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PRODUCTS OF SETS IN LINEAR GROUPS

In this paper we will generalize results contained in
[2]. We will use the following notations : Z(G) denotes the
centrum of a group G, g denotes the conjugacy class of g in
the group G, |a11""’a1n| (i=1,...,n) denotes the det(aij)
SL (n,K) denotes the set of matrices of GL(n,K) with deter-

minant -1, A+B denotes the matrix Lg 0], Kh= {g € G :0(g) =

=m}, V = diag(vx,...,vn), W= diag(wl,...,wn) with v,* \
wi¢ wJ for 1 # J.
The remaining notation are standard.

In the paper [1]} it has been proved that K2K2 = GL(n,K)
for n 2 3 and for n = 2 if charK # 2. In this paper we will
prove that if V,W € SL(n,K) or V,W € SL (n,K) then SL(n,K) =
(V #)? in the group GL(n,K) and if V,W € SL(n,K), where K is
an algebraikyly closed field, then SL(n,K) = (V W)® in the
group SL(n,K). We will prove also that SL(n,C) € (K.zK,z)2 in
the group GL(n,C), where C is the field of complex numbers.

We begih with the main theorem.

Theorem 1. If V,W e GL(n,K), V = diag(vl....,vn),
W= diag(wl,...,wn) with vit vJ, wj# W for 1 # j, A - the
matrix in primary rational canonical form, det A = det VW,
A ¢ Z(GL(n,K)), then the matrix equation X VXYW Y ™! = A has
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a solution X,Y € GL(n,K) such that det X, det Y are
arbitrary elements of field the K.

To prove Theorem 1 we will use a few lemma.

Lemma 1. If V,W e GL(n,K), A - the companion matrix

n-1

of the polynomial f(x) = x" + a X t...ta € K[x],

det VW = det A, then the matrix equation
-1 -1
(1) X "VXYWY = A

has a solution X,Y € GL(n,K) such that det X, det Y are
arbitrary elements # 0 of K.

Proof. Let us consider the equation
(2) VXYW = XAY .

The matrix equation (2) is equivalent to the system of

equations

n-1 n-1

( - =

(3) z xik‘viw) ykj yk+lj) * xln(vzwjynj+ z an—kyk+1j) 0

k=1 k=0
i, g=1,...,n.
The system (3) we can consider as a homogeneous linear
system of equations in xiJ (i,j = 1,...,n). If we take y1J =
O for j > 1 and yii =1 for i > 1, then we get a condition

on non- trivial solution of (3). Namely
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\"2"] - VW - cee, VW -
1 1y11 y21 Ty 1y21 y31 ' Ty 1Yn-1 1 yn1’
-1 V W 0
2
-1
(4)
vV W
1 n-1
-1
VW + a +a + ... +a
11 n1 y11 n tn-1Y21 Y11
a
n-1
a
n-2 =0, i=1, ,
a
2
vV W +a
in 1

After elemntary operations the condition (4) takes the form

n

(5) y. (a + Z a Vveow...w) +
11 n n-s 1 1 s
s=1
n-1 n kel
s
+ a Vv + z a Vv * W ...W .

z yki( n-k | ( n-s 1 k+1 s) )

= s=k+1
(w-w) + viw-w)=0, i=1,...,n, a :=1.

1 k) ynil( 1 n) ' ’ 7 "o

Hence, the determinant of the system (5) take the form

-1
RI1,v,...,v" a-VV... VWW ... W = ...,n.
";' ’1'(,. Vo LA n),i 1, ,
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where R denotes the product of WS oW (i # J) and is equal
to zero by the assumption det A = det VW.
If we consider Y,, as a parameter, then the system (5)

without the last equation has the determinant

n n-1

n-2 n-3 n-1 n-2

evw W vee W W-W w v 'v. ...v,1 e = *1.
n n-1 3 kp;( 1 k) kgl k I 1 1 1’ B

Therefore there exists the matrix Y, where det Y = Yy, is an

arbitrary element of K different from zero.

