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SOME ESTIMATIONS OF AVERAGED MODULI
OF ENTIRE FUNCTIONS IN ORLICZ SPACES

1. Preliminaries

In [1]-[3] we obtained some inequalities between two
norms of trigonometric polynomials in LG , Where ¢ is a
¢-function : the Luxemburg norm and the Nikolski!—type norm.
We thus generalized results known in the case of Lgn—spaces.
Also, we applied these inequalities in order to estimate the
averaged L?-moduli of continuity and smoothness of a
bounded, measurable function by means of the norm of its
derivative. This was applied to obtain converse
approximations theorems for averaged moduli in Orlicz
spaces.

The 1inequalities for trygonometric polynomials in LZH
were transferred in [4]-[7] to Lhe case of entire functions
of finite expotential order, belonging to LP(-w,=).

The aim of this paper is to extend tha later results
from spaces lf(vm,m), 0 < p < o, to the case of Orlicz
spaces LY = L@(—m,m), both for convex and for concave
functions ¢. 4lso, we give estimations both for the norms
and for the mecdulars. The resulting inequalities may be

applied to problems of converse approximation theorems in
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the above classes of functions.
Let ¢ be a ¢-function and let f € LY. We write

(-]

p,(f) = lw(lf(x)l) dx

and
h )
po(f) =h sup ) e(|f(x+v)|), h>0,
4 -0<x<® j=-00 J
where vj = jh, J =0,%1,%2,... These two modulars define two

norms in the respective modular spaces. In the case of

convex ¢, this 1s the Luxemburg norm
fl = inf {u> 0 : (f/u) =1}
I£1, 3
and the NikolskiY—type norm
h h
"f"¢ = inf {u > 0 : p¢(f/u) =1},

In the case of s-convex ¢ with 0 < s = 1, these are the
s-homogeneous norms

"f"s’¢ = inf { u> 0 : pw(f/ul/s) =1}

and h h 1/
I£l,, = tnf L u>0: p (£/u %) s 1)

Besides the above, we shall need modulars and norms for

sequences W = (wj):_°° , defined as follows :

o0
p™GE) =h ¥ el|w|), h>0
¢ PR

and

W™ = inf {u > 0 : p(h)(G/u) =1}
¢ 4
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in case of convex ¢,
[MI™ = inf {u>o0: p™ (@) = 1)
s, ¢

in case of s-convex ¢, where 0 < s < 1,

2. Estimations for Nikolski!—type norms

Let Ec be the space of entire functions of expotential

type o > 0, and let Bc be the space of all f € Ev such

that the restriction of } to the real axis belongs to L.
The following transfers the result of [2], Lemma 1, to
the case of entire functions in place of trigonometric
polynomials :
Lemma. Let ¢ be a convex p—function and let fe Bv.w

Let us write fv = (f(vj))T__m with v = jh, j = 0,%1,%2,...
Then there hold the following inequalities :

— y(h)
f = (1 h) (|If ,
(a) fev |, = (1 + oh)|g],
(b) if oh > 1, then p'™(£v) = X (1 + oh) p (2f).
¢ 2 ¢
Proof. Let |f(nj)| = min |f(t)], VJS nJS Vi

v St=v

] 1
n=(n )w=_m , and let u > 0. Then, by Jensen’s inequality,

2] vj+1
(h), — < 1 f(t) <
Py (F1/W) = h Y v [H J,' —l—u—i dt ] < p,(£/).
3

j=-o

(h)

] < .
lal,” = Il

=y (h) = = (h)
f = - .
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Again by Jensen’s inequality, we have

v

- - [ i+1 N ’
p(h)[ v - 9 ] < h Z ¢[ 1 I h|f’ (s)] ds] 2 p [ hf ]
] u - h v u el u

J

But, by Bernstein’s inequality ([8], p.277) ,

P¢(¢_1f’) s p,(f),

whence
p(h)[u]sp [ﬁ]fopu)O_
9 u 9 u
Consequently,
- —n (h)
fv - £ <o h |f
I£v - £a], HE
and so

—y (h)
1 .
J£91,” 5 (1 + oh) e,

Next, supposing oh = 1, we have

(m _ 1 (n

<

P p 1 (n
® 279

(2(fv-fq)) + 5 p¢

— 1 1
(2fn) = 5 p¢(20hf) * 5 p¢(2f) <

<1
<5 (1 + oh) p¢(2f).

