

Helena Musielak

SOME ESTIMATIONS OF AVERAGED MODULI
OF ENTIRE FUNCTIONS IN ORLICZ SPACES

1. Preliminaries

In [1]-[3] we obtained some inequalities between two norms of trigonometric polynomials in $L_{2\pi}^\varphi$, where φ is a φ -function : the Luxemburg norm and the Nikolskii-type norm. We thus generalized results known in the case of $L_{2\pi}^p$ -spaces. Also, we applied these inequalities in order to estimate the averaged L^φ -moduli of continuity and smoothness of a bounded, measurable function by means of the norm of its derivative. This was applied to obtain converse approximations theorems for averaged moduli in Orlicz spaces.

The inequalities for trigonometric polynomials in $L_{2\pi}^p$ were transferred in [4]-[7] to the case of entire functions of finite exponential order, belonging to $L^p(-\infty, \infty)$.

The aim of this paper is to extend the later results from spaces $L^p(-\infty, \infty)$, $0 < p < \infty$, to the case of Orlicz spaces $L^\varphi = L^\varphi(-\infty, \infty)$, both for convex and for concave functions φ . Also, we give estimations both for the norms and for the modulars. The resulting inequalities may be applied to problems of converse approximation theorems in

the above classes of functions.

Let φ be a φ -function and let $f \in L^\varphi$. We write

$$\rho_\varphi(f) = \int_{-\infty}^{\infty} \varphi(|f(x)|) dx$$

and

$$\rho_\varphi^h(f) = h \sup_{-\infty < x < \infty} \sum_{j=-\infty}^{\infty} \varphi(|f(x + v_j)|), \quad h > 0,$$

where $v_j = jh$, $j = 0, \pm 1, \pm 2, \dots$. These two modulars define two norms in the respective modular spaces. In the case of convex φ , this is the Luxemburg norm

$$\|f\|_\varphi = \inf \{u > 0 : \rho_\varphi(f/u) \leq 1\}$$

and the Nikolskii-type norm

$$\|f\|_\varphi^h = \inf \{u > 0 : \rho_\varphi^h(f/u) \leq 1\}.$$

In the case of s -convex φ with $0 < s \leq 1$, these are the s -homogeneous norms

$$\|f\|_{s,\varphi} = \inf \{u > 0 : \rho_\varphi(f/u^{1/s}) \leq 1\}$$

and

$$\|f\|_{s,\varphi}^h = \inf \{u > 0 : \rho_\varphi^h(f/u^{1/s}) \leq 1\}.$$

Besides the above, we shall need modulars and norms for sequences $\bar{w} = (w_j)_{j=-\infty}^{\infty}$, defined as follows :

$$\rho_\varphi^{(h)}(\bar{w}) = h \sum_{j=-\infty}^{\infty} \varphi(|w_j|), \quad h > 0$$

and

$$\|\bar{w}\|_\varphi^{(h)} = \inf \{u > 0 : \rho_\varphi^{(h)}(\bar{w}/u) \leq 1\}$$

in case of convex φ ,

$$\|\bar{w}\|_{s,\varphi}^{(h)} = \inf \{u > 0 : \rho_{\varphi}^{(h)}(\bar{w}/u^{1/s}) \leq 1\}$$

in case of s -convex φ , where $0 < s \leq 1$.

2. Estimations for Nikolskii-type norms

Let E_{σ} be the space of entire functions of exponential type $\sigma > 0$, and let $B_{\sigma,\varphi}$ be the space of all $f \in E_{\sigma}$ such that the restriction of f to the real axis belongs to L^{φ} .