For our Y the system (3) takes the form

n-1 n-1
L xik(vlwlykl_yk+11) * xin(vlwlynl + L an-kyk+11) =0
k=1 k=0
-X + X VW +x a =0 for j=2,...,n-1
(6) ) 13-1 1J 1 3 in n-j+1
-X +x (a +vw)=0,
in-1 in 1 in
i=1, ,

The system (6) is linearly dependent by (4), so we can omit

the first equation of (6). From (6) by the recursion we have

(7) x =(a a vw + a viw w +
is n-s n-s-1 | s+1 n-s-2 1 s+l s+2
+avi®w ...w)x , i=1,...,n-1; s=1,...,n"1.
01 s+1 n 1in
If we take X = [xu,xlz,...,x1 ], 1 = 1,...,n then easy
R

calculations give
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r r r

n n-1 2 n-1 n-2
det X=x ...x w w oWl v SLouv 1] = 0,
in nn n n-1 2 1 i 1
i=1...,n; r‘ € N.

Therefore the equation (1) has a solution described in Lemma 1.
Lemma 2. If V, WeGL(n,K), A= diag(al,...,an),
a* aj (1 = j), det VW = det A, then the equation (1) has a
solution X,Y € GL(n,K) such that det X, det Y are arbitrary
elements # 0 of K.
The proof results from Lemma 1 and from the fact that
the matrix A is simlilar to a companion matrix of polynomial

(-1)™(x"- six"'l + ...+ (-1)nsn) where s, (i = 1,...,n)

denoted the elementary symmetric functions in a,a,...,a ,

(see [4] p.252).
Lemma 3. If V,W e GL(n,K), Aqq— companion matrices

of polynomials
s s -1

fx)=x%T+a xT+ ... +a , q=1,...,t;
q q1 qsq

det A = det VW, then the matrix equation (1) where A = A1£+
A52+ L.+ Ait has a solution X,Y € GL(n,K) such that det X,
det Y are arbltrary elements # 0 of K.

Proof. a) We consider the equation (2) for A = A11+
A22+ R At.t. , A has a degree =z 2. In this case the

11
equation (2) is equivalent to the equations system
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s -1
t-1 q+1
(8) [ xlk (viwjykj - yk +1j) *
q=0 k =s +1 q q
q q
s -1
q+1
tXx (vleys 3 * Z q+ls -k yk44j ] =0,
q+1 q+1 k =s - q
q q
i, =1, ,h ; a =1;a :=0
q+1 [0}

We can consider system (8) as a homogeneous linear system

in X (i,j = 1,...,n). If we treat Y (j =1,...,n) as

parameters and put yJJ =1 (j=1,...,n), .. = 1 (q =1,.
q q+1

...,t-1) and zeros on remain places, then after substracting

sq row from sq+1 row (q = 1,...,t-2) the condition on the

existence of nonzero solution of the system (8) gives the

following homogeneous system on Yy (j=1,...,n)
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b N b . ., b
11° T12 °’ 'T18 -1’ 18 ' 18 +1 ' * Ti1g -1’
1 2
-1 VW a
i 1s -1
Vv W ,
i s -1 12
1
(9) -1 vw +a
i s 11
1
1 8 41 s’ 1 s +1
-1 .
V W
1 s -1
2
_1 &
b . b s e e b , b
1s 1s +1 1s -1 1s
2 t-1 t t
a
2s
2
2s -1
2
. =0
a
22
vVw +a V. W b
s 21 s +1 ts
2 t-1
- -1
i s +1 s2
vV W a
i s -1 L2
t
-1 VW +2a
i s t1
t
i=1, ,
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where unmarked elements denote zeros, b =V WYy -
1s +1 1 1%s +11
q q
- b = VW - e
Yo +21 1s +2 1"1Ys 4217 Vs a1 ’
q q q q
b = VW + a + ... +a
1s i lys 1 q+ls ys +11 q+11ys 1
q+1 q+l q+tl q q+1
forq=20,1,...,t-1.
We reduce the terms vle along the main diagonal and
next we reduce the terms which are in columns 52“..,s£

