

Jan Ambrosiewicz

PRODUCTS OF SETS IN LINEAR GROUPS

In this paper we will generalize results contained in [2]. We will use the following notations : $Z(G)$ denotes the centrum of a group G , \bar{g} denotes the conjugacy class of g in the group G , $|a_{i1}, \dots, a_{in}|$ ($i=1, \dots, n$) denotes the $\det(a_{ij})$. $SL^-(n, K)$ denotes the set of matrices of $GL(n, K)$ with determinant -1 , $A+B$ denotes the matrix $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$, $K_m = \{g \in G : o(g) = m\}$, $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$ with $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$.

The remaining notation are standard.

In the paper [1] it has been proved that $K_2 K_2 \subseteq GL(n, K)$ for $n \geq 3$ and for $n = 2$ if $\text{char}K \neq 2$. In this paper we will prove that if $V, W \in SL(n, K)$ or $V, W \in SL^-(n, K)$ then $SL(n, K) = (\bar{V} \bar{W})^2$ in the group $GL(n, K)$ and if $V, W \in SL(n, K)$, where K is an algebraikly closed field, then $SL(n, K) = (\bar{V} \bar{W})^2$ in the group $SL(n, K)$. We will prove also that $SL(n, C) \subseteq (K_2 K_2)^2$ in the group $GL(n, C)$, where C is the field of complex numbers.

We begin with the main theorem.

Theorem 1. If $V, W \in GL(n, K)$, $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$ with $v_i \neq v_j$, $w_j \neq w_i$ for $i \neq j$, A - the matrix in primary rational canonical form, $\det A = \det VW$, $A \notin Z(GL(n, K))$, then the matrix equation $X^{-1}VXYWY^{-1} = A$ has

a solution $X, Y \in GL(n, K)$ such that $\det X, \det Y$ are arbitrary elements of field the K .

To prove Theorem 1 we will use a few lemma.

L e m m a 1. If $V, W \in GL(n, K)$, A - the companion matrix of the polynomial $f(x) = x^n + a_1 x^{n-1} + \dots + a_n \in K[x]$, $\det VW = \det A$, then the matrix equation

$$(1) \quad X^{-1}VXYWY^{-1} = A$$

has a solution $X, Y \in GL(n, K)$ such that $\det X, \det Y$ are arbitrary elements $\neq 0$ of K .

P r o o f. Let us consider the equation

$$(2) \quad VXYW = XAY .$$

The matrix equation (2) is equivalent to the system of equations

$$(3) \quad \sum_{k=1}^{n-1} x_{ik} (v_i w_j y_{kj} - y_{k+1j}) + x_{in} (v_i w_j y_{nj} + \sum_{k=0}^{n-1} a_{n-k} y_{k+1j}) = 0.$$

$i, j = 1, \dots, n$.

The system (3) we can consider as a homogeneous linear system of equations in x_{ij} ($i, j = 1, \dots, n$). If we take $y_{ij} = 0$ for $j > 1$ and $y_{ii} = 1$ for $i > 1$, then we get a condition on non-trivial solution of (3). Namely

Products of sets

$$(4) \quad \left| \begin{array}{cccccc} v_i w_1 y_{11} - y_{21} & v_i w_1 y_{21} - y_{31} & \dots & v_i w_1 y_{n-1} - y_{n1} & & \\ -1 & v_i w_2 & & & 0 & \\ & -1 & & & & \\ & & \ddots & & & \\ & & & v_i w_{n-1} & & \\ & & & -1 & & \end{array} \right|$$

$$\left| \begin{array}{c} v_i w_1 y_{n1} + y_{11} a_n + a_{n-1} y_{21} + \dots + a_1 y_{11} \\ a_{n-1} \\ a_{n-2} \\ \vdots \\ a_2 \\ v_i w_i + a_1 \end{array} \right| = 0, \quad i = 1, \dots, n.$$