The following transfers the result of [2], Lemma 1, to the case of entire functions in place of trigonometric polynomials :

Lemma. Let φ be a convex φ -function and let $f \in B_{\sigma,\varphi}$. Let us write $f\bar{v} = (f(v_j))_{j=-\infty}^{\infty}$ with $v_j = jh$, $j = 0, \pm 1, \pm 2, \dots$. Then there hold the following inequalities :

$$(a) \quad \|f\bar{v}\|_{\varphi}^{(h)} \leq (1 + \sigma h) \|f\|_{\varphi},$$

$$(b) \quad \text{if } \sigma h > 1, \text{ then } \rho_{\varphi}^{(h)}(f\bar{v}) \leq \frac{1}{2} (1 + \sigma h) \rho_{\varphi}(2f).$$

Proof. Let $|f(\eta_j)| = \min_{v_j \leq t \leq v_{j+1}} |f(t)|$, $v_j \leq \eta_j \leq v_{j+1}$,

$\bar{\eta} = (\eta_j)_{j=-\infty}^{\infty}$, and let $u > 0$. Then, by Jensen's inequality,

$$\rho_{\varphi}^{(h)}(f\bar{\eta}/u) \leq h \sum_{j=-\infty}^{\infty} \varphi \left[\frac{1}{h} \int_{v_j}^{v_{j+1}} \frac{|f(t)|}{u} dt \right] \leq \rho_{\varphi}(f/u).$$

Hence

$$\|f\bar{\eta}\|_{\varphi}^{(h)} \leq \|f\|_{\varphi}.$$

Thus,

$$\|f\bar{v}\|_{\varphi}^{(h)} \leq \|f\bar{v} - f\bar{\eta}\|_{\varphi}^{(h)} + \|f\|_{\varphi}.$$

Again by Jensen's inequality, we have

$$\rho_{\varphi}^{(h)} \left[\frac{f\bar{v} - f\bar{\eta}}{u} \right] \leq h \sum_{j=-\infty}^{\infty} \varphi \left[\frac{1}{h} \int_{\bar{v}}^{\bar{v}_{j+1}} \frac{h|f'(s)|}{u} ds \right] \leq \rho_{\varphi} \left[\frac{hf'}{u} \right].$$

But, by Bernstein's inequality ([8], p.277) ,

$$\rho_{\varphi}(\sigma^{-1}f') \leq \rho_{\varphi}(f) ,$$

whence

$$\rho_{\varphi}^{(h)} \left[\frac{f\bar{v} - f\bar{\eta}}{u} \right] \leq \rho_{\varphi} \left[\frac{\sigma hf}{u} \right] \text{ for } u > 0.$$

Consequently,

$$\|f\bar{v} - f\bar{\eta}\|_{\varphi}^{(h)} \leq \sigma h \|f\|_{\varphi}$$

and so

$$\|f\bar{v}\|_{\varphi}^{(h)} \leq (1 + \sigma h) \|f\|_{\varphi} .$$

Next, supposing $\sigma h \leq 1$, we have

$$\begin{aligned} \rho_{\varphi}^{(h)} &\leq \frac{1}{2} \rho_{\varphi}^{(h)}(2(f\bar{v} - f\bar{\eta})) + \frac{1}{2} \rho_{\varphi}^{(h)}(2f\bar{\eta}) \leq \frac{1}{2} \rho_{\varphi}(2\sigma hf) + \frac{1}{2} \rho_{\varphi}(2f) \leq \\ &\leq \frac{1}{2} (1 + \sigma h) \rho_{\varphi}(2f). \end{aligned}$$

Applying the above Lemma, we prove now the following

Theorem 1. Let φ be a convex φ -function and let $f \in B_{\sigma, \varphi}$. Then

$$(a) \quad \|f\|_{\varphi} \leq \|f\|_{\varphi}^h \leq (1 + h\sigma) \|f\|_{\varphi} ,$$

$$(b) \quad \text{if } \sigma h \leq 1, \text{ then } \rho_{\varphi}(f) \leq \rho_{\varphi}^h(f) \leq \frac{1}{2} (1 + \sigma h) \rho_{\varphi}(2f).$$

Proof. Since

$$\rho_\varphi(f) = \sum_{j=-\infty}^{\infty} \int_0^h \varphi(|f(t+v_j)|) dt \leq \rho_\varphi^h(f) ,$$

we obtain the left-hand side inequality without assumption of convexity of φ , immediately.