Then the system (9) takes the form

t-1
10 v K W - W oo (W - W -
( ) i t-—l( s -] —1) ( s +1 s )
t-1 t-1 1
t-2
- v K (w - w ) (w -w)r +
t-2 s s -1 +1 t-1
t-2 t-2 1
t-3
+ v K (w - W ) (w -w )r r
1 t-3 s s -1 +1 s t-1 t-2
t-3 t-3
t-1 .
+ ... + (-1) K r r ... r =0, i=1,...,n.
0 t-1 t-2 0
where
s
+1
K =y (a + i a -p vl ww Y )+
q s +11 q+ls q+ls i 1 8 +2 s
q q+1 pP=s +1 q+1 q q+l
q
s -1 ]
q+1 +1 p-k +1
+ s k vt i 1 v Yy 41
s s -
k =s +2 a q+1 q p=k + 1 q+1 P q
q q q
w (v - v v - W =0,1,...,t-1 ;
p( +1 k) yq-&lll (s+1 s ) » 4 * ’ !
q q q q+1
=1, s :=0,
q+10 (o]
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8 -2
2 1
r =a + a VW +2a vV WW + ... +a Vv w..
o) 18 -1 is -2 1 2 is =31 2 3 11 1 2
1 1 1
s -1
w + v W o W,
s -1 1 2 s
1
r =a + a VW + a VvV W w +
q q+ls q+ls -1 18 +1 q+is -2 1 8 +1 s 42
q+1 q+1 q q+l q q
s +1-1 s +1
+ + ™ w W + v My w oo,
q+l1 - 1 s +1 8 -1 i s +1 s
q q+l q q+1

q=0,1,...,t-1.
We will show that the determinant A of linear system (10)
with respect yj1 (J = 1,...,n) 1is equal to zero. Indeed,
after operations the same as in the proof of Lemma 1, the
determinant A takes the form

t-1 t-25 t-3 =

A=R (v K v 2K r v X r r ...,Kr ...r|.

| 1 t-1" 1 t-2 t-1" 1 t-3 t-1 t-2 70 t-1 o|
where R is a product of terms LA wj (1 =),
= Sar1l Bqe
K =|v,v,..., v q s v ™ w ce. W + a ,
q i 1 1 1 8 +2 s q+is

q q+l q+l

i=1,...,n; q=0,1,...,t-1,
Let us consider st+1 first columns. Substracting the

st+1 column from st column, we get

8 +t-1
t t-1 t-1
v W oo W + 3 V - a v -a VvV W -
i 1 8 +2 -] 8 ts 1 ts s +1
t t t “t-1
8 +t-2
t+1 t
- a \4 W - W ~...= a Vv w . ) -
ts -2 1 8 +1 8 +2 t1 1 -] +1 s -1
t-1 t-1 t-1
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-V W cee WL
i s +1 s
t-1 t

After a reduction of similar terms and subtracting the st—l
first columns multiplied by proper terms from the s, column,

we obtain

in the st column.

In this way we can reduce the terms which contains the
s +t-1
t+1

t .
povers vi, v1 y e v1 in next columns. If we will

continue this process, then the detrminant gives the form

2 n-1 n
A=RR|v,v5,...,v. ,vw...w +a a co.a |,
1 1 i i i1 n tst t-1s ls1 )

where R is a product of terms w and w - v, (i # j). Now

after easy transformations we have

A=RR(v...vw...w-a a coea )|L,v, ...,V
1 1 1s i

n 1 n ts t-i1s
t t-1 1

i

det VW. If we treat y11 as a parameter, then the linear

1,...,n. Therefore, A = 0, by the assumption det A =

system (10) in Yy (j = 2,...,n) without the last equation
has the determinant A1 different from zero, because now A1
do not contain of column by Yy Observe that det Y = y1f

To calculate the matrix X we use the system (8). Since
for our matrix Y the determinant of system (8) is equal to
zero, hence that system has a non-zero solution. The system

(8) without first equation and with X, (i = 1,...,n) as
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parameters has the determinant equal to

