

Eugeniusz Janiec

SOME SUFFICIENT CONDITIONS FOR UNIVALENCE
OF HOLOMORPHIC FUNCTIONS

The following theorem is well known (cf. [1], [2], [3]) :

Theorem A. If D is a convex domain in the complex plane C , $f : D \rightarrow C$ is holomorphic in D , and $\operatorname{re} f'(z) > 0$ for $z \in D$, then f is univalent in D .

In the present paper we shall deal with some generalizations of this theorem. The essence of those generalizations consists in replacing the condition $\operatorname{re} f'(z) > 0$ by the condition $\operatorname{re} f'(z) + \varphi(\operatorname{im} f(z)) \operatorname{im} f'(z) > 0$ where φ is some real function of a real variable.

1. First, we shall prove the following

Theorem 1. If $D \subset C$ is a convex domain, $f : D \rightarrow C$ is holomorphic in D , $\varphi : R \rightarrow R$ is a continuous function in R , and

(1) $\operatorname{re} f'(z) + \varphi(\operatorname{im} f(z)) \operatorname{im} f'(z) > 0$, $z \in D$,
then f is univalent in D .

Proof. Let $z_1, z_2 \in D$, $z_1 \neq z_2$. We may assume that $\alpha \stackrel{\text{df}}{=} \operatorname{Arg}(z_2 - z_1) \in (0, \pi)$ since the contrary case reduces to this one in consequence of changing z_1 to z_2 and z_2 to z_1 . Let $p(t) = z_1 + t(z_2 - z_1)$, $F(t) = f(p(t))$, $t \in (0, 1)$.

If $\alpha = 0$, then, denoting by g any of the primitives of the function φ in R and putting

$$s(t) = \operatorname{re} F(t) + g(\operatorname{im} F(t)), \quad t \in \langle 0, 1 \rangle,$$

we have

$$(2) \quad s'(t) = (z_2 - z_1) [\operatorname{re} f'(p(t)) + \varphi(\operatorname{im} f(p(t))) \operatorname{im} f'(p(t))], \\ t \in \langle 0, 1 \rangle.$$

Hence and from (1) it follows that $s' > 0$. So, $s(0) \neq s(1)$ and, in consequence, $f(z_1) \neq f(z_2)$.

Assume now that $\alpha \in (0, \pi)$, i.e. that $\operatorname{im}(z_2 - z_1) > 0$. The following two cases are possible : I) $\varphi(\operatorname{im} F(t)) \neq \operatorname{ctg} \alpha$ for $t \in \langle 0, 1 \rangle$, II) $\varphi(\operatorname{im} F(t_1)) = \operatorname{ctg} \alpha$ for some $t_1 \in \langle 0, 1 \rangle$.

Ad I. Let $a = \min_{t \in \langle 0, 1 \rangle} \operatorname{im} F(t)$, $b = \max_{t \in \langle 0, 1 \rangle} \operatorname{im} F(t)$.

Of course, $\varphi(x) \neq \operatorname{ctg} \alpha$ for $x \in \langle a, b \rangle$. Let g denote any of the primitives of the function

$$(3) \quad \frac{1 + \varphi \operatorname{ctg} \alpha}{\operatorname{ctg} \alpha - \varphi}$$

in the interval $\langle a, b \rangle$ when $a < b$ and let g denote a function equal to 0 at the point a when $a = b$.

Put

$$s(t) = \operatorname{re} F(t) + g(\operatorname{im} F(t)), \quad t \in \langle 0, 1 \rangle.$$

Evidently,

$$s'(t) = \operatorname{re} F'(t) + \frac{1 + \varphi(\operatorname{im} F(t)) \operatorname{ctg} \alpha}{\operatorname{ctg} \alpha - \varphi(\operatorname{im} F(t))} \operatorname{im} F'(t), \quad t \in \langle 0, 1 \rangle.$$