After elementary operations the condition (4) takes the form

$$(5) \quad y_{11} \left(a_n + \sum_{s=1}^n a_{n-s} v_i^s w_1 \dots w_s \right) + \\ + \sum_{k=2}^{n-1} y_{k1} \left(a_{n-k} v_i + \sum_{s=k+1}^n (a_{n-s} v_i^{s-k+1} \cdot w_{k+1} \dots w_s) \right).$$

$$(w_1 - w_k) + y_{n1} v_i (w_1 - w_n) = 0, \quad i = 1, \dots, n, \quad a_0 := 1.$$

Hence, the determinant of the system (5) take the form

$$R | 1, v_1, \dots, v_i^{n-1} | (a_n - v_1 v_2 \dots v_n w_1 w_2 \dots w_n), \quad i = 1, \dots, n.$$

where R denotes the product of $w_i - w_j$ ($i \neq j$) and is equal to zero by the assumption $\det A = \det VW$.

If we consider y_{11} as a parameter, then the system (5) without the last equation has the determinant

$$e w_n^{n-2} w_{n-1}^{n-3} \cdots w_3 \prod_{k=2}^n (w_1 - w_k) \prod_{k=1}^{n-1} w_k |v_1^{n-1} v_1^{n-2} \cdots v_1 1|, \quad e = \pm 1.$$

Therefore there exists the matrix Y , where $\det Y = y_{11}$ is an arbitrary element of K different from zero.

For our Y the system (3) takes the form

$$(6) \quad \left\{ \begin{array}{l} \sum_{k=1}^{n-1} x_{ik} (v_i w_1 y_{k1} - y_{k+11}) + x_{in} (v_i w_1 y_{n1} + \sum_{k=0}^{n-1} a_{n-k} y_{k+11}) = 0 \\ -x_{ij-1} + x_{ij} v_i w_j + x_{in} a_{n-j+1} = 0 \text{ for } j = 2, \dots, n-1 \\ -x_{in-1} + x_{in} (a_1 + v_i w_n) = 0, \\ i = 1, \dots, n. \end{array} \right.$$

The system (6) is linearly dependent by (4), so we can omit the first equation of (6). From (6) by the recursion we have

$$(7) \quad \begin{aligned} x_{is} &= (a_{n-s} a_{n-s-1} v_i w_{s+1} + a_{n-s-2} v_i^2 w_{s+1} w_{s+2} + \dots + \\ &+ a_0 v_i^{n-s} w_{s+1} \cdots w_n) x_{in}, \quad i = 1, \dots, n-1; \quad s = 1, \dots, n-1. \end{aligned}$$

If we take $X = [x_{11}, x_{12}, \dots, x_{1n}]$, $i = 1, \dots, n$ then easy calculations give

Products of sets

$$\det X = x_{1n} \dots x_{nn} w_n^{r_n} w_{n-1}^{r_{n-1}} \dots w_2^{r_2} |v_1^{n-1} v_1^{n-2} \dots v_1, 1| \neq 0,$$

$$i = 1, \dots, n; r_i \in \mathbb{N}.$$

Therefore the equation (1) has a solution described in Lemma 1.

L e m m a 2. If $V, W \in GL(n, K)$, $A = \text{diag}(a_1, \dots, a_n)$, $a_i \neq a_j$ ($i \neq j$), $\det VW = \det A$, then the equation (1) has a solution $X, Y \in GL(n, K)$ such that $\det X, \det Y$ are arbitrary elements $\neq 0$ of K .

The proof results from Lemma 1 and from the fact that the matrix A is similar to a companion matrix of polynomial $(-1)^n(x^n - s_1x^{n-1} + \dots + (-1)^n s_n)$ where s_i ($i = 1, \dots, n$) denoted the elementary symmetric functions in a_1, a_2, \dots, a_n , (see [4] p.252).