VP ED" M w mw ) L -w ) =#0.
i s +1 s s +1 W
1 1 t-1 t-1

This system will be denoted by (8'). If we treat x,, 8s a
t
parameters from the system (8’) we have recursively

-] +1-s s +1—s -1
(11) x =|v®™ Ty ...w +a v¥" Ty -
is i s +1 s q+11 1 s +1
q q q+l q
-1
W +.. .+ v a W - W x ,
s -1 q+ls i1 s +1 q+ls s s +1 i is
q+1 + 1 q q q+1
q= 1, ,t-1
s -8 -k
+1
(12) X =|v? 1 w e W +
is +k s +1+k s
q q q+1
s -8 ~k
+ q+1 q W
q+11 1 s +1+k s -1 +
q q+1
+ ... ¢+

a VW + a X
q+ls ~k-1 1 8 +1+k q+ls is
q+l q q+l q+1

k=1,...,s -s-1; q=0,1,...,t-1 ; s := 0. Hence det X
q+*l q o)

has the form

q q

-1
X' =x (W -w ) .
-] is s s +1
q 9 q q
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After easy transformation the last S,”S, 1—1 columns we obtain

5 51 Bt -1
det X = |x ,...,x! ,...,x ,V , X
11 is is i is i is
t-1
i 1is is s +2 -]
t t t-1 t
Eliminating v1,. .. .vn before the sign of det X we obtain
5t %1
det X=v...v |[vx ,...,vxX* ,...,vXx , x |,
1 n 111 1 is i1is i is
1 t-1 t
8 -8 -1
t t-1 2
v X ,...,VX ,VX Rw ceeW L
1 is 1 18 1 is 8 +2 8
3 t t-1 t
The term v!x;s is a polynomial of degree S, 75,4 with the

t-1

free term atsat 0. Substracting the last s, S
t

1—1 column

multiplied by proper factors from 8,4 column we obtain

det X=v...v |Jvx ,...,vX* ,...,vX WX,
1 n 111 i is i is -1 1is
1 t-1 t
8 -8 8 -8 -1
t t-1 t t-1 2
v X ,V X ..., VX, | Rw ...Wa
1 is i is i 1s 1§ is s +2 8 ts
t t t t t-1 t
Continuing this proces we get
n-1 n-2
det X =R |v ,v. O,...,v,1|x x_... ,
1 i 1 1 in 2n nn

where R1 denotes a product of factors different from zero.
Hence a) of Lemma 3 follow.
b) Proof of the case when there is Aqq, 1 =q=t, of

degree 1. Without loss of generality we can assume that Aqq
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of dimension 1 stay on the end of main diagonal and equals

b.

In this case we put

1.... 1 S Trow

where Y denotes the matrix of dimension st from the case a).

Now the condition (10) takes the form

t-1
13 v 'K w - W oo (w - W -
(13) 1 t-l( s s -1) ( 8 +1 8 )
t-1 t-1 1 1
t-2
v, K (w -w ) ... (w - w )r +
i t-2 s -] -1 s +1 s t-1
t-2 t-2 1 1
t-3
v K (w -w ) (w -w )r r
1 t- s -1 -1 +1 t-1 t-2
t-3 t-3
t-1
+ + (-1)" Kr r . +
0 t-1 t-2 ¢} lst+1 in
n
-1 t
+ z wy e’ e e ... e v =0,
p ip ip 11 lst+1 11 1}
= +1
p=s,
i=1,...,n; eU = waj_b » where w denotes a product of
p

LA (i # j). The formula in square bracked of (13) can be

trasformed as in the case a). Next we substract the st+1

column from the columns st+2, st+3,...,n. After this
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operations we substract the st+2 column from the columns
St+3’ ...,n, e.t.c. This process gives at last the

determinant A2 of system (13) in the following form

n-s
n t t n-1 t-1 t
A = |[vw...w+(-1)a ...a b v ...v v,
2 11 n ts 191 1 i i
t+n-s
t-1 t+1
v, oo,V v, ,V |

From the assumption det A = det VW there results that A2= 0.
If we take y, as a parameter then the system (13) of
equations on yjl (J = 1,...,n-1) without the last equation
has the determinant different from zero. Thererore in this
case there also exists a matrix Y with det Y = y11¢ 0.