Hence and from the equalities

$$(4) \quad \operatorname{re} F'(t) = \operatorname{im}(z_2 - z_1) [\operatorname{re} f'(p(t)) \operatorname{ctg} \alpha - \operatorname{im} f'(p(t))], \\ t \in \langle 0, 1 \rangle,$$

$$(4') \quad \operatorname{im} F'(t) = \operatorname{im}(z_2 - z_1) [\operatorname{re} f'(p(t)) + \operatorname{im} f'(p(t)) \operatorname{ctg}\alpha],$$

$$t \in \langle 0, 1 \rangle,$$

after easy calculations we obtain

$$(5) \quad s'(t) = \frac{(1+\operatorname{ctg}^2\alpha) \operatorname{im}(z_2 - z_1)}{\operatorname{ctg}\alpha - \varphi(\operatorname{im} F(t))} \cdot$$

$$\cdot [\operatorname{re} f'(p(t)) + \varphi(\operatorname{im} F(t)) \operatorname{im} f'(p(t))]$$

for $t \in \langle 0, 1 \rangle$. The denominator of the above expression, as a function continuous and non-vanishing in $\langle 0, 1 \rangle$, has a constant sign in $\langle 0, 1 \rangle$. Furthermore, taking account of (1), we see that s' has a constant sign in $\langle 0, 1 \rangle$. So, $s(0) \neq s(1)$ and, in consequence, $f(z_1) \neq f(z_2)$.

Ad II. Assume first that $t_1 \in \langle 0, 1 \rangle$, where t_1 is such as in the definition of this case. From (1) it follows that $\operatorname{re} f'(p(t_1)) + \operatorname{ctg}\alpha \operatorname{im} f'(p(t_1)) > 0$. This and (4') imply that $\operatorname{im} F'(t_1) > 0$. Consequently, there exist $t' \in (0, t_1)$ and $t'' \in (t_1, 1)$ such that

$$(6) \quad \operatorname{im} F(t) > \operatorname{im} F(t_1) \quad \text{for } t \in (t_1, t''),$$

$$(6') \quad \operatorname{im} F(t) < \operatorname{im} F(t_1) \quad \text{for } t \in (t', t_1).$$

In order to prove that $f(z_1) \neq f(z_2)$, it suffices to show that $\operatorname{im} f(z_2) > \operatorname{im} F(t_1) > \operatorname{im} f(z_1)$.

Let us first suppose that $\operatorname{im} f(z_1) \geq \operatorname{im} F(t_1)$. This and (6') imply that there exists $t \in \langle 0, t' \rangle$ such that $\operatorname{im} F(t) = \operatorname{im} F(t_1)$. Let $\tau_1 = \max \{t \in \langle 0, t' \rangle ; \operatorname{im} F(t) = \operatorname{im} F(t_1)\}$. Obviously, $\operatorname{im} F(t) < \operatorname{im} F(t_1) = \operatorname{im} F(\tau_1)$ for $t \in (\tau_1, t_1)$. Consequently,

$$(7) \quad \operatorname{im} F'(\tau_1) = \lim_{\substack{t \rightarrow \tau_1^+ \\ t \rightarrow \tau_1^-}} \frac{\operatorname{im} F(t) - \operatorname{im} F(\tau_1)}{t - \tau_1} \leq 0.$$

On the other hand, from the fact that $\varphi(\operatorname{im} F(\tau_1)) = \operatorname{ctg} \alpha$ and from (1) and (4') it follows that $\operatorname{im} F'(\tau_1) > 0$, which contradicts (7).