L e m m a 3. If $V, W \in GL(n, K)$, A_{qq} - companion matrices of polynomials

$$f_q(x) = x^q + a_{q1}x^{q-1} + \dots + a_{qs_q}, \quad q = 1, \dots, t;$$

$\det A = \det VW$, then the matrix equation (1) where $A = A_{11} + A_{22} + \dots + A_{tt}$ has a solution $X, Y \in GL(n, K)$ such that $\det X, \det Y$ are arbitrary elements $\neq 0$ of K .

P r o o f. a) We consider the equation (2) for $A = A_{11} + A_{22} + \dots + A_{tt}$, A_{11} has a degree ≥ 2 . In this case the equation (2) is equivalent to the equations system

$$(8) \quad \sum_{q=0}^{t-1} \left[\sum_{\substack{k=s \\ q \leq k \leq s+1}}^{s_{q+1}-1} x_{i k} (v_i w_j y_{k q} - y_{k q+1 j}) + \right. \\ \left. + x_{i s_{q+1}} (v_i w_j y_{s_{q+1} j}) + \sum_{\substack{k=s \\ q \leq k \leq s-1}}^{s_{q+1}-1} a_{q+1 s_{q-1} - k q} y_{k q+1 j} \right] = 0, \\ i, j = 1, \dots, n; a_{q+1} := 1; a_0 := 0.$$

We can consider system (8) as a homogeneous linear system in x_{ij} ($i, j = 1, \dots, n$). If we treat y_{j1} ($j = 1, \dots, n$) as parameters and put $y_{jj} = 1$ ($j = 1, \dots, n$), $y_{s_q s_{q+1}} = 1$ ($q = 1, \dots, t-1$) and zeros on remain places, then after subtracting s_q row from s_{q+1} row ($q = 1, \dots, t-2$) the condition on the existence of nonzero solution of the system (8) gives the following homogeneous system on y_{j1} ($j = 1, \dots, n$) :

Products of sets

$$\begin{array}{c}
 \left| \begin{array}{ccccccccc}
 b_{11}, & b_{12}, & \dots, & b_{1s_1-1}, & b_{1s_1}, & & b_{1s_1+1}, & \dots, & \dots, & b_{1s_2-1}, \\
 -1 & v_i w_2 & & & a_{1s_1-1} & & & & & \\
 & \ddots & \ddots & & \vdots & & & & & \\
 & & v_i w_{s_1-1}, & a_{12} & & & & & & \\
 (9) & & -1 & v_i w_{s_1-1} + a_{11} & & & & & & \\
 & & & v_i w_{s_1+1} - w_{s_1}, & v_i w_{s_1+1} & & & & & \\
 & & & & & -1 & & & & \\
 & & & & & \ddots & \ddots & & & \\
 & & & & & & v_i w_{s_2-1} & & & \\
 & & & & & & -1 & & & \\
 \end{array} \right| \\
 \\
 \begin{array}{c}
 b_{1s_2} \dots b_{1s_{t-1}+1}, \dots, b_{1s_t-1}, b_{1s_t} \\
 a_{2s_2} \\
 a_{2s_2-1} \\
 \vdots \\
 a_{22} \\
 v_i w_{s_2} + a_{21} & v_i w_{s_{t-1}+1} & b_{ts_t} \\
 v_i w_{s_2+1} - w_{s_2} & -1 & \ddots \\
 \ddots & & v_i w_{s_t-1} & a_{t2} \\
 & & -1 & v_i w_{s_t} + a_{t1} \\
 \end{array} \\
 \\
 \left| \begin{array}{c}
 = 0
 \end{array} \right|
 \end{array}$$

$i = 1, \dots, n.$

where unmarked elements denote zeros, $b_{1s_{q+1}} = v_i w_1 y_{s_{q+11}} - y_{s_{q+21}}$, $b_{1s_{q+2}} = v_i w_1 y_{s_{q+21}} - y_{s_{q+31}}$, ..., $b_{1s_{q+1}} = v_i w_1 y_{s_{q+11}} + a_{q+1s_{q+1}} y_{s_{q+11}} + \dots + a_{q+11s_{q+1}} y_{s_{q+11}}$

for $q = 0, 1, \dots, t-1$.

