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SOME SUFFICIENT CONDITIONS FOR UNIVALENCE 

OF HOLOMORPHIC FUNCTIONS 

The following theorem is well known (cf. [1], [2], [3]) : 

T h e o r e m A. If D is a convex domain in the 

complex plane C, f : D » C is holomorphic in D, and 

re f'(z) > 0 for z € D, then f is univalent in D. 

In the present paper we shall deal with some generaliza-

tions of this theorem. The essence of those generalizations 

consists in replacing the condition re f' (z) > 0 by the 

condition re f'(z) + qp(im f(z)) im f'(z) > 0 where <p is some 

real function of a real variable. 

1. First, we shall prove the following 

T h e o r e m 1. If D c C is a convex domain, 

f : D » C is holomorphic in D, <p : R » R is a continu-

ous function in R, and 

(1) re f'(z) + p(im f(z)) im f'(z) > 0 , z e D, 

then f is univalent in D. 

P r o o f . Let z ,z e D, z * z . We may assume that 
df 1 2 ' 1 2 J 

a = Arg(zz~ z ) e <0,n) since the contrary case reduces to 

this one in consequence of changing z to and to z . 

Let p(t) = zi + t(z2- z^) , F(t) = f(p(t)),'t € <0,1>. 

- 717 -



E. Janiec 

If a = 0, then, denoting by g any of the primitives of 

the function <p in R and putting 

s(t) = re F(t) + g(im F(t)) , t e <0,1> , 

we have 

(2) s'(t) = (Z2-Zi)[re f'(p(t)) + y(im f(p(t)))im f'(p(t))], 

t € <0,1>. 

Hence and from (1) it follows that s'> 0. So, s(0) * s(l) 

and, in consequence, fCz^ * fiz^). 

Assume now that a e (0,11), i.e. that im(z - z ) > 0. 
2 1 

The following two cases are possible : I) ^p(im F(t)) * ctga 

for t e <0,1> , II) (p(ii Ff^)) = ctga for some t e <0,1>. 

Ad I. Let a = min im F(t), b = max im F(t). 

te<o,i> t€<o,i> 

Of course, <p{x) * ctga for x e <a, b>. Let g denote any of 

the primitives of the function 
( 3 ) I + <p ctga 

ctga - <p 

in the interval <a,b> when a < b and let g denote a function 

equal to 0 at the point a when a = b. 

Put 

s(t) = re F(t) + g(im F(t)), t e <0,1> . 

Evidently, 

s'(t) = re F'(t) + ^ ' l ^ ' i f f f ) 1» F M t ) . t . < 0 . 1 > . 

Hence and from the equalities 

(4) re F'(t) = im(z2- z ^ [re f'(p(t)) ctga - im f'(p(t))], 

t e <0,1> , 
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(4') im F'(t) = im(z2~ z ^ [re f" (pit)) + im f' (p(t)) ctga ], 

t e <0,1>, 

after easy calculations we obtain 

2 
(1+ctg a) im(z2~zi) 

( 5 ) S ' ( t ) ctga - ?(im F(t)) ' 

• [re f'ip(t)) + p(im F(t)) im f'(p(t))] 

for t € <0,1>. The denominator of the above expression, as a 

function continuous and non-vanishing in <0,1>, has a 

constant sign in <0,1>. Furthermore, taking account of (1), 

we see that s' has a constant sign in <0,1>. So, s(0) * s(l) 

and, in consequence, f(z ) * 

Ad II. Assume first that t e <0,1>, where t is such as l l 
in the definition of this case. From (1) it follows that re 

f'(pit )) + ctga im f'(pit )) > 0. This and (4') imply that 

im F' (tj) > 0. Consequently, there exist t'e (0,t ) and t''€ 

(t , 1) such that 

(6) im Fit) > im Fit^ for t € (t ,t") , 

(6') im Fit) < im Fit^ for t € (t»,t ) . 

In order to prove that f(zj)* f(z 2h It suffices to show 

that im fiz ) > im Fit ) > im fiz ). 
2 1 1 

Let us first suppose that im fizj) £ im Fit^. This and 

(6') imply that there exists t € <0,t*> such that im Fit) = 

= im Fit^). Let x = max {t € <0,t'> ; im F(t) = im Fit^}. 

Obviously, im Fit) < im Fit^ = im Fix^ for t € (t ,t ). 

Consequently, 
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im F(t) - im F ( t ) 
( 7 ) im F'(t ) = lim j — ^ 0 . 

1 + t - T t—>T 1 
1 

On the other hand, from the fact that #>(im F(r )) = ctga 
and from (1) and (4') it follows that im F'.(r ) > 0, which 
contradicts (7). 

Suppose now that im f(z2) 5 im F(t ). This and (6) imply 
that there exists t e <t'',l> such that im F(t) = im F(t ). 
Let t z = min {t 6 <t",l> ; im F(t) = im FCt^}. Of course, 
im F(t) > im F(t ) = im F(x ) for t e (t ,x ). 1 2 1 2 Consequently, 

im F(t) - im F ( t ) 
(8) im F' (x ) = lim z — * 0. 