Suppose now that $\operatorname{im} f(z_2) \leq \operatorname{im} F(t_1)$. This and (6) imply that there exists $t \in \langle t'', 1 \rangle$ such that $\operatorname{im} F(t) = \operatorname{im} F(t_1)$. Let $\tau_2 = \min \{t \in \langle t'', 1 \rangle ; \operatorname{im} F(t) = \operatorname{im} F(t_1)\}$. Of course, $\operatorname{im} F(t) > \operatorname{im} F(t_1) = \operatorname{im} F(\tau_2)$ for $t \in (t_1, \tau_2)$. Consequently,

$$(8) \quad \operatorname{im} F'(\tau_2) = \lim_{\substack{t \rightarrow \tau_2^+ \\ t \rightarrow \tau_2^-}} \frac{\operatorname{im} F(t) - \operatorname{im} F(\tau_2)}{t - \tau_2} \leq 0.$$

On the other hand, from the fact that $\varphi(\operatorname{im} F(\tau_2)) = \operatorname{ctg} \alpha$ and from (1) and (4') it follows that $\operatorname{im} F'(\tau_2) > 0$, which contradicts (8).

If $t_1 = 0$, then, analogously as before, we prove that $\operatorname{im} f(z_2) > \operatorname{im} F(0)$, whereas if $t_1 = 1$, then, analogously as before, we prove that $\operatorname{im} f(z_1) < \operatorname{im} F(1)$, which completes the proof of the theorem.

R e m a r k. If $\alpha \in \mathbb{R}$, and f is a complex function, then f is univalent if and only if $e^{i\alpha}f$ is univalent. Theorems A and 1 can therefore be strengthened by replacing the conditions $\operatorname{re} f' > 0$ and (2), respectively, by $\operatorname{re} e^{i\alpha}f' > 0$ and $\operatorname{re} e^{i\alpha}f'(z) + \varphi(\operatorname{im} e^{i\alpha}f(z)) \operatorname{im} e^{i\alpha}f'(z) > 0$, $z \in D$, for some $\alpha \in \mathbb{R}$. In particular, with $\alpha = -\pi/2$, condition (2) can be replaced by $\operatorname{im} f'(z) + \varphi(\operatorname{re} f(z)) \operatorname{re} f'(z) > 0$, $z \in D$, since the function φ can also be replaced by $-\varphi(-x)$, $x \in \mathbb{R}$.

2. As an application of Theorem 1 let us consider a function $f(z) = -z \operatorname{Log} z$, $\operatorname{re} z > 0$. Fix any number $A > e$ and put $\varphi(x) = -Ax$, $x \in \mathbb{R}$. After easy calculations we obtain

$$\begin{aligned} H(z) &\stackrel{\text{df}}{=} \operatorname{re} f'(z) + \varphi(\operatorname{im} f(z)) \operatorname{im} f'(z) = \\ &= -(1 + \operatorname{Log} r) - \operatorname{Art}(\operatorname{cost} + \operatorname{sint} \operatorname{Log} r) \end{aligned}$$

where $r = |z|$, $t = \operatorname{Arg} z$, $\operatorname{re} z > 0$.

Since $t(\operatorname{cost} + \operatorname{sint} \operatorname{Log} r) \leq 0$ for $t \in (-\pi/2, \pi/2)$, $r \in (0, e^{-1})$, therefore

$$H(z) \geq -(1 + \operatorname{Log} r) - t(\operatorname{cost} + \operatorname{sint} \operatorname{Log} r)$$

for $t \in (-\pi/2, \pi/2)$, $r \in (A^{-1}, e^{-1})$. For $t \in (-\pi/2, \pi/2)$, $r > 0$ the right-hand side of the above inequality is greater than zero if and only if

$$r < \exp\left(-\frac{1 + t^2 \operatorname{cost}}{1 + t \operatorname{sint}}\right).$$

Consequently, putting

$$p(t) = \exp\left(-\frac{1 + t^2 \operatorname{cost}}{1 + t \operatorname{sint}}\right),$$

$$D = \{z = re^{it} ; t \in (-\pi/2, \pi/2), r \in (A^{-1}, p(t))\},$$

we see that $H(z) > 0$ for $z \in D$. It is also easy to verify that $p(t) > e^{-1}$ for $t \in (-\pi/2, \pi/2)$.