We reduce the terms $v_i w_j$ along the main diagonal and next we reduce the terms which are in columns s_2, \dots, s_t . Then the system (9) takes the form

$$(10) \quad v_i^{t-1} K_{t-1} (w_{s_{t-1}} - w_{s_{t-1-1}}) \dots (w_{s_1+1} - w_{s_1}) - \\ - v_i^{t-2} K_{t-2} (w_{s_{t-2}} - w_{s_{t-2-1}}) \dots (w_{s_1+1} - w_{s_1}) r_{t-1} + \\ + v_i^{t-3} K_{t-3} (w_{s_{t-3}} - w_{s_{t-3-1}}) \dots (w_{s_1+1} - w_{s_1}) r_{t-1} r_{t-2} + \\ + \dots + (-1)^{t-1} K_0 r_{t-1} r_{t-2} \dots r_0 = 0, \quad i = 1, \dots, n.$$

where

$$K_q = y_{s_{q+11}} (a_{q+1s_{q+1}} + \sum_{p=s_{q+1}+1}^{s_{q+1}} a_{q+1s_{q+1}} - p v_i^p w_1 w_{s_{q+2}} \dots w_{s_{q+1}}) + \\ + \sum_{k=s_{q+2}}^{s_{q+1}-1} a_{q+1s_{q+1}} - k v_i^q + \sum_{p=k+1}^{s_{q+1}} a_{q+1s_{q+1}} - p v_i^{p-k} w_{k+1} \dots$$

$$w_p (v_{s_{q+1}} - v_{k_q}) + y_{q+11} v_i (w_{s_{q+1}} - w_{s_{q+1}}), \quad q = 0, 1, \dots, t-1;$$

$$a_{q+10} := 1, \quad s_0 := 0,$$

$$r_0 = a_{1s_1-1} + a_{1s_1-2} v_1 w_2 + a_{1s_1-3} v_1^2 w_2 w_3 + \dots + a_{11} v_1^{s_1-2} w_2 \dots$$

$$\dots w_{s_1-1} + v_1^{s_1-1} w_2 \dots w_s,$$

$$r_q = a_{q+1s_{q+1}} + a_{q+1s_{q+1}-1} v_1 w_{s_q+1} + a_{q+1s_{q+1}-2} v_1^2 w_{s_q+1} w_{s_q+2} +$$

$$+ \dots + a_{q+11} v_1^{s_{q+1}-1} w_{s_q+1} \dots w_{s_{q+1}-1} + v_1^{s_{q+1}} w_{s_q+1} \dots w_{s_{q+1}},$$

$$q = 0, 1, \dots, t-1.$$

We will show that the determinant Δ of linear system (10) with respect y_{j_1} ($j = 1, \dots, n$) is equal to zero. Indeed, after operations the same as in the proof of Lemma 1, the determinant Δ takes the form

$$\Delta = R |v_1^{t-1} \bar{K}_{t-1}, v_1^{t-2} \bar{K}_{t-2} r_{t-1}, v_1^{t-3} \bar{K}_{t-3} r_{t-3} r_{t-2} \dots, \bar{K}_0 r_{t-1} \dots r_0|.$$

where R is a product of terms $w_i - w_j$ ($i \neq j$),

$$\bar{K}_q = \left[v_1, v_1^2, \dots, v_1^{s_{q+1}-1}, v_1^{s_{q+1}} w_1 w_{s_q+2} \dots w_{s_{q+1}} + a_{q+1s_{q+1}} \right],$$

$$i = 1, \dots, n; \quad q = 0, 1, \dots, t-1.$$

Let us consider s_t+1 first columns. Subtracting the s_t+1 column from s_t column, we get