Let $f \in B_{\sigma, \varphi}$, $g(z) = f(x+z)$ for a fixed real x . Then $g \in B_{\sigma, \varphi}$, $\|g\|_\varphi = \|f\|_\varphi$, and applying the Lemma we obtain

$$\|g\bar{v}\|_\varphi^{(h)} \leq (1 + \sigma h) \|f\|_\varphi$$

and for $\sigma h \leq 1$

$$\rho_\varphi^{(h)}(g\bar{v}) \leq \frac{1}{2} (1 + \sigma h) \rho_\varphi(2f).$$

Thus, taking $\sigma h \leq 1$ we have

$$h \sum_{j=-\infty}^{\infty} \varphi(|f(x+v_j)|) \leq \frac{1}{2} (1 + \sigma h) \rho_\varphi(2f) ,$$

for all real x . Hence we get the right-hand inequality in (b).

In order to prove the right-hand inequality in (a), we note that

$$\left\| \frac{\delta g\bar{v}}{(1+\sigma h) \|f\|_\varphi} \right\|_\varphi^{(h)} \leq \delta$$

for every $0 < \delta < 1$, whence

$$\rho_\varphi^{(h)} \left(\frac{\delta g\bar{v}}{(1+\sigma h) \|f\|_\varphi} \right) \leq \delta < 1$$

and taking $\delta \uparrow 1$, we obtain

$$\rho_\varphi^{(h)} \left(\frac{g\bar{v}}{(1+\sigma h) \|f\|_\varphi} \right) \leq 1 .$$

This gives the desired inequality easily.

Let us remark, that Theorem 1 transforms the result of [2], Th. 1 and Corollary, from trygonometric polynomials to entire functions. It is also a generalization of Th. 3.3.1 in [4] p.122 from spaces L^p to Orlicz spaces.

Now, let us recall that a φ -function φ is said to be s -convex, if $\varphi(\alpha u + \beta v) \leq \alpha^s \varphi(u) + \beta^s \varphi(v)$ for $u, v \geq 0$, $\alpha, \beta \geq 0$, $\alpha^s + \beta^s = 1$, and is said to be strongly s -convex, if $\tilde{\varphi}(u) = \varphi(u^{1/s})$ is convex ($0 < s \leq 1$). If φ satisfies the condition (Δ_2) for all $u \geq 0$, then

$$\psi(u) = \sup_{v>0} \frac{\varphi(uv)}{\varphi(v)} < \infty \text{ for all } u > 0.$$

If φ is s -convex (strongly s -convex), then so is ψ (see [2]). There holds the following

Theorem 2. Let φ be a concave, s -convex φ -function with some $s \in (0, 1)$ and let it satisfy (Δ_2) for all $u \geq 0$. Let $f \in B_{\sigma, \varphi}$. Then there hold the inequalities

$$(a) \quad \|f\|_{s, \varphi} \leq \|f\|_{s, \varphi}^h \leq C(s) \frac{1}{\sigma h} (1 + \sigma h) \|f\|_{s, \varphi}$$

$$(b) \quad \rho_{\varphi}(f) \leq \rho_{\varphi}^h(f) \leq C(s) \frac{1}{\sigma h} (1 + \sigma h) \rho_{\varphi}(f),$$

where $h > 0$ and $C(s)$ is a positive constant.