Denote by Γ a curve with the following equation in polar coordinates

$$r = p(t), \quad t \in (-\pi/2, \pi/2).$$

From the theory of implicit functions it easily follows that, in some neighbourhood of the point $(e^{-1}, 0)$, the graph of the curve Γ is a graph of some function g of the variable y . Since, as can easily be checked, $g''(0) = -e < 0$, there

exists $\delta > 0$ such that $g''(y) < 0$ for $y \in (-\delta, \delta)$. Consequently, the function g is concave in the interval $(-\delta, \delta)$. Hence it follows that the set

$$D_\delta \stackrel{\text{df}}{=} \{z = re^{it} ; t \in (-\alpha, \alpha), re z > A^{-1}, r < p(t)\},$$

where $\alpha = \text{Arg}(g(\delta)) + i\delta$, is convex. Since $D_\delta \subset D$, therefore $H(z) > 0$ for $z \in D_\delta$. Thus, in virtue of Theorem 1, the function f is univalent in the domain D_δ .

Let us still notice that

$$f'(z) > 0 \text{ for } z \in (0, e^{-1}),$$

$$\text{Arg } f'(z) \in (\pi/2, \pi) \text{ for } |z| > e^{-1}, \text{ Arg } z \in (-\pi/2, 0),$$

$$\text{Arg } f'(z) \in (-\pi, -\pi/2) \text{ for } |z| > e^{-1}, \text{ Arg } z \in (0, \pi/2).$$

Hence it follows that the set $f'(D)$ is contained in none of the half-planes $P_\gamma = \{z : \text{re } e^{i\gamma} z > 0\}$, $\gamma \in \langle 0, 2\pi \rangle$. So, the univalence of the function f in the set D_δ cannot be ascertained on the basis of Theorem A or its modified version in which $\text{re } f' > 0$ is replaced by $\text{re } e^{i\gamma} f' > 0$ for some $\gamma \in \langle 0, 2\pi \rangle$.

3. The assumption about the continuity of the function φ , occurring in Theorem 1, can be weakened. For this purpose, let us denote by Φ the set of all functions φ for which there exists a finite or infinite sequence $\dots < x_{-1} < x_0 < x_1 < \dots$ of real numbers, such that $\varphi : R - \bigcup_1 \{x_1\} \longrightarrow R$, φ is continuous and, at all points x_1 , there exist finite limits

$$q_1^{(1)} \stackrel{\text{df}}{=} \lim_{x \rightarrow x_1^-} \varphi(x), \quad q_1^{(2)} \stackrel{\text{df}}{=} \lim_{x \rightarrow x_1^+} \varphi(x).$$

Theorem 2. If D is a convex domain in C , $f : D \rightarrow C$ is holomorphic in D , $\varphi \in \Phi$ and

$$(9) \quad \operatorname{re} f'(z) + \varphi(\operatorname{im} f(z)) \operatorname{im} f'(z) > 0 \text{ for } z \in D,$$

$$\operatorname{im} f(z) \notin \bigcup_1 \{x_1\},$$

$$(10) \quad \operatorname{re} f'(z) + q_1^{(k)} \operatorname{im} f'(z) > 0 \text{ for } k = 1, 2 \text{ and those } z \in D$$

for which there exists 1 such that $\operatorname{im} f(z) = x_1$,

then f is univalent in D .

Proof. With no essential loss of generality we may assume that sequence $\dots, x_{-1}, x_0, x_1, \dots$ is one-element and consists of the element x_0 . Let $z_1, z_2 \in D$, $z_1 \neq z_2$. We may assume that $\alpha \stackrel{\text{df}}{=} \operatorname{Arg}(z_2 - z_1) \in \langle 0, \pi \rangle$. Let $p(t) = z_1 + t(z_2 - z_1)$, $F(t) = f(p(t))$, $t \in \langle 0, 1 \rangle$.

Assume first that $\alpha = 0$. From the assumptions concerning the function φ it follows that there exists a function g , $g: R \rightarrow R$ such that $g'(x) = \varphi(x)$ for $x \neq x_0$, $g'_+(x_0) = q_0^{(2)}$, $g'_-(x_0) = q_0^{(1)}$.