$$v_1^{s_t+t-1} w_1 w_{s_t+2} \dots w_{s_t} + a_{ts_t} v_1^{t-1} - a_{ts_t} v_1^{t-1} - a_{ts_t} v_1^t w_{s_{t-1}+1} -$$

$$- a_{ts_t-2} v_1^{t+1} w_{s_{t-1}+1} - w_{s_{t-1}+2} - \dots - a_{t1} v_1^{s_t+t-2} w_{s_{t-1}+1} \dots w_{s_t-1} -$$

$$- v_i^{s_t+t-1} w_{s_{t-1}+1} \dots w_{s_t}.$$

After a reduction of similar terms and subtracting the s_t-1 first columns multiplied by proper terms from the s_t column, we obtain

$$v_i^{s_t+t-1} (w_i - w_{s_{t-1}+1}) w_{s_{t-1}+2} \dots w_{s_t}$$

in the s_t column.

In this way we can reduce the terms which contains the powers $v_i^t, v_i^{t+1}, \dots, v_i^{s_t+t-1}$ in next columns. If we will continue this process, then the determinant gives the form

$$\Delta = R R_1 | v_1, v_1^2, \dots, v_1^{n-1}, v_1^n w_1 \dots w_n + a_{ts_t} a_{t-1s_{t-1}} \dots a_{1s_1} |,$$

where R_1 is a product of terms w_i and $w_i - w_j$ ($i \neq j$). Now after easy transformations we have

$$\Delta = R R_1 (v_1 \dots v_n w_1 \dots w_n - a_{ts_t} a_{t-1s_{t-1}} \dots a_{1s_1}) |1, v_1, \dots, v_1^{n-1}|,$$

$i = 1, \dots, n$. Therefore, $\Delta = 0$, by the assumption $\det A = \det VW$. If we treat y_{11} as a parameter, then the linear system (10) in y_{j1} ($j = 2, \dots, n$) without the last equation has the determinant Δ_1 different from zero, because now Δ_1 do not contain of column by y_{11} . Observe that $\det Y = y_{11}$.

To calculate the matrix X we use the system (8). Since for our matrix Y the determinant of system (8) is equal to zero, hence that system has a non-zero solution. The system (8) without first equation and with x_{in} ($i = 1, \dots, n$) as

parameters has the determinant equal to

$$v_i^{t-1} (-1)^{n-t-1} (w_{s_1+1} - w_{s_1}) \dots (w_{s_{t-1}+1} - w_{s_{t-1}}) \neq 0.$$

This system will be denoted by (8'). If we treat x_{is_t} as a parameters from the system (8') we have recursively

$$(11) \quad x_{is_q} = \left[v_i^{s_{q+1}-s_q} w_{s_q+1} \dots w_{s_{q+1}} + a_{q+1} v_i^{s_{q+1}-s_q-1} w_{s_q+1} \dots \right. \\ \left. w_{s_{q+1}-1} + \dots + a_{q+1} s_{q+1} v_i w_{s_q+1} + a_{q+1} s_{q+1} \right] \left[w_{s_q} - w_{s_q+1} \right]^{-1} v_i^{-1} x_{is_{q+1}}, \\ q = 1, \dots, t-1.$$

$$(12) \quad x_{is_{q+k}} = \left[v_i^{s_{q+1}-s_q-k} w_{s_q+1+k} \dots w_{s_{q+1}} + \right. \\ \left. + a_{q+1} v_i^{s_{q+1}-s_q-k} w_{s_q+1+k} \dots w_{s_{q+1}-1} + \right. \\ \left. + \dots + a_{q+1} s_{q+1}-k-1 v_i w_{s_q+1+k} + a_{q+1} s_{q+1} \right] x_{is_{q+1}}, \\ k = 1, \dots, s_{q+1}-s_q-1; q = 0, 1, \dots, t-1; s_0 := 0. \text{ Hence } \det X$$