Proof. The left-hand side inequalities being shown in the proof of Theorem 1, we are going to prove the right-hand ones. Let r be the least integer such that $rs \geq 2$, and let $t_k = v_k = kh$, $k = 0, \pm 1, \pm 2, \dots$, $s_k = t_k - x$. By Lemma 2.1, we have

$$f(x) = \sum_{k=-\infty}^{\infty} f(t_k) \frac{\sin 2\sigma(x-t_k)}{2\sigma(x-t_k)} \left\{ \frac{\sin \frac{\sigma}{r}(x-t_k)}{\frac{\sigma}{r}(x-t_k)} \right\}^{r-1}$$

Estimations of averaged moduli

for real x , the above quotients being replaced by 1 for $x = t_k$.

We obtain

$$\begin{aligned} h \sum_{j=-\infty}^{\infty} \varphi(|f(x+v_j)|) &\leq h \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \varphi \left\{ |f(t_k)| \left| \frac{\sin \frac{\sigma}{r}(x+v_j - t_k)}{\frac{\sigma}{r}(x+v_j - t_k)} \right|^r \right\} \leq \\ &\leq h \sum_{k=-\infty}^{\infty} \varphi(|f(t_k)|) Y_k, \end{aligned}$$

where

$$Y_k = \left[\sum_{|v_j - s_k| \leq \frac{1}{\sigma}} + \sum_{|v_j - s_k| > \frac{1}{\sigma}} \right] \psi \left[\left| \frac{\sin \frac{\sigma}{r}(v_j - s_k)}{\frac{\sigma}{r}(v_j - s_k)} \right|^r \right] = A_k + B_k.$$

It easily to seen that

$$A_k \leq 2 \left(\frac{1}{\sigma h} + 1 \right).$$

Moreover, we have

$$\begin{aligned} B_k &\leq \sum_{|v_j - s_k| > \frac{1}{\sigma}} \psi \left(\frac{1}{\left| \frac{\sigma}{r}(v_j - s_k) \right|^r} \right) \leq 2 \psi(r^r) + \\ &+ \frac{2}{h} \int_{1/\sigma}^{\infty} \psi \left(\frac{1}{\left(\frac{\sigma}{r}x \right)^r} \right) dx = 2 \psi(r^r) + \frac{2}{\sigma h} \int_0^1 \frac{\psi(r^r v^r)}{v^2} dv \leq \\ &\leq 2 \psi(r^r) \left(1 + \frac{1}{\sigma h} \frac{1}{rs-1} \right) \leq 2 \psi(r^r) \left(1 + \frac{1}{\sigma h} \right), \end{aligned}$$

by s -convexity of φ . Hence

$$Y_k \leq 2 (1 + \psi(r^r)) (1 + \frac{1}{\sigma h}).$$

Consequently,

$$h \sum_{j=-\infty}^{\infty} \varphi(|f(x+v_j)|) \leq C(s) \frac{1}{\sigma} (1 + \sigma h) \sum_{k=-\infty}^{\infty} \varphi(|f(t_k)|) ,$$

where $C(s) = 2(1 + \psi(r^s))$. Hence

$$\rho_{\varphi}^h(f) \leq C(s) \frac{1}{\sigma} (1 + \sigma h) \sum_{k=-\infty}^{\infty} \varphi(|f(t_k)|) ,$$

and replacing $f(z)$ by $f(t+z)$, we obtain

$$\rho_{\varphi}^h(f) \leq C(s) \frac{1}{\sigma} (1 + \sigma h) \sum_{k=-\infty}^{\infty} \varphi(|f(t+t_k)|) .$$

Integrating the above inequality with respect to t in $\langle 0, t_1 \rangle$, we obtain easily the right-hand one of inequalities (b). Inequalities (a) follow from (b), immediately.

Theorem 2 in case of trigonometric polynomials was given in [2], Th. 2. In case of entire functions with L^p -norms, $0 < p \leq 1$, it was obtained by R. Taberski in [5], Th. 7.1, p. 178.