Put $s(t) = \operatorname{re} F(t) + g(\operatorname{im} F(t))$, $t \in \langle 0, 1 \rangle$. The function is, of course, continuous.

In order to demonstrate that $f(z_1) \neq f(z_2)$, it is sufficient to prove that s is increasing; to that end, it is enough to show that, at any point $t \in \langle 0, 1 \rangle$ the lower Darboux derivative of the function s at the point t , which will be denoted by $s'_d(t)$, is greater than zero. So, let us take any $t \in \langle 0, 1 \rangle$. If $\operatorname{im} F(t) \neq x_0$, then (2) holds. Consequently,

taking (9) into account, we see that $s'_d(t) = s'(t) > 0$.

Assume now that $\operatorname{im} F(t) = x_0$. There exists a sequence $(t_n)_{n \in \mathbb{N}}$ of elements of the interval $\langle 0, 1 \rangle$ different from t , converging to t and such that

$$s'_d(t) = \lim_{n \rightarrow \infty} \frac{s(t_n) - s(t)}{t_n - t}.$$

From the sequence $(t_n)_{n \in \mathbb{N}}$ one can choose a subsequence

$(t_{n_k})_{k \in \mathbb{N}}$ such that $\operatorname{im} F(t_{n_k}) > x_0$ for $k \in \mathbb{N}$ or $\operatorname{im} F(t_{n_k}) < x_0$ for $k \in \mathbb{N}$ or $\operatorname{im} F(t_{n_k}) = x_0$ for $k \in \mathbb{N}$. Then we have, respectively,

$$(11) \quad \left\{ \begin{array}{l} s'_d(t) = (z_2 - z_1) [\operatorname{re} f'(p(t)) + q_0^{(2)} \operatorname{im} f'(p(t))] , \\ s'_d(t) = (z_2 - z_1) [\operatorname{re} f'(p(t)) + q_0^{(1)} \operatorname{im} f'(p(t))] , \\ s'_d(t) = (z_2 - z_1) \operatorname{re} f'(p(t)) = \\ \quad = (z_2 - z_1) [\operatorname{re} f'(p(t)) + q_0^{(1)} \operatorname{im} f'(p(t))] \end{array} \right.$$

because, in this last case, $\operatorname{im} f'(p(t)) = 0$. Since the right-hand sides of the above expressions are, by (10), greater than zero, therefore $s'_d(t) > 0$.

Assume now that $\alpha \in (0, \pi)$. Let

$$A = \{t \in \langle 0, 1 \rangle; \operatorname{im} F(t) \neq x_0\}, \quad B = \{t \in \langle 0, 1 \rangle; \operatorname{im} F(t) = x_0\},$$

$$a = \min_{t \in \langle 0, 1 \rangle} \operatorname{im} F(t), \quad b = \max_{t \in \langle 0, 1 \rangle} \operatorname{im} F(t).$$

There must occur one of the following three cases :

$$I) \quad \left[B \neq \emptyset \wedge (q_0^{(1)} - \operatorname{ctg}\alpha) (q_0^{(2)} - \operatorname{ctg}\alpha) \leq 0 \right]$$

$$\vee \exists_{t_1 \in A} \varphi(\operatorname{im} F(t_1)) = \operatorname{ctg}\alpha ,$$

$$II) \quad B = \emptyset \wedge \forall_{t \in \langle 0, 1 \rangle} \varphi(\operatorname{im} F(t)) \neq \operatorname{ctg}\alpha ,$$

$$III) \quad B \neq \emptyset \wedge (q_0^{(1)} - \operatorname{ctg}\alpha) (q_0^{(2)} - \operatorname{ctg}\alpha) > 0$$

$$\wedge \forall_{t \in A} \varphi(\operatorname{im} F(t)) \neq \operatorname{ctg}\alpha .$$