Applying the above Lemma, we prove now the following

Theorem 1. Let ¢ be a convex g-function and let
f e€eB . Then

o,

b

h
(a) Iel, = lIely = (1 + podfe],

(b) 1f oh = 1, then p (f) = p;(f) <1

=5 (1 + oh) pw(Zf).
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Proof. Since
© _h b
f) = ft+ dt = ),
p,(F) _Z I p(](t+v ) ) py(f)
j=-o

we obtain the left-hand side inequality without assumption
of convexity of ¢, immediately.

Let T € B0'¢ , g(z) = f(x+z) for a fixed real x. Then g
€ B , = |If , and applying the Lemma we obtain

v 0 181, = Ifl, pplying

(h)

Is71

= (1 f
= (1+ on)e],

and for oh = 1

(h), — 1
(gv) = = (1 + oh (2f).
p, (& 2( )pq) )

Thus, taking oh = 1 we have
0
1
h § ULV ]) = 5 (1 + oh) p (26)

j=-o
for all real x. Hence we get the right-hand inequality in (b).
In order to prove the right-hand inequality: in (a), we
note that

(h)

3 gv
” f1+0h5"f" ¢ =3
4
for every 0 < & < 1, whence
(h) S gv
Py [ 1+ch) [f 0 ] =8 <1

and taking 8 T 1 , we obtain

(h) gv
Po [ (1+ch5]|f"||;] =1.

This gives the desired inequality easily.
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Let us remark, that Theorem 1 transforms the result of
{2}, Th. 1 and Corollary, form trygonometric polynomials to
entire functions. It is also a generalization of Th. 3.3.1
in [4] p.122 from spaces L? to Orlicz spaces.

Now, let us recall that a ¢-function ¢ is said to be
s-convex, if g(au+Bv) = a’p(u) + B°p(v) for u,v =2 0, «,B =
o, o + Bs = 1, and is said to be strongly s-convex, if a(u)
= ¢(u1/s) is convex (0 < s =< 1). If ¢ satisfies the
condition (A2) for all u =z 0, then

y(u) = sup 2%%%% < o for all u > 0.
v>0
If ¢ is s-convex (strongly s-convex), then so is y (see [2]).
There holds the following
T heorem 2. Let ¢ be a concave, s-convex

¢-function with some s € (0,1> and let it satisfy (Az) for
all uz=0. Let f € B0'¢ . Then there hold the inequalities

»

1A

C(s) (1 + crh)||f||

h
@ e, < 19D,

1A

1

oh

1
C(S) T

< h
(b) pw(f) = pw(f) (1 + oh) pw(f) ,

where h > 0 and C(s) is a positive constant.
Proof. The left-hand side inequalities being shown
in the proof of Theorem 1, we are going to prove the right-

~hand ones. Let r be the least integer such that rs =z 2, and

let t = v = kh, k = 0,%1,%2,..., s =t - x. By Lemma
k k k k
2.1, we have
© sin 2¢(x-tk) sin g (x—tk) r-1
£(x) =) ft) —-e—y { = }
K=-00 K = (x-tk)
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for real x, the above quotients being replaced by 1 for
x=t.

k
We obtain

sinz(x+vj—tk)

1.

0 0 [+
h z¢(|f(x+vj)|) sh )} Vo {|f(tk)| —
j=<-00 J=-® k=-0 F(X+vj_tk)

00
sh o Joel|Et) Y,

k=-00

r
Y = + v ||[——31 % =A+B.
Gl R e
|vj-s 1 r ) ok

k|<; 'VJ-SkI>E

It easily to seen that

Moreover, we have

< 1 -< r
B *“[w—:]-“"”*
|ztv,-s )|

2 ® [ 1 ] r 2 ! yr'™vVh)
+ = ¥ dx = 2 y(r') + dv =
h I ch oj v2

1/0 r

< r 1 1 < r 1
—21[1(1‘)[1+EPS_1]_2¢I(P)[1+O_],

by s-convexity of ¢. Hence
r 1
Yksz (1 + y(r)) (1 +OT)

Consequently,
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0 o
1
h ij U|fGxv ) |) s Cls) 2 (1 + o—h)k=zwqp(|f(tk)|) ,

where C(s) = 2(1 + ¢(r")). Hence

h 1 v
p,(f) 5 Cs) 2 (1 + oh) Y ell£e ],

=-0
and replacing f(z) by f(t+z), we obtain

h(f) s C(s) L (1 + oh) E (|£(t+t )|)
p¢ o \4 k |

Kk=-00

Integrating the above 1inequality with respect to t in
<0,t1>, we obtain easily the right-hand one of inequalities
(b). Inequalities (a) follow from (b), immediately.