has the form

$$\det X = |x_{11}, \dots, x'_{is_1}, \dots, x'_{is_2}, \dots, x'_{is_{t-1}}, x_{is_{t-1}+1}, \dots, x_{is_t}|^R,$$

where R is a product $w_{s_q} - w_{s_q+1}$ ($q = 1, \dots, t-1$),

$$x'_{s_q} = x_{is_q} (w_{s_q} - w_{s_q+1})^{-1}.$$

After easy transformation the last $s_t - s_{t-1} - 1$ columns we obtain

$$\det X = |x_{11}, \dots, x'_{1s_1}, \dots, x'_{1s_{t-1}}, v_i^{s_t - s_{t-1} - 1} x_{1s_t}, v_i^{s_t - s_{t-1} - 2} x_{1s_t}, \dots, v_i^{s_t - s_{t-1} - 1} x_{1s_t}, v_i^{s_t - s_{t-1} - 2} x_{1s_t}, \dots, v_i^{s_t - s_{t-1} - 1} x_{1s_t}, v_i^{s_t - s_{t-1} - 2} x_{1s_t} | R w_{s_{t-1} + 2} \dots w_{s_t}.$$

Eliminating v_1, \dots, v_n before the sign of $\det X$ we obtain

$$\det X = v_1 \dots v_n | v_i x_{11}, \dots, v_i x'_{1s_1}, \dots, v_i x'_{1s_{t-1}}, v_i^{s_t - s_{t-1}} x_{1s_t}, v_i^{s_t - s_{t-1} - 1} x_{1s_t}, \dots, v_i^2 x_{1s_t}, v_i x_{1s_t} | R w_{s_{t-1} + 2} \dots w_{s_t}.$$

The term $v_i x'_{1s_{t-1}}$ is a polynomial of degree $s_t - s_{t-1}$ with the free term $a_{ts_t} \neq 0$. Subtracting the last $s_t - s_{t-1} - 1$ column multiplied by proper factors from s_{t-1} column we obtain

$$\det X = v_1 \dots v_n | v_i x_{11}, \dots, v_i x'_{1s_1}, \dots, v_i x'_{1s_{t-1}}, v_i^{s_t - s_{t-1} - 1} x_{1s_t}, v_i^{s_t - s_{t-1}} x_{1s_t}, \dots, v_i^2 x_{1s_t}, v_i x_{1s_t} | R w_{s_{t-1} + 2} \dots w_{s_t} a_{ts_t}.$$

Continuing this proces we get

$$\det X = R_1 | v_i^{n-1}, v_i^{n-2}, \dots, v_i, 1 | x_{1n} x_{2n} \dots x_{nn},$$

where R_1 denotes a product of factors different from zero. Hence a) of Lemma 3 follow.

b) Proof of the case when there is A_{qq} , $1 \leq q \leq t$, of degree 1. Without loss of generality we can assume that A_{qq}

of dimension 1 stay on the end of main diagonal and equals b.

In this case we put

$$Y_1 = \begin{bmatrix} \begin{bmatrix} Y \end{bmatrix} & 0 \\ & 1 \dots 1 \\ 0 & 1 & 0 \\ 0 & \ddots & \ddots \\ & & 1 \end{bmatrix} \end{bmatrix}_{s_t \text{ row}}$$

where Y denotes the matrix of dimension s_t from the case a).

Now the condition (10) takes the form

$$(13) \quad \begin{aligned} & \left[v_1^{t-1} K_{t-1} (w_{s_{t-1}} - w_{s_{t-1}-1}) \dots (w_{s_1+1} - w_{s_1}) - \right. \\ & v_1^{t-2} K_{t-2} (w_{s_{t-2}} - w_{s_{t-2}-1}) \dots (w_{s_1+1} - w_{s_1}) r_{t-1} + \\ & v_1^{t-3} K_{t-3} (w_{s_{t-3}} - w_{s_{t-3}-1}) \dots (w_{s_1+1} - w_{s_1}) r_{t-1} r_{t-2} + \\ & + \dots + (-1)^{t-1} K_0 r_{t-1} r_{t-2} \dots r_0 \Big] e_{1s_{t+1}} \dots e_{1n} + \\ & + \sum_{p=s_t+1}^n w_p y_{ip} e_{ip}^{-1} e_{i1} e_{is_t+1} \dots e_{i1} v_1^t = 0, \end{aligned}$$