Ad I. If the second part of alternative I holds, we may proceed in the same way as in case II of the proof of Theorem 1. Assume now that the first part of alternative I holds. Let $t \in B$. From the inequalities $\operatorname{re} f'(p(t)) + q_0^{(2)} \cdot \operatorname{im} f'(p(t)) > 0$, $\operatorname{re} f'(p(t)) + q_0^{(1)} \operatorname{im} f'(p(t)) > 0$, $(q_0^{(1)} - \operatorname{ctg}\alpha) (q_0^{(2)} - \operatorname{ctg}\alpha) \leq 0$ it easily follows that $\operatorname{re} f'(p(t)) + \operatorname{ctg}\alpha \operatorname{im} f'(p(t)) > 0$. This and (4') imply that

$$(12) \quad \operatorname{im} F'(t) > 0 .$$

Let us fix $t_1 \in B$. Further, one can repeat the considerations included in case II of the proof of Theorem 1. The only change will be the justification of the inequalities $\operatorname{im} F'(t_1) > 0$, $\operatorname{im} F'(\tau_1) > 0$, $\operatorname{im} F'(\tau_2) > 0$ which follow from (12).

Ad II. We proceed in the same manner as in case I of the proof of Theorem 1.

Ad III. It is not difficult to notice that the difference $\varphi(x) - \operatorname{ctg}\alpha$ has a constant sign in $\langle a, b \rangle - \{x_0\}$

equal to the sign of the numbers $q_0^{(k)} - \operatorname{ctg}\alpha$, $k = 1, 2$.

Without any loss of generality let us assume that these signs are positive. Consequently, there exists a real function g defined in some open interval containing $\langle a, b \rangle$ and such that

$$g'(x) = \frac{1 + \varphi(x) \operatorname{ctg}\alpha}{\operatorname{ctg}\alpha - \varphi(x)}, \quad x \in \langle a, b \rangle - \{x_0\},$$

$$g'_+(x_0) = \frac{1 + q_0^{(2)} \operatorname{ctg}\alpha}{\operatorname{ctg}\alpha - q_0^{(2)}}, \quad g'_-(x_0) = \frac{1 + q_0^{(1)} \operatorname{ctg}\alpha}{\operatorname{ctg}\alpha - q_0^{(1)}}.$$

Put $s(t) = \operatorname{re} F(t) + g(\operatorname{im} F(t))$, $t \in \langle 0, 1 \rangle$. Obviously, s is continuous. Proceeding in the same way as in the proof of equality (5), we ascertain that $s'(t)$ is expressed by formula (5) for $t \in A$. Consequently, $s'_d(t) = s'(t) > 0$ for $t \in A$. Whereas proceeding similarly as in the proof of equalities (11), we easily find that, at any point $t \in B$, the lower derivative $s'_d(t)$ is equal to one of the three numbers of which the first two are the following

$$(13) \frac{(1+\operatorname{ctg}^2\alpha) \operatorname{im}(z_2 - z_1)}{\operatorname{ctg}\alpha - q_0^{(k)}} \left[\operatorname{re} f'(p(t)) + q_0^{(k)} \operatorname{im} f'(p(t)) \right], \quad k=2, 1$$

while the third one, corresponding to the case, $(\operatorname{im} F(t_n)_k = x_0)$ for $k \in N$, is equal to $\operatorname{re} F'(t)$. Since, in this case, $\operatorname{im} F'(t) = 0$, therefore from (4) and (4') it easily follows that $\operatorname{re} F'(t)$ is equal to numbers (13). Since numbers (13) are greater than zero, therefore $s'_d(t) > 0$, which ends the proof.

REFERENCES

- [1] K. N o s h i r o : On the theory of schlicht functions, I. of the Faculty of Science, Hokkaido Imp. Univ. 2 (1934), 124-155.
- [2] S. E. W a r s c h a w s k i : On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), 310-340.
- [3] I. W o l f : L'integrale d'une fonction holomorphe et a partie relle positive dans un demi-plan est univalente, C. R. Acad. Sci. Paris 198 : 13 (1934), 1209-1210.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ,
90-238 ŁÓDŹ, POLAND

Received September 22, 1987.