To calculate the matrix X we consider two cases :

b)) e # 0 (j=s +1,...,n) and b ) for certain i, e =
1 1) t 2 0 1,5, 1
(the cases e = e =0ore =e =0 are impossible).

'] 12 Yy H,
Ad b1) If we treat x as parameter then for xlj,

t

J=1,..,st—1 we have formulas (11) and 12) and

— —_— -1 =
(14) X, =V, (wl w;t) xisteiJ » J=s+,...,n
Then after easy transformation we obtain

n

15 det X = W-W )Jcc...c|Xx . C,...,X C,...
(15) n ( 3 s ) 12 nl 11 1’ R V- ’
j:s +1 t
t
-1 -1
X cC,X vVve c,...,X ve ¢ ,
is =1 1" 71s 1 is +1 i is { in i
t t t t
where ¢ = e c..€ , i=1,...,n.
1 ist+1 in

If we use the method calculating det X from the case a)

and the method of calculating the determinant of ;he system
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(10) then we obtain det X # 0, as required.

Ad bz) In this case x1°j= 0 for J = s+ 1 and xloj
(J = st+1) - parameters. If we use the expansion on 1 row
of det X, then we will get the determinant of the form (15).
Lemma 3 is thus completed.

The proof of Theorem 1 results from Lemma 1,2 and 3.

From Theorem 1 and from Corollary 4.7 ([é].p.360) we
obtain

Theorem 2. If V,WeGL(nK), V= diag(vl....,vn).
W= diag(wl,...,w;),vi$ vj, W * wJ for 1 =3, A ¢ Z2(GL(n,X)),
det A = det VW, then A € V-W.

We will use yet the next two lemmas.

Lemma 4. (see [1]) Let G be a group. An element g
is in K: (m = 2) if and only if there is an element te K:Fi.
t # g such that (gt)? = 1.

Lemma 5. Let M is a subset of group G such that
M=M"' If for each x € G, XM n M # 0, then G = MM.

The proof of Lemma 5 is obvious.

Theorem 3. If V, We SL(n,K) or W e SL(n,K),
V = diag(vl,...,vn). W= diag(wi,...,wn), v, * vJ, LA wJ
for 1 #J, then SL(n,K) = (V W)? in the group GL(n,K).

Proof. By Theorem 2,

(18) SL(n,K) - 2(SL(n,K)) s VW .

Let M = SL(n,K) - 2(SL(n,K)). Then for each x € SL(n,K) we
have xM n M # 0. If not, then there exists x0 such that for
each me M, xm = aF, i.e. m= ax;l but this is impossible.
Naturally, M = M}, Therefore SL(n,K) = MM € V W by (16) and

Lemma 5.
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If K is an algebraicaly closed field, then each matrix of
the group SL(n,K) is similar to a matrix in primary rational
canonical form in the group SL(n,K). Hence we have

Corollary 3.1. If K is algebraicaly closed
field, V, W € SL(n,K), then SL(n,K) = (V W? in the group
SL(n,K).

Theorem 4. If C is the field of comlex numbers,
then SL(n,C) € (KK)* in the group GL(n,C).

n-l)

Proof. Let D1 = diag(l,e,...,e . (e—nth primitive

-“PI)), 03 - diag(a,az,

...,a"), (a" = 1). One can verify that T~1D1T = D;1 (i=1,2),

s'ps = D! where
3 3

root of unit), D, = diag(1,a”,...,a

1,0, ,0 0, 1,0

1= O , s=| 0 0
0 1, ... ,0,0
| 0,1, ... ,0 | 0, ... ,0,1 |

Therefore D € KK (i = 1,2,3) by lemma 4. From (16) for
W=V =D-= diag(le,...,e"") we have SL(n,C) S (sza)z v
v Z2(SL(n,C)). On the other hand, DD, = aE e Z(SL(n,C)).
Then SL(n,C) < (K2K2)2. This ends the proof of the theorem.
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