$i = 1, \dots, n$; $e_{ij} = v_i w_j - b$, where w_p denotes a product of $w_i - w_j$ ($i \neq j$). The formula in square bracket of (13) can be transformed as in the case a). Next we subtract the s_t+1 column from the columns s_t+2, s_t+3, \dots, n . After this

operations we subtract the s_t+2 column from the columns s_t+3, \dots, n , e.t.c. This process gives at last the determinant Δ_2 of system (13) in the following form

$$\Delta_2 = \begin{vmatrix} v_1^n w_1 \dots w_n + (-1)^t a_{ts_t} \dots a_{1s_1} & b^{n-s_t} v_1^{n-1} \dots v_1^{t-1}, v_1^t, \\ v_1^{t-1}, v_1^t, v_1^{t+1}, \dots, v_1^{t+n-s_t} \end{vmatrix}.$$

From the assumption $\det A = \det VW$ there results that $\Delta_2 = 0$. If we take y_{11} as a parameter then the system (13) of equations on y_{jj} ($j = 1, \dots, n-1$) without the last equation has the determinant different from zero. Thererore in this case there also exists a matrix Y with $\det Y = y_{11} \neq 0$.

To calculate the matrix X we consider two cases :

a) $e_{1j} \neq 0$ ($j = s_t+1, \dots, n$) and b) for certain i_0 , $e_{i_0 s_t+1} = 0$ (the cases $e_{1j} = e_{12j} = 0$ or $e_{1j_1} = e_{1j_2} = 0$ are impossible).

Ad b) If we treat x_{1s_t} as parameter then for x_{1j} , $j = 1, \dots, s_t-1$ we have formulas (11) and 12) and

$$(14) \quad x_{1j} = v_1 (w_1 - w_{s_t}) x_{1s_t} e_{1j}^{-1}, \quad j = s_t+1, \dots, n.$$

Then after easy transformation we obtain

$$(15) \quad \det X = \prod_{j=s_t+1}^n (w_j - w_{s_t}) c_1 c_2 \dots c_n | x_{11} c_1, \dots, x_{1s_1} c_1, \dots, \\ x_{1s_t-1} c_1, x_{1s_t} v_1 e_{1s_t}^{-1} c_1, \dots, x_{1s_t} v_1 e_{1n}^{-1} c_1 |,$$

where $c_i = e_{is_t+1} \dots e_{in}$, $i = 1, \dots, n$.

If we use the method calculating $\det X$ from the case a) and the method of calculating the determinant of the system

(10) then we obtain $\det X \neq 0$, as required.

Ad b₂) In this case $x_{i_0 j} = 0$ for $j \neq s_t + 1$ and $x_{i_0 j}$ ($j = s_t + 1$) - parameters. If we use the expansion on i_0 row of $\det X$, then we will get the determinant of the form (15). Lemma 3 is thus completed.

The proof of Theorem 1 results from Lemma 1,2 and 3.

From Theorem 1 and from Corollary 4.7 ([3], p.360) we obtain

Theorem 2. If $V, W \in GL(n, K)$, $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$, $A \in Z(GL(n, K))$, $\det A = \det VW$, then $A \in \bar{V} \cdot \bar{W}$.

We will use yet the next two lemmas.

Lemma 4. (see [1]) Let G be a group. An element g is in K_2^m ($m \geq 2$) if and only if there is an element $t \in K_2^{m-1}$, $t \neq g^{-1}$ such that $(gt)^2 = 1$.

