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ON SOME PROJECTIVELY RECURRENT SPACES 

1. Introduction 

An n-dimensional (n £ 3) Riemannian space (M,g) not 

necessarily of definite metric is called a projectively 

recurrent space, when the Weyl's projective curvature tensor 

the space defined by 

(1.1) W* = R h - — 1 — fsh R - 5 h R 1 
ljk ljk n - 1 ^ k ij j lk J 

is recurrent, that is, the W11 satisfies V W11 = k W* 
ljk 1 ljk 1 ljk 

for a non-zero vector k which is said a recurrence vector, 
l 

where V denotes covariant differentiation with respect to 

the metric connection of the space, R h and R denote 
ljk ij 

respectively the curvature tensor and Ricci tensor of the 

space. 

The W* is zero if and only if (M, g) is of constant 1 Jk 
curvature, I.e., 

Dh R f _h _h "1 
R = —7 rr 5 g - 5 g 
ijk n(n - 1) L k IJ J ikj 

where R is the scalar curvature of (M, g). It is obvious 

that a recurrent space is a projectively recurrent. E.Glodek 

[1] and T. Miyzawa [3] proved that every projectively 

recurrent space is necessarily a recurrent space. 
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M. Matsumoto was proved ([2], Theorem 3.6) that in projective 
recurrent space the recurrence vector k^ is a gradient 
vector. 

Let M be an n-dimensional Riemannian space with metric 
tensor g and a semi-symmetric metric connection f h . It is iJ U h 

known (see [6]) that a semi-symmetric metric connection f 
is given by 

t* = r* + s h
 P - P h g 

where denotes the Christoffel symbol and pt is a 
gradient vector and ph = g^p , and that the curvature r 
tensors ft of f and R of T are related is such a ljk ljk ljk ij 
way that 

(1.2) fth = Rh - 5h A + 5h A - g Ah + g Ah , 

1 jk ljk k IJ J lk elJ k lk J 

where A ^ is a tensor field of type (0,2) defined by 1 r (1.3) A = V p - p p + o P P g 

ij ji *JM 2 ^ r °ji 

and Ah = g^A . From (1.3) we have k rk 
(1.4) ft = ftr = R - (n-2) A - A g , 

ij ljr U U 6 U 

where 

(1.5) A = V p r + ^ p r p . r £ r 

If we now put 

= fth - 1 f 5
h ft - 5

h ft 1 1 jk ljk n-1 k IJ J lk J 
at each point of M, then by means of (1.1), (1.2) and (1.4), 
we see that 
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(1.6) tf1 = W* - Ari« h (A - A g ) - 5h (A - A g )1 + 1 Jk ljk n-lL k 1J ®1J J lk lk J 

+ g A - g A 

lk J 1J k 

The tensor ft11 we shall call the projective curvature 1Jk Ah 
tensor corresponding to the connection r We have the 
following theorem (see [4]). 

T h e o r e m A. If the vector field p4 in (1.3) is 
concircularly, i.e., satisfies the condition V p = p p + F g ml *m 1 ml 
then = W* ljk ljk 

D e f i n i t i o n . An n-dimensional Riemannlan space 
is called special projectively recurrent (S.P.R. in short) 

1J ' 
when the projective curvature tensor corresponding to this 
connection has the following properties (1.7) tf1 = V/1 , 1 Jk ljk 
(1.8) $ tf1 = a tf1 , m ljk m ljk 
where $ denotes the covariant differentiation with respect m 
to the connection f and a is a vector field. 1 j m 

The purpose of this note is to study the S.P.R. spaces 

U 
All spaces under considerations are assumed to be not of 

constant curvature, connected and analytic. The metric are 
not assumed to be definite. 
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2. Preliminary 
In the sequel we need the following well-known results. 
L e m m a 1. [5] The curvature tensor of a Riemannian 

manifold (M,g) satisfies the identity 

7 7 R - V V R + V V R - 7 7 R + s m hi Jk D s hi Jk J k mshl k J mshi 
+ 7 V R - 7 7 R = 0 . i h Jkms h 1 Jkms 

L e m m a 2. [5] If T , w are numbers satisfying be a 
T = T , be cb 

w T + w T + w T = 0 a be c ba b ca 
for a,b,c = 1,2 n, then all the T are zero or all w be a 
are zero. 

T h e o r e m 1. Suppose that (M, g) admits a 
concircularly vector field. The projective curvature tensor 
corresponding to the connection f^ is equal to the 
projective curvature tensor corresponding to the Levi-Civita 
connection if and only if 
(2.1) V p = p p + F g 

JM J i )i 
where F is a scalar function. 

