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SOME SUFFICIENT CONDITIONS FOR UNIVALENCE
OF HOLOMORPHIC FUNCTIONS

The following theorem is well known (cf. [1], [2], [3])
T heorem A If D is a convex domain in the
complex plane C, f : D —— C is holomorphic in D, and
re £f°(z) > O for z € D, then f is univalent in D.

In the present paper we shall deal with some generaliza-
tions of this theorem. The essence of those generalizations
consists in replacing the condition re f’(z) > O by the
condition re f’(z) + ¢(im £(z)) im £’(z) > O where ¢ is some

real function of a real variable.

1. First, we shall prove the following
Theorem 1. If DcC is a convex domain,.
f : D——>C is holomorphic in D, ¢ : R ——> R is a continu-

ous function in R, and

(1) re £'(z) + ¢(im £(2)) im £'(z) >0, z € D,
then f is univalent in D.
Proof. Let 21,22 € D, 21¢ 22. We may assume that
a Z Arg(zz- 21) € <0,T) since the contrary case reduces to
this one in consequence of changing z, to z, and z, to z,.

Let p(t) = z + t(zz- 21) , F(t) = f(p(t)), t € <0, 1>,
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If « = 0, then, denoting by g any of the primitives of
the function ¢ in R and putting

s(t) = re F(t) + glim F(t)) , t € <0,1> ,
we have

(2) s’ (t) = (z-z )lre £’ (p(t)) + ¢(im £(p(t)))im £’ (p(t))],
t € <0, 1>.

Hence and from (1) it follows that s’> 0. So, s(0) = s(1)
and, in consequence, f(zl) # f(zz).

Assume now that a € (0,T), i.e. that 1m(zz— 21) > 0.
The following two cases are possible : I) ¢(im F(t)) # ctga
for t € <0,1> , II) ¢(im F(t1)) = ctga for some tle <0, 1>.

Ad I. let a= min im F(t), b= max im F(t).
t€<o,1> te<o, 1>

Of course, ¢{x) # ctga for x € <a,b>. Let g denote any of

the primitives of the function

(3) 1 + ¢ ctga
ctga - ¢

in the interval <a,b> when a < b and let g denote a function
equal to O at the point a when a = b.
Put

s(t) = re F(t) + g(im F(t)), t € <0,1> .

Evidently,

1 + ¢o(im F(t))ctga

s’(t) = re F'(t) + ctga - ¢(Im F(t))

im F’(t) , t € <0,1>.

Hence and from the equalities

(4) re F’'(t) = im(zz- 21) {re £’ (p(t)) ctga - im £’ (p(t))],

t € <0,1> ,
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(') im F'(t) = im(zz- 21) [re £’ (p(t)) + im £’ (p(t)) ctga 1,
t € <0,1>,

after easy calculations we obtain

2
(1+ctg’a) im(za—zl)

(5) s’ (t) = ctga - ¢(im F(T))

+ [re £’ (p(t)) + ¢(im F(t)) im £’ (p(t))]

for t € <0,1>. The denominator of the above expression, as a
function continuous and non-vanishing in <0,1>, has a
constant sign in <0,1>. Furthermore, taking account of (1),
we see that s’ has a constant sign in <0,1>. So, s(0) = s(1)
and, in consequence, f(zl) # f(zz).

Ad II. Assume first that tie <0, 1>, where t1 is such as
in the definition of this case. From (1) it follows that re
f’(p(tl)) + ctga im f’(p(tl)) > 0. This and (4’) imply that
im F’(tl) > 0. Consequently, there exist t'e (O,ti) and t’’e
(t1’1) such that

(8): im F(t) > im F(t1) for t e (tl,t”) ,

(6’) im F(t) < im F(t1) for t e (t’,tl).

In order to prove that f(zl)¢ f(zz), it suffices to show
that im f(za) > im F(t1) > im f(ZIL

Let us first suppose that im f(zl) z im F(ti). This and
(6') imply that there exists t € <0,t’> such that im F(t) =
= im F(t1)' Let T, = max {t € <0,t’> ; im F(t) = im F(t1)}'
Obviously, im F(t) < im F(t1) = im F(tl) for t € (rl,tl).

Consequently,
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im F(t) - im F(tl)
(7) im F (Tl) = lim+ T <0 .
t—oT, 1

On the other hand, from the fact that ¢(im F(Tl)) = ctga
and from (1) and (4’) it follows that im Ff(tl) > 0, which
contradicts (7).

Suppose now that im f(zz) = im F(t1)' This and (6) imply
that there exists t € <t’’,1> such that im F(t) = im F(t1)'
Let T, = min {t € <t’’,1> ; im F(t) = im F(t1)}' Of course,
im F(t) > im F(t1) = im F(tz) for t € (ti,tzL
Consequently,

im F(t) - im F(T))
(8) im F’ () = lim_ 2 <o.

t -
t—T 2
2

On the other hand, from the fact that ¢(im F(tz)) = ctga
and from (1) and (4’) it follows that im F’(Tz) > 0, which
contradicts (8).