2 - t - T t—>T 2 
2 

On the other hand, from the fact that y(im F(x )) = ctga 
and from (1) and (4') it follows that im F' (T ) > 0, which 2 

contradicts (8). 
If t = 0, then, analogously as before, we prove that im 

f(z2) > im F(0), whereas if t = 1, then, analogously as 
before, we prove that im f(z ) < im F(l), which completes 
the proof of the theorem. 

R e m a r k . If a € R, and f is a complex function, 
then f is univalent if and only if e i af is univalent. 
Theorems A and 1 can therefore be strengthened by replacing 
the conditions re f' > 0 and (2), respectively, by re elaf'> 
Oand re elaf' (z) + ?>(im elaf(z)) im eiaf'(z) > 0 , z € D, for 
some a e R. In particular, with a = -TI/2, condition (2) can 
be replaced by im f' (z) + ^>(re f(z)) re f'(z) > 0 , z e D, 
since the function <p can also be replaced by -<p(-x), x e R. 
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As an application of Theorem 1 let us consider a 
function f(z) = -z Log z , re z > 0. Fix any number A > e 
and put f>(x) = -Ax, x e R. After easy calculations we obtain 

H(z) — r e f'(z) + ?(lm f(z)) lm f'(z) = 
= -(1 + Log r) - Art(cost + sint Log r) 

where r = |z|, t = Arg z, re z > 0. 

Since t(cost + sint Log r) s 0 for t € (-11/2,11.2), 

r e (0,e 1), therefore 

H(z) a -(1 + Log r) - t(cost + sint Log r) 

for t € (-11/2,11/2), r 6 (A'Se"1). For t € (-n/2.n/2), r > 0 
the right-hand side of the above inequality is greater them 
zero if and only if 

f 1 + t2cost 1 
r < e x p[" 1 + tslnt J • 

Consequently, putting 
. . . f 1 + t2cost "I p C t ) = 6 X P [ " 1 + tslnt J ' 

D = { z = re11 ; t e (-11/2,11/2), r e (A"\p(t))>, 

we see that H(z) > 0 for z € D. It Is also easy to verify 
that p(t) > e"1 for t € (-11/2,11/2). 

Denote by T a curve with the following equation in polar 
coordinates 

r = p(t) , t e (-n/2,n/2). 

From the theory of implicit functions it easily follows 
that, in some neighbourhood of the point (e_1,0), the graph 
of the curve T is a graph of some function g of the variable 
y. Since, as can easily be checked, g'' (0) = -e < 0, there 
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exists 5 > 0 such that g*'(y) < 0 for y € (-5,6). 
Consequently, the function g is concave in the interval 
(-5,8). Hence it follows that the set 

Dg = {z = re!t ; t e (-a,a), re z > A-1, r < p(t)>, 

where a = Arg(g(5) + i5), is convex. Since D_ c D, therefore o 
H(z) > 0 for z € D. . Thus, in virtue of Theorem 1, the o 
function f is univalent in the domain D_ . o 

Let us still notice that 

f'(z) > 0 for z 6 (0,e_1) , 

Arg f'(z) € (n/2,n) for |z| > e'1, Arg z e (-n/2,0), 

Arg f'(z) € (-n,-n/2) for |z| > e"1, Arg z € (0,n/2). 

Hence it follows that the set f'(D) is contained in none of 
the half-planes P = {z : re eirz > 0 }, y e <0,2II). So, the 

V 
univalence of the function f in the set D„ cannot be o 
ascertained on the basis of Theorem A or its modified 
version in which re f' > 0 is replaced by re e f' > 0 for 
some y e <0,2II). 

3. The assumption about the continuity of the function 
<p, occuring in Theorem 1, can be weakened. For this purpose, 
let us denote by $ the set of all functions <p for which 
there exists a finite or infinite sequence ... < x < XQ< 
X < ... of real numbers, such that <p : R - U {x > » R, <p 

l 
is continuous and, at all points x^ there exist finite 
limits 
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(1) df f . (2) df .. f . qi = lim <p(x) , qj = lim+ <p{x) . 
x—>X X—>x 

1 1 

T h e o r e m 2. If D is a convex domain in C, 

f : D > C is holomorphic in D, e 9 and 

(9) re f'(z) + y(im f(z)) im f' (z) > 0 for z e D, 

im f(z) t U {x^ , 
l 

(10) re f* (z)+ qjk)im f'(z) > 0 for k = 1,2 and those z € D 

for which there exists 1 such that im f(z) = x , 

then f is univalent in D. 

P r o o f . With no essential loss of generality we may 

assume that sequence ... x , Xq, x ,... is one-element and 

consists of the element x . Let z ,z e D, z * z . W e may o 1 2 1 2 
assume that a = Argiz -z )e <0,II). Let p(t) = z + t(z - z ^ , 

Fit) = f(pit))f t € <0,1>. 