P r o o f . If we put W11 = W11 , then (1.6) is of the ^ 1 jk 1Jk form 

(2-2) < (Aij " A S t J ) (Anc" A*ik} + 

• ( n - l ) ( A j g l J - A ; g i k ) « 0 . 

Transvecting (2.2) with we get 
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(n-2) (n A* - A ) - 0 

whence, by making use of (1.3) and (1.5) we obtain (2.1). 

Now, Theorem A completes the proof. 

T h e o r e m 2. If (M,g) admits the connection f* 

such that M is S.P.R. with respect to this connection, then 

F is a constant. 

P r o o f . Differentiating (2.1) covariantly with 

respect to and using Ricci-identity, we obtain 

(2.3) pr R;jk = (F P j - Fj) g|k - (F pk - Fk) g i j . 

where F^ = SF. Transvecting (2.3) with pk and using pr p8 

R = pr p8 R , we find rljs ^ K rjls 

(2.4) 

a) F P j - F j = \ P j , 

b) p Rr = X(p g - p g r IJk *J lk *k ®1J 

c) pr R = \ (1-n) p u , rk k 

) . 

where A is a scalar function. From (1.1) and (2.4), we have 

(2.5) 

a) pr W , = A(p g - p g ) - -^-(p R -p R ), 
riJk *J 1 k *k 1J n-1 Kk 1J J lk 

b) pr W = 0, 
hr jk 

c) pr W 
hlrk 

d) pr W 
hi Jr " P h U «ij + ÏPf V ' 

where Vf = gw . From (1.7) and (1.8) it follows 
hljk hr ljk 
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(2.6) V W = a W + p W + p W + p W + 
m hljk n hi Jk *h mljk M hmjk *J hlmk 

+ p w - p r [ g W + g W + g W + g W ]. k hi Jm mh rljk ml hrjk mj hlrk ink hljr 

Differentiating (2.5) b) covariantly with respect to V and 
ID 

using (2.1), (2.5) and (2.6), we get (F + pr p ) W = 0. 
r hi Jk 

But W * 0, hence we have 
hi Jk ' 

(2.7) F + p p = 0 . 

Therefore 2pr VjPr + F^ = 0. Using (2.1) we have 

2(pr p + F)p + F = 0 and from (2.7) F = 0. i" J J J 
L e m m m a 3. Suppose that (M, g) admits the 

connection such that M is S.P.R. with respect to this 
connection. Then 

(2.8) -

(i) 7 R = a [R + (n-l)F g.J + 
m l k m l k lk 

+ p [R (n-l)F g J + pt[R, + (n-l)F g, ], 1 mk mk k la in 

(ii) R = [R + n(n-l)F]a , • • 

(iii) a p + 2F = 0 . 
r 

P r o o f . Applying to the both sides of (2.5) c) 
and using (2.1), (2.5), (2.6), (2.7) and F = X = const., we 

lk 

get (2.8)(i), whence, by (2.4) and contraction with g , we 
obtain (ii). Contracting now (2.8)(i) with g™1 and using 
(ii), we get (iii). 
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3. Main r e s u l t s 

T h e o r e m 3. I f M I s S .P .R. w i th r e s p e c t t o t h e 

c o n n e c t i o n f ^ , t h e n t h e v e c t o r a I s g r a d i e n t , t h a t i s , i t 

s a t i s f i e s 

(3. 1) 7 a = 7 a . 
n s s m 

P r o o f . S u b s t i t u t i n g ( 1 . 1 ) , ( 2 . 5 ) and ( 2 . 8 ) i n t o 

( 2 . 6 ) , we g e t 

( 3 . 2 ) 7 R = a B + p B + p B + p B + p B 
• h i j k a hi Jk h a l j k i hmjk J h i oak k h l j m 

where 

( 3 . 3 ) B = R + F ( K g - g g ) . 
hi Jk hi Jk ®hk ®1J ®hj ®lk 

From t h e above we i n f e r t h a t 7 B = 7 R . Applying 7 
B h i J k B h i J k s 

t o t h e b o t h s i d e s of ( 3 . 2 ) and u s i n g ( 3 . 2 ) and ( 3 . 3 ) , we g e t 

( 3 . 4 ) 7 7 R - 7 7 R = (7 a - 7 a ) B + 
s B h i j k a s hi Jk s m a s h i j k 