Theorem 2 In case of trigonometric polynomials was given
in [2], Th. 2. In case of entire functions with LP-nornms,
0 < p =1, it was obtained by R. Taberski in [5], Th. 7.1,
p. 178.

3. Inequallty for averaged moduli
First we shall recall the fundamental notions. Let f be

a bounded, measurable function on (-®,»)}. Then

w(f;x,8) = sup |£(u) - £(v)|
u,v € IG(X)
] 3
where IB(X) = <x - 5 X+ 3 >, ~w < X <00, 8> 0, is measu-

rable, and one may define the averaged moduli of smoothness

of £ in L?(-»,®) as follows :
- .
T (f;8) = f;x,d8 , f:8) = fi+,8 ,
) pv(w( )) T(£;8) = |wl( )"S’¢

where ¢ is an s-convex ¢-function. It is easily seen that
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both modull are nondecreasing and subadditive functions of
s > 0.

Next results give estimations of both averaged moduli by
means of the norm resp. modular of the derivative of the
function f In the Orlicz space. First, we shall deal with
convex ¢ ; in this case the result does not require f to be
an entire function and is immediate. Namely, we have

Theorem 3. Let ¢ be a convex g-function and let

fel?, r absolutely continuous in (-w,®). Then
T (£;3) s p,(387) , T(£38) = 8 £ ]

Proof. We have, by Jensen’s inequality,

x+8/2
. [+
T(£;8) = lp[ I |f’(t)|dt]dxs
- x=-3/2
x+8/2
00
s1 [ el at] ax = p 37
. ¢ P, :
x-8/72

Theorem 3 In case of trigonometric polynomials and k-th
derivatives may be found in [1], Theorem 2, p. 288, and in
case of entire functions and powers p = 1, in [6],
Prop.2.6.p. 487. The some result in case of trigonometric
polynomials and k-th derivatives, but in case of concave,
strongly s-convex ¢, is given in [3], Prop. 1.3. In case of
entire functions and ¢(u) = |u|p with 0 < p = 1 it was
obtained by R. Taberski in [7], Lemma, p. 254. These results
are generalized by the following.

Theorem 4. Let ¢ be a concave, strongly s-convex

(with some s € (0,1>) ¢p-function and let it satisfy (Aa) for
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all u =2 0, Let f € Bc " and a > 0. Then for 0 < 8 = o/0 we
have

* *
(a) T (f;8) = C (a,s) pw(af’) ,

8 ’
(b) t(f;8) = C(a,s) & |f Hs'¢
with some positive constants C'(a,s). Cla,s).
Proof. We have (see [7], p. 255)

r-1
dt

+h ®
|f(uth)-f(u) | = T z |f’(tk)|

u k==~

o
sin = (t tk)

o
& (t-t))

where tk = ig_k’ k = 0,1, +2,..., h > 0, ureal, and r is

the least integer such that (r-1)s > 1. Hence

x+8/2 ©
o(fix,8) s | Ve

k=-00

r-1

sin g (t—tk)
dt .

o
x-8/2 r (t tk)

Consequently, by subadditivity of ¢ and the definition of ¥,

we have
. " o ¢y % sin £ (-t )|r-1
T (£;8) = Zq)[alf’(t )| | v { = I dt}dx.
k=% ko o 7 (t-t )
x-8/2 r k
But
sing t |r-1 1
max 3 = Cl(a,r) ey
t -8/2= t=s t  +8/2 -t |3l
] j+1 r

(see [6], p. 255). Hence
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00 1 sin ; X
v:{ 1
-l s I T (t-t )
r k

Thus

x+8/2 o (t-t )

r-1 x & C (a, )
dt}dxsz—-Z[ ]s

x ®© Cz(a,s)
s 52 w(C (a,r)) ¥ | =
=1

x-8/2

[
IEICIECRIPRY

T'(f;a) s C (a,s)
2 k=-0

for 0 < 8§ = a/0c . By Theorem 2 applied to &f’ in place of f,
with h = =& , We obtaln

20
1 S 2 uxaa
Hence

i.e.

[1]

(2]

[3]

T (£'3) s Cyla,s) p (35",

(a). The inequality (b) follows from (a), immediately.
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