3. Inequality for averaged moduli

First we shall recall the fundamental notions. Let f be a bounded, measurable function on $(-\infty, \infty)$. Then

$$\omega(f; x, \delta) = \sup_{u, v \in I_{\delta}(x)} |f(u) - f(v)|$$

where $I_{\delta}(x) = \langle x - \frac{\delta}{2}, x + \frac{\delta}{2} \rangle$, $-\infty < x \leq \infty$, $\delta > 0$, is measurable, and one may define the averaged moduli of smoothness of f in $L^{\varphi}(-\infty, \infty)$ as follows :

$$\tau^*(f; \delta) = \rho_{\varphi}(\omega(f; x, \delta)) , \quad \tau(f; \delta) = \|\omega(f; \cdot, \delta)\|_{s, \varphi} ,$$

where φ is an s -convex φ -function. It is easily seen that

both moduli are nondecreasing and subadditive functions of $\delta > 0$.

Next results give estimations of both averaged moduli by means of the norm resp. modular of the derivative of the function f in the Orlicz space. First, we shall deal with convex φ ; in this case the result does not require f to be an entire function and is immediate. Namely, we have

Theorem 3. Let φ be a convex φ -function and let $f \in L^\varphi$, f absolutely continuous in $(-\infty, \infty)$. Then

$$\tau^*(f; \delta) \leq \rho_\varphi(\delta f'), \quad \tau(f; \delta) \leq \delta \|f'\|_\varphi.$$

Proof. We have, by Jensen's inequality,

$$\begin{aligned} \tau^*(f; \delta) &\leq \int_{-\infty}^{\infty} \varphi \left[\int_{x-\delta/2}^{x+\delta/2} |f'(t)| dt \right] dx \leq \\ &\leq \frac{1}{\sigma} \int_{-\infty}^{\infty} \left[\int_{x-\delta/2}^{x+\delta/2} \varphi(\delta |f'(t)|) dt \right] dx = \rho_\varphi(\delta f'). \end{aligned}$$

Theorem 3 in case of trigonometric polynomials and k -th derivatives may be found in [1], Theorem 2, p. 288, and in case of entire functions and powers $p \geq 1$, in [6], Prop. 2.6.p. 487. The same result in case of trigonometric polynomials and k -th derivatives, but in case of concave, strongly s -convex φ , is given in [3], Prop. 1.3. In case of entire functions and $\varphi(u) = |u|^p$ with $0 < p \leq 1$ it was obtained by R. Taberski in [7], Lemma, p. 254. These results are generalized by the following.

Theorem 4. Let φ be a concave, strongly s -convex (with some $s \in (0, 1)$) φ -function and let it satisfy (Δ_2) for

all $u \geq 0$. Let $f \in B_{\sigma, \varphi}$ and $\alpha > 0$. Then for $0 < \delta \leq \alpha/\sigma$ we have

$$(a) \quad \tau^*(f; \delta) \leq C^*(\alpha, s) \rho_\varphi(\delta f') ,$$

$$(b) \quad \tau(f; \delta) \leq C(\alpha, s) \delta^s \|f'\|_{s, \varphi}$$

with some positive constants $C^*(\alpha, s)$, $C(\alpha, s)$.

P r o o f. We have (see [7], p. 255)

$$|f(u+h) - f(u)| \leq \int_u^{u+h} \sum_{k=-\infty}^{\infty} |f'(t_k)| \left| \frac{\sin \frac{\sigma}{r} (t-t_k)}{\frac{\sigma}{r} (t-t_k)} \right|^{r-1} dt$$

where $t_k = \frac{\pi}{2\sigma} k$, $k = 0, \pm 1, \pm 2, \dots$, $h > 0$, u real, and r is the least integer such that $(r-1)s > 1$. Hence

$$\omega(f; x, \delta) \leq \int_{x-\delta/2}^{x+\delta/2} \sum_{k=-\infty}^{\infty} |f'(t_k)| \left| \frac{\sin \frac{\sigma}{r} (t-t_k)}{\frac{\sigma}{r} (t-t_k)} \right|^{r-1} dt .$$