+ F[g B - g B + g B ~ g B + 
hs a l j k hm s i Jk I s h a j k l a h s j k 

+ g B - g B + g. B - g B 1 . 
J s h l a k JB h l s k ° k s h l j m ka h l j s J 

The t e n s o r B has t h e same a l g e b r a i c p r o p e r t i e s a s t h e 
h i j k 

c u r v a t u r e t e n s o r . T h e r e f o r e ( 3 . 4 ) and Lemma 1 imply 

( 3 . 5 ) ( V a - 7 a ) B + ( 7 a - 7 a ) B + 
s a a a h i Jk k J J k a s h l 

+ ( V a - V a ) B = 0 . 
1 h h i Jkas 

I f we now pu t W = 7 a - 7 a , f rom ( 3 . 5 ) f o l l o w s 
•B S B B S 
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W B + W B + W B = 0 ms hi Jit jk mshl hi jkms 

which i s of the form of Lemma 2 s ince B = B , i n d i c e s ins hi hi ms 
a , b , c being r ep laced by p a i r s ms, h i , j k . Thus from Lemma 2, 
we have 7 a = V a o r B = 0 . Since B cannot be s m m s hi jk hljk 
zero , our theorem i s proved. 

T h e o r e m 4. If M i s S.P.R. with r e s pec t t o the 
connect ion f h , then F = 0, i . e . , i j 

(3 .6 ) 7 j P i = Pj Pj • 

P r o o f . The equa t ion (3 .4 ) , by making use of (3 .1 ) 
and R i c c i - i d e n t t y , can be w r i t t e n in the form 

(3 .7 ) R Rr + R Rr + R Rr • R Rc = ri jk hms hrjk lms hlrk Jms hljr kms 

= F [c B - g B + g B - g B + hs ml jk hm si Jk Is hmjk im hsjk 

+ g B - g B + g B - g B ] . ° j s himk Jm hlsk ks hljm km hljs 

Applying 7^ t o the both s ide6 of (3 .7 ) and us ing the R i c c i -
i d e n t i t y and ( 3 . 2 ) , we f i n d 

(3 .8) F [B (p g - p g ) + B (p g - p g )]= 0. 
hlzk *s Jm Km 6 J s hljz °mk ®ks 

sk Con t rac t ing now (3 .8 ) wi th g , we e a s i l y o b t a i n 
(2- n) F p B = 0. 

m hljz 
Since the space i s not of cons tan t cu rva tu re by assumption, 
t he l a s formula g ives F = 0, which completes the p roof . 

The f o l l o w i n g theorem i s an immediate consequence of 
(2 .7 ) and Theorem 4. 
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T h e o r e m . 5. A S.P.R. space with respect to the 
fh with definite metric can not exist. 
U 

If (M,g) admits a vector field pt such that (1.7) and 
(1.8) hold, then from (3.6) we have V <p = 0, where <p = e~pp 

ID 1 1 1 
and d p = p . 1 M 
From the above form of q> it is easily seen that <p <p =0. 1 r 
The above discussion leads us to consider a space (M, g) 
which admits a null paralell vector field. We now have the 
following theorem (for detail see [5], p.40). 

T h e o r e m 6. If (M,g) admits a vector field pt such 
that (1.7) and (1.8) hold, then coordinates can be chosen so 
that the metric takes the form 

2dx dx + g dx 'dx* , a,P = 1,2 n-1 , ap 

where the g _ are independent of xn . The vector field p is ocp l 
equal 51 ep . n 

T h e o r e m 7. If (M, g) admits a vector field p 
r R 1 

such that (1.7) and (1.8) hold, then w R = ^ w and r h <s h 
(3.9) w r w R = w w R - w w R - w w R r hi jk h k 1J h J lk 1 k hj 

where w = a - 2p . 1 l M 
P r o o f . Substituting F = 0 into (3.2), we get 

(3.10) 7 R = a R + p R + p R + • hijk D hi Jk h «1 Jk i hajk 

+ p R + p R J hlmk *k hi Jb 

Summing the equality (3.10) cyclically in m, h, i and using 
the first and second Bianchi identity, we obtain 
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(3.11) w R + w R + w R = 0 , 
a hl Jk 1 »hjk h l » j k 

where w^ = a - 2p . Transvecting (3.11) with p" and using 

p rR = 0 , Rw * 0, we find p rw = 0, which, by p rp = 
r l Jk hi Jk r r 

0, implies pr a = 0 and wrw = a ra Contracting (3.11) 
r r r 

tit i 1 
with g and then with g , we find 

(3.12) w Rr = w R - w R , w Rr = 5 w . 
r J l h h I J I h j r h 2 h 

Transvecting (3.11) with w" we find 

wrw R = wr(w R - w R ) . 
r h i Jk h r l J k 1 r h j k 

By (3.12), this yelds (3.9). This completes the proof. 
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