If t1= 0, then, analogously as before, we prove that im
f(zz) > im F(0), whereas if t1= 1, then, analogously as
before, we prove that im f(zl) < im F(1), which completes
the proof of the theorem.

Remark If a € R, and f is a complex function,
then f 1is univalent if and only if eiaf is wunivalent.
Theorems A and 1 can therefore be strengthened by replacing
the conditions re f' > 0 and (2), respectively, by re e'%r’>
Oand re e'%f’(z) + e(im e'%f(z)) im eiaf’(z{ >0, z € D, for
some a« € R. In particular, with « = -T/2, condition (2) can
be replaced by im f’(z) + ¢(re f(z)) re £'(z) > 0, z € D,

since the function ¢ can also be replaced by -¢(-x), x € R.
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2. As an application of Theorem 1 let us consider a
function f(z) = -z Log z , re z > 0. Fix any number A > e
and put ¢(x) = -Ax, x € R. After easy calculations we obtain

H(z) £ re £'(z) + ¢(im £(2)) im £'(2) =
= -(1 + Log r) - Art(cost + sint Log r)

where r = |z|, t = Arg 2z, re z > O.
Since t(cost + sint Logr) s 0 for t € (-I/2,11.2),

r € (0,e”'), therefore
H(z) =z -(1 + Log r) - t(cost + sint Log r)

for t € (-I/2,1/2), r € (A,e™"). For.t € (-/2.1/2), r > O
the right-hand side of the above 1nequality is greater than
zero if and only if

< expl- 1+ tzcost
T < eXP|” T+ tsint

Consequently, putting

_ 1 + t%cost
p(t) = exp| - ———-qop |

D={z=re''; t e (-/2,172), r € (A}, p(1))},

we see that H(z) > O for z € D. It is also easy to verify
that p(t) > ¢! for t e (-N/2,1/2).
Denote by I' a curve with the following equation in polar
coordinates
r=p(t) , te (-1/72,11/2).

From the theory of implicit functions it easily follows
that, in some neighbourhood of the point (e°1,0), the graph
of the curve I' is a graph of some function g of the variable

y. Since, as can easily be checked, g’’(0) = -e < 0, there
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exists 8 > 0 such that g'’(y) < O for y € (-§,8).
Consequently, the function g is concave in the interval
(-3,3). Hence it follows that the set

DB ¥ {z =re't 1 t € (~a,a), Te z > A'I, r < p(t)},

where a = Arg(g(38) + 13), is convex. Since D_ ¢ D, therefore

3
H(z) > O for z € D Thus, in virtue of Theorem 1, the

)
function f is univalent in the domain D8 .

Let us still notice that
£'(z) > 0 for z € (0,e ) ,
Arg £'(2) € (I/2,M) for |z| > ™', Arg z € (-1/2,0),
Arg f'(z) € (-N,-N/2) for |z| > e, Arg z € (0,11/2).

Hence it follows that the set f'(D) is contained in none of
the half-planes P7 = {z : re 250 }, ¥ € <0,2M). So, the

univalence of the function f in the set D cannot be

3
ascertained on the basis of Theorem A or its modified
version in which re f' > 0 is replaced by re s’ > 0 for

some ¥y € <0,2MW).

3. The assumption about the continuity of the function
¢, occuring in Theorem 1, can be weakened. For this purpose,
let us denote by ® the set of all functions ¢ for which
there exists a finite or infinite sequence ... < xd< x0<

x < ... of real numbers, such that ¢ : R - U {xl} — >R, ¢
1
is continuous and, at all points X there exist finite

limits
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qil) &« lim_ ¢(x) , Qia) =3 lim’ e(x) .
x—-)xl x—-)xl

Theorem 2. If D is a convex domain in C,

f : D——>C is holomorphic in D, ¢ € & and
(9) re £'(z) + ¢(im £(2)) im £'(2) > O for z € D,
im f(z) ¢ U {x},
1
(10) re £'(z)+ q'im £'(2) > 0 for k = 1,2 and those z € D

for which there exists 1 such that im f(z) = X

then f is univalent in D.

Pr oo f. With no essential loss of generality we may
assume that sequence ... X 0 Xpo Xpyooo is one-element and
consists of the element X, - Let z,z, € D, zl¢ z2 . We may
assume that « £ Arg(zz-zl)e <0,M). Let p(t) = z+ t(za-zl),
F(t) = £f(p(t)), t € <0,1>.

Assume first that a = 0. From the assumptions concerning
the function ¢ it follows that there exists a function g ,

g: R —— R such that g’(x) = ¢(x) for x # x, g:(xo) = q;Z).