Consequently, by subadditivity of φ and the definition of ψ , we have

$$\tau^*(f; \delta) \leq \sum_{k=-\infty}^{\infty} \varphi \left[\delta |f'(t_k)| \int_{-\infty}^{\infty} \psi \left\{ \frac{1}{\sigma} \int_{x-\delta/2}^{x+\delta/2} \left| \frac{\sin \frac{\sigma}{r} (t-t_k)}{\frac{\sigma}{r} (t-t_k)} \right|^{r-1} dt \right\} dx \right]$$

But

$$\max_{t_j - \delta/2 \leq t \leq t_{j+1} + \delta/2} \left| \frac{\sin \frac{\delta}{r} t}{\frac{\delta}{r} t} \right|^{r-1} \leq C_1(\alpha, r) \frac{1}{|j|^{r-1}}$$

(see [6], p. 255). Hence

$$\begin{aligned}
 & \int_{-\infty}^{\infty} \psi \left\{ \frac{1}{\delta} \int_{x-\delta/2}^{x+\delta/2} \left| \frac{\sin \frac{\sigma}{r} (t-t_k)}{\frac{\sigma}{r} (t-t_k)} \right|^{r-1} dt \right\} dx \leq \frac{\pi}{2\sigma} \sum_{j=1}^{\infty} \psi \left(\frac{C_1(\alpha, r)}{j^{r-1}} \right) \leq \\
 & \leq \frac{\pi}{2\sigma} \psi(C_1(\alpha, r)) \sum_{j=1}^{\infty} \frac{1}{j^{(r-1)s}} = \frac{C_2(\alpha, s)}{\sigma} .
 \end{aligned}$$

Thus

$$\tau^*(f; \delta) \leq C_2(\alpha, s) \frac{1}{\sigma} \sum_{k=-\infty}^{\infty} \psi(\delta |f'(t_k)|) ,$$

for $0 < \delta \leq \alpha/\sigma$. By Theorem 2 applied to $\delta f'$ in place of f , with $h = \frac{\pi}{2\sigma}$, we obtain

$$\frac{1}{\sigma} \sum_{k=-\infty}^{\infty} \psi(\delta |f'(t_k)|) \leq \frac{2}{\pi} \rho_{\varphi}^{\pi/2\sigma}(\delta f') \leq C_3(\alpha, s) \rho_{\varphi}(\delta f') .$$

Hence

$$\tau^*(f; \delta) \leq C_3(\alpha, s) \rho_{\varphi}(\delta f') ,$$

i.e. (a). The inequality (b) follows from (a), immediately.

REFERENCES

- [1] H. Musielak : On the τ -modulus of smoothness in generalized Orlicz spaces, *Commentationes Math.* 25(1985), 285-293.
- [2] H. Musielak : On some Nikolskii- and Oswald-type inequalities, *Journ. of Approximation Theory*, 50(4) (1987), 359-365.
- [3] H. Musielak : Converse type inequalities for averaged moduli of smoothness in Orlicz spaces generated

- by concave functions, *Commentationes Math.*, 26(1986), 257- 264.
- [4] S. M. Nikolskij : *Priblizenije funkcij mnogich pieriemiennych i tieoriemy wlozenija*, Moskwa 1977.
- [5] R. Taberski : Approximation by entire functions of exponential type, *Demonstratio Math.* 14(1981), 151-181.
- [6] R. Taberski : One-sided approximation by entire functions, *Demonstratio Math.* 15(1982), 477-505.
- [7] R. Taberski : One-sided exponential approximation in L^p -metrics ($0 < p \leq 1$), *Functiones et Approximatio* 15 (1986), 245-258.
- [8] A. Zygmund : *Trigonometric series*, Vol. II, Cambridge 1959.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY,
60-789 POZNAŃ, POLAND

Received September 22, 1987.