Lemma 5. Let M is a subset of group G such that $M = M^{-1}$. If for each $x \in G$, $xM \cap M \neq 0$, then $G = MM$.

The proof of Lemma 5 is obvious.

Theorem 3. If $V, W \in SL(n, K)$ or $W \in \bar{SL}(n, K)$, $V = \text{diag}(v_1, \dots, v_n)$, $W = \text{diag}(w_1, \dots, w_n)$, $v_i \neq v_j$, $w_i \neq w_j$ for $i \neq j$, then $SL(n, K) = (\bar{V} \bar{W})^2$ in the group $GL(n, K)$.

Proof. By Theorem 2,

$$(16) \quad SL(n, K) - Z(SL(n, K)) \subseteq \bar{V} \bar{W}.$$

Let $M = SL(n, K) - Z(SL(n, K))$. Then for each $x \in SL(n, K)$ we have $xM \cap M \neq 0$. If not, then there exists x_0 such that for each $m \in M$, $x_0 m = aE$, i.e. $m = a x_0^{-1}$ but this is impossible. Naturally, $M = M^{-1}$. Therefore $SL(n, K) = MM \subseteq \bar{V} \bar{W}$ by (16) and Lemma 5.

If K is an algebraically closed field, then each matrix of the group $SL(n, K)$ is similar to a matrix in primary rational canonical form in the group $SL(n, K)$. Hence we have

Corollary 3.1. If K is algebraically closed field, $V, W \in SL(n, K)$, then $SL(n, K) = (\bar{V} \bar{W})^2$ in the group $SL(n, K)$.

Theorem 4. If C is the field of complex numbers, then $SL(n, C) \subseteq (K_{2,2})^2$ in the group $GL(n, C)$.

Proof. Let $D_1 = \text{diag}(1, e, \dots, e^{n-1})$, (e - n^{th} primitive root of unit), $D_2 = \text{diag}(1, a^{-1}, \dots, a^{-(n-1)})$, $D_3 = \text{diag}(a, a^2, \dots, a^n)$, ($a^n = 1$). One can verify that $T^{-1}D_i T = D_i^{-1}$ ($i=1, 2$), $S^{-1}D_3 S = D_3^{-1}$ where

$$T = \begin{bmatrix} 1, 0, \dots, 0 \\ 0 & \ddots & 1 \\ \cdot & & \\ \cdot & 0 \\ 0, 1, \dots, 0 \end{bmatrix}, \quad S = \begin{bmatrix} 0, \dots, 1, 0 \\ 0 & \ddots & 0 \\ \cdot & & \\ 1, \dots, 0, 0 \\ 0, \dots, 0, 1 \end{bmatrix}$$

Therefore $D_i \in KK$ ($i = 1, 2, 3$) by lemma 4. From (16) for $W = V = D_1 = \text{diag}(1, e, \dots, e^{n-1})$ we have $SL(n, C) \subseteq (K_{2,2})^2 \cup Z(SL(n, C))$. On the other hand, $D_2 D_3 = aE \in Z(SL(n, C))$. Then $SL(n, C) \subseteq (K_{2,2})^2$. This ends the proof of the theorem.

REFERENCES

[1] J. Ambrosiewicz : On the Square of Sets of Linear Groups, Mat. Univ. Padova, vol. 75(1985), 253-256.

- [2] J. Ambrosiewicz : On the square of sets of the group $SL(3, F)$, $PSL(3, F)$, *Demonstratio Math.* 18(1985), 963-968.
- [3] T. W. Hungerford : *Algebra*, Springer - Verlag, New York, Heidelberg, Berlin, 1974.
- [4] A. Mostowski, M. Stark : *Algebra Wyższa III*, Warszawa, 1966.

INSTITUTE OF MATHEMATICS, UNIVERSTY OF WARSAW, BIAŁYSTOK BRANCH
15-267 BIAŁYSTOK, POLAND

Received August 21, 1987.