» (1) °
g (x)=gq "

Put s(t) = re F(t) + g(im F(t)), t € <0,1>. The functions
is, of course, continuous.

In order to demonstrate that f(zl) # f(zz), it is
sufficient to prove that s Is increasing; to that end, it is
enough to show that, at any point t € <0,1> the lower Darboux
derivative of the function s at the point t, which will be
denoted by s;(t), is greater than zero. So, let us take any

t € <0,1>. If im F(t) = X then (2) holds. Consequently,
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taking (9) into account, we see that s;(t) = s'(t) > 0.
Assume now that im F(t)= X - There exists a sequence (tn)neu
of elements of the interval <«0,1> different from t,

converging to t and such that

s(tn)-s(t)
sd(t) = lim -
n—mo n
From the seduence (tn)nél one can choose a subsequence
(t ) such that im F(t ) > x for k € N or im F(t ) < x
nk k€N nk [o] nk o)
for k € N or im F(tn ) = X, for k € N. Then we have, respec-
K
tively ,
. — (o . (2) ,
sd(t) = (z2 zl)[re £’ (p(t)) + q, im £’ (p(t))] ,
’ _ _ ’ (1) ’
sd(t) = (z2 zl)[re £ (p(t)) + q, im £’ (p(t))] ,
(11) ¢
sd(t) = (22—21) re £’ (p(t)) =

Y im £ (p(t))]

, (1
(22-21) [re £’ (p(t)) + q,

because, in this last case, im f’(p(t)) = 0. Since the right-
hand sides of the above expressions are, by (1C), greater
than zero, therefore s;(t) > 0.
Assume now that « € (0,1). Let
A = {te <0,1>; im F(t) = xo), B ={t € <0,1>; im F(t) = xoi,
a= min im F(t) , b= max im F(t).
t€<o,1> t€<o, 1>

There must occur one of the following three cases :
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I) [ B=o2A (qél) - ctga) (qéz) - ctga) =0 ]

v 3 e(im F(t1)) = ctga ,

t €A
1

II) B=2 A V¥ e(im F(t)) # ctge ,
te<o,1>

(1)
(0]

A YV o(im F(t)) # ctga .
teA

III) B= & A (q - ctga) (q;Z) - ctga) > 0

Ad I. If the second part of alternative I holds, we may
proceed in the same way as in case II of the proof of
Theorem 1. Assume now that the first part of alternative I
holds. Let t € B. From the inequalities re f’'(p(t)) + qéz)'

“im £ (p(t)) > 0, re £ (p(t)) + q;“ im £’ (p(t)) > O,
(2)

0 " ctga) = 0 it easily follows that

(q;“ - ctga) (q
re f’(p(t)) + ctga im £’ (p(t)) > O . This and (4') imply
that

(12) im F°(t) > 0 .

Let us fix t1E B. Further, one can repeat the considera-
tions included in case II of the proof of Theorem 1. The
only change will be the justification of the inequalities
im F’(t1) > 0, im F’(tl) > 0, im F'(Tz) > 0 which follow
from (12).

Ad II. We proceed in the same manner as in case I of the
proof of Theorem 1.

Ad III. It 1is not difficult to notice tha? the

difference ¢(x) - ctga has a constant sign in <a,b> - {xo}
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equal to the sign of the numbers q;k) -ctga , k = 1,2.

Without any loss of generality let us assume that these
signes are positive. Consequently, there exists a real
function g defined in some open interval containing <a,b>

and such that

1 + ¢p(x) ctga

g’ (x) = ctax - p(x) * X € <a,b> - {x} ,
1+ q;Z)ctga 1+ qéi)ctga
g, (x;) = zy 0 8LIx) = (D
ctga - q ctga - q
0 0
Put s(t) = re F(t) + g(im F(t)), t € <0,1>. Obviously, s

is continuous. Proceeding in the same way as in the proof of
equality (5), we assertain that s’(t) is expressed by
formula (5) for t € A. Consequently, s;(t) =s’(t) >0 for t
€ A. VWhereas proceeding similarly as in the proof of
equalities (11), we easily find that, at any point t € B,
the lower derivative s;(t) is equal to one of the three
numbers of which the first two are the following

2
(l+ctg“a) im(z2 21)

(13) 0

[re f’(p(t))+q(()k)im f’(p(t))], k=2, 1
ctga - 9,

while the third one, corresponding to the case,

(im F‘(tn ) = xo) for k € N, 1is equal to re F’(t). Since, in
Kk
this case, im F’(t) = 0, therefore from (4) and (4’) it

easily follows that re F'(t) is equal to numbers (13). Since
numbers (13) are greater than zero, therefore s;(t) > 0,

which ends the proof.
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