), we get (iii).
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3. Main results
Theorem 3. IfMis S.P.R. with respect to the
connection f“rj , then the vector am is gradient, that is, it

satisfies

(3.1) Va =Va

Pr oo f. Substituting (1.1), (2.5) and (2.8) into
(2.6), we get

(3.2) vnRhijk‘ athijk+ phBlljk+ plBhnjk+ ijhlnk+ pthUm’
where

(3.3) Bhljk = hljk F(ghk g ghj g

From the above we infer that lehijk = V_RhUk. Applying Vs

to the both sides of (3.2) and using (3.2) and (3.3), we get

(3.4) VVR -VVR =(Va -Va)B +
s m hijk m 8 hijk s m ns hi jk

+ F[ghanljk - ghnBsijk + glthan - glthsjk *

+g B -8 1.

* 8 Biise ” %m Phige
Jjs himk ijm hl sk s hijm lm hijs

The tensor Bhljk has the same algebraic properties as the

curvature tensor. Therefore (3.4) and Lemma 1 imply

(3.5) (Vsa- - V_a') ma + (Vkaj - Vjak) B“M +
+ (Vlah - Vhal) Bjk_s = Q.

If wnowput W =Va ~-Va , from (3.5) follows
ms s B ms
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W B + W B + W B =0
ms  hijk jk  mshi hi ~ jkns

which is of the form of Lemma 2 since Bmshl= mas , indices
a,b,c being replaced by pairs ms, hi, jk. Thus from Lemma 2,
we have Va = Va or B = 0. Since B cannot be
s m m s hi jk hi jk
zero, our theorem is proved.
Theorem 4. If M is S.P.R. with respect to the
connection lﬂ;, , then F =0, l.e.,

(3.6) Vjpl =P, P,

Proof. The equation (3.4), by making use of (3.1)
and Ricci-identty, can be written in the form

(3.7) R RR +R RR +R RR +R R® =
rijk  hms hrik ims hirk = jms hijr = kms

=F g Bk ~ Bna Bk * 8 Bojk ” Bim Brage *

- g +g B -g B 1.

+ g B B
js himk jm hisk ks hijm km hiljs

Applying Vz to the both sides of (3.7) and using the Ricci-
identity and (3.2), we find

(3.8) F [Bhlzk(ps gjm- P gjs) + BhUz(ps g, P, 8&3)]= 0.
Contracting now (3.8) with gsk , We easily obtain

(2- n) F P BhUz = 0.

Since the space is not of constant curvature by assumption,
the las formula gives F = 0, which completes the proof.

The following theorem is an immediate consequence of
(2.7) and Theorem 4.
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Theorem.5 A S.P.R. space with respect to the
connection frj with definite metric can not exist.

If (M,g) admits a vector field P, such that (1.7) and
(1.8) hold, then from (3.6) we have Vm¢l= 0, where = e—pp1
and alp =P,

From the above form of ?, it is easily seen that ¢r¢r =0.

The above discussion leads us to consider a space (M,g)
which admits a null paralell vector field.We now have the
following theorem (for detail see [5], p.40).

T Q eorem 6. If (M,g) admits a vector field P, such
that (1.7) and (1.8) hold,then coordinates can be chosen so
that the metric takes the form

2dx1dxn + 8«8 dxa de , «,Bp=1,2,...,n"-1,
where the gaﬁ are independent of x" . The vector field p1 is
equal 6; e’ .

Theorem 7. If (Mg) admits a vector field P,
R

such that (1.7) and (1.8) hold, then w_ R:; = 5w and
(3.9) w w R =w w R -wwUR -wwa R
r hijk h k 1) h 3 ik i1 k hy

where wo=a - 2p

1 t

Proof. Substituting F = 0 into (3.2), we get

(3.10) VR __=a R _+p R __+p R _ +
m hijk m  hijk h mijk i  hmjk
* pj Rhi-k * Py Rhljn )

Summing the equality (3.10) cyclically inm, h, 1 and using
the first and second Bianchi identity, we obtain
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(3.11) w Rh!jk A R_hjk A thk =0,

where w =a - 2pl . Transvecting (3.11) with p" and using

r _ r - .o
PRrUk = 0, Rhljk # 0, we. find Pw 0, which, by PP

0, implies pr a.l~ = 0 and wrwr = arar . Contracting (3.11)
mi 1)
with g and then with g~ , we find

r = - =
(3.12) W ij W RU W th R w Rh

Transvecting (3.11) with w" we find

Www R =wi(w R -w R )
r hijk h rijk i rhik

By (3.12), this yelds (3.9). This completes the proof.
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