Assume first that a = 0. From the assumptions concerning 

the function <p it follows that there exists a function g , 

g: R » R such that g' (x) = ®(x) for x * x , g' (x ) = q < 2 >, 0 + 0 0 

Put s(t) = re F(t) + g(im F(t)), t € <0,1>. The functions 

is, of course, continuous. 

In order to demonstrate that f(z ) * f(z ), it is 
1 2 

sufficient to prove that s is increasing; to that end, it is 

enough to show that, at any point t e <0,1> the lower Darboux 

derivative of the function s at the point t, which will be 

denoted by s'(t), is greater than zero. So, let us take any 
d 

t e <0, 1>. If im F(t) * x , then (2) holds. Consequently, 
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taking (9) into account, we see that s'(t) = s'(t) > 0. d 
Assume now that im F(t) = x . There exists a sequence (t ) 0 n n€H 
of elements of the interval <0,1> different from t, 
converging to t and such that 

s(t )-s(t) 
s ; ( t ) = li„ 

From the sequence (t ) one can choose a subsequence n n€N 
(t ) such that im F(t ) > x for k € N or im F(t ) < x n k€N n 0 n 0 k k k 
for k e N or im F(t ) = x for k € N. Then we have, respec-n 0 k 
tively , 

(11) 

s'(t) a 
s'(t) a 

s'(t) d 

(Z2-Zi)[re f(pit)) + im f'(p(t))] , 

(Z2-Zi)[re f'(pit)) + q*1' im f'(p(t))] , 

iz -z ) re f' (p(t)) = 

= (z^Zj) [re f'(p(t)) + qj1' im f' (p(t))] 

because, in this last case, im f'(p(t)) = 0. Since the right-
hand sides of the above expressions are, by (10), greater 
than zero, therefore s' (t) > 0. d 

Assume now that a e (0,11). Let 
A = {te <0,1>; im F(t) * x }, B = {t e <0,1>; im F(t) = x }, o o. 

a = min im F(t) , b = max im F(t). 
t€<0,l> t€<0,l> 

There must occur one of the following three cases : 
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I) B * a A - ctga) (q^2> - ctga) s 0 J 

v 3 p(in F(t )) = ctga , 
t e A 1 
l 

II) B = 0 A V #>(im F(t)) * ctga , 
t€<0,l> 

III) B * 0 A - ctga) (q(
Q

2) - ctga) > 0 

A V <p( im F(t)) * ctga . 
teA 

Ad I. If the second part of alternative I holds, we may 
proceed in the same way as in case II of the proof of 
Theorem 1. Assume now that the first part of alternative I 

(2) 
holds. Let t € B. From the inequalities re f'(p(t)) + qQ • 
•im f'(p(t)) > 0, re f'(p(t)) + im f'(p(t)) > 0, 
(q^1* - ctga) (q(

Q
2) - ctga) i 0 it easily follows that 

re f'(p(t)) + ctga im f'(p(t)) > 0 . This and (4') imply 

that 

(12) im F*(t) > 0 . 
Let us fix t B . Further, one can repeat the considera-

tions included in case II of the proof of Theorem 1. The 
only change will be the justification of the inequalities 
im F* (t ) > 0, im F* (T ) > 0, im F'(r ) > 0 which follow 1 1 2 
from (12). 

Ad II. We proceed in the same manner as in case I of the 
proof of Theorem 1. 

Ad III. It is not difficult to notice that the 
difference y(x) - ctga has a constant sign in <a ,B> - {XQ> 
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(k) 
equal to the sign of the numbers qQ - ctga , k = 1,2. 
Without any loss of generality let us assume that these 
signes are positive. Consequently, there exists a real 
function g defined in some open interval containing <a,b> 
and such that 

» t \ 1 + #>(x) ctga ^ , ̂  . x 
g ( X ) " ctga - 9(x) ' ' 

1 + q ctga 1 + q ctga 
- „ 0

 ( 2 ) • - 0
 m • ctga - qQ ctga - qQ 

Put s(t) = re F(t) + g(im F(t)), t e <0,1>. Obviously, s 
is continuous. Proceeding in the same way as in the proof of 
equality (5), we assertain that s'(t) is expressed by 
formula (5) for t € A. Consequently, s'(t) = s'(t) > 0 for t d 
€ A. Whereas proceeding similarly as in the proof of 
equalities (11), we easily find that, at any point t e B, 
the lower derivative s'(t) is equal to one of the three d 
numbers of which the first two are the following 

(l+ctg2a) im(z -z ) r 
(13) ^-f—i re f'(p(t))+q^iin f'(p(t)) , k=2, 1 

ctga - qQ L J 

while the third one, corresponding to the case, 
(im F(t ) = x ) for k e N, is equal to re F'(t). Since, in 

n 0 k 
this case, im F'(t) = 0, therefore from (4) and (4') it 
easily follows that re F*(t) is equal to numbers (13). Since 
numbers (13) are greater than zero, therefore s'(t) > 0, d 
which ends the proof. 
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