
DEMONSTRATIO MATHEMATICA 

Vol. XXII No 3 1989 

Steffen Roch, Bernd Silbermann 

NON-STRONGLY CONVERGING APPROXIMATION METHODS 

1. Introduction 
Commonly, a large class of approximation methods for 

solving the operator equation Ax = y can be interpreted as 
follows : 

Choose projection operators P t and operators A^ : im P^— 
— > im P^ and consider a approximation equation A^x^ = P^y. 
If there is a T SO that, for each x A x and for each right o ' o 
side y, these equations have a unique solution x^, and if x^ 
converges to a solution x of the equation Ax = y, then one 
says that the approximation method II { c o n v e r g e s for the 
operator A (see [4],[5]). In some special but interesting 
cases (think on integral operators on spaces of bounded 
measurable functions as in the papers of Anselone/Sloan, 
Chandler/Graham, de Hoog/Sloan, and Silbermann) the usual 
convergence x ^ — > x cannot be guaranteed but it turns out 
that the functions x^ converge uniformly to x on each 
compact interval. This observation leads to a weaker notion 
of convergence, the convergence with respect to a family of 
projections. In this paper we study the corresponding 
"weakly" converging approximation methods from a point of 
view which includes the standard theory. 
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Thereby we make essentially use of Simonenko and Kozak's 

techniques in the theory of operators of local type. As an 

application, we show how the results of 111 — [3], [7] can be 

almost at once derived from our theory. Other possible 

applications would be equations in finite differences in 

spaces of bounded functions and two-dimensional Wiener-Hopf 

equations. Moreover, it should be pointed out that the 

methods presented here apply to the matrix case without 

changes. It is the authors'aim to return to this circle of 

problems in a further comprehensive publication. 

2. Convergence with respect to a family of projections 

Let X denote a Banach space and IR+ the set of 

non-negative real numbers. By M. we denote the set of all 

finte unions of left-sided closed and right-sided open 

intervals of IR+. Notice that for U,V e M , we have U v V € M, 

U r> V e M and IR+\U e M. 

Assume that to each U e M a projection operator Ry is 

associated such that 

I (I - identity operator), 

( 1 ) 

(2) sup |R | =: c < oo 
ItejH 
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(3) n ker Rr = {0>. 11 Lo,w) 
welR+ 

Further, put K = {R^ : U € M >, and let T stand for a 
certain unbounded subset of IR+. 

We say that the (generalized) sequence ^ x
T^ T g T 

elements x^ e X converges with respect to H to x e X (and 
ft write x » x or x = 3f-lim x in that case) if the set {x } T T T T—XD 

is bounded and if for each w € IR 

|R (x - x)| " [0,w) T 11 -> 0 as t 

The condition (3) ensures that the 3i-limit of a given 
sequence is unique if it exists. Indeed, if x > x and 

3? T 
x > y then, by definition, R x = R y , i.e. x-y 
€ker R, for each w € IR . [0,w) 

Now consider the set A of all (generalized) sequences 
{A T> T e T of bounded operators on X which are subject of the 
following conditions : 
(4) sup |A | < oo . 

T€T 
There is an A e L(X) such that for each w e IR+ and x e X : 

(5) Rr A x — » R, , Ax and A R, x —» AR x as x —> oo. [0,w) T [0,w) T to,w) [0,w) 

This will be abbreviated to A » A or A = ft-lim A . T T 
Notice that the R-limit of operators is unique. 

Given two subsets U, V e IR+ put p(U,V) = inf{|u-v|, ueU, 
veV >, and for h € IR+ set <p^ }(h) = sup {¡R^A^f : x e T, 

T 
U, V e M with p(U,V) > h }. 
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Then 
(6) lim <p{k }(h) = 0. 

x—X» T 
P r o p o s i t i o n 1. J is a Banach algebra when 

provided with the norm |{A > || := sup |A || and with T 
elementwise operations. 

P r o o f . Let {At}, {B^} € d. Then, obviously, {A^} + 

ÍB } = {A + B > € d. Now assume that A A and B B. T T T T T 
The identity 

R (A B x - ABx) = R ( A B x - A B x + A B x - ABx) = [0,w) T T [0,w) X T T T 

= R A Rr ÍB -B)x + R, AR (B -B)x + R (A -A)Bx [0,w) T [0,v) T to.w) CYfoo) T [0,w) T 
shows (choose v large enough) that R A B — » Rr vAB 6 6 I0,w) T T [0,w) 
strongly. Similarly, the other assertion of (5) follows. 
Further, (6) is a consequence of 

IVTBTRVI 25 »Vxl »RWBTRVI
 + iRuATRlR\wll »BTRV« • 

and standard arguments show that d is a Banach algebra. 
C o n v e n t i o n . If the constant sequence {A^}^^ 

belongs to d we write for brevity A e d and call A an 
operator of local type. Condition (1) shows that l e d and 
R e d for U e M. u 

P r o p o s i t o n 2. If {A} e d with ft-lim A = A K T T€T T 
then A e d and A e d. T 

P r o o f . It is evident that {A^} € d implies A^ e d 
for each x e T. Now consider R A R . A little thought shows u v 
that we can assume U= [0,u), V = [v,co) or U= [u,oo), V= [0,v) 
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without loss of generality. In the first case we obtain 

R A R = R A R > R AR = R AR strongly, hence, u T v [0,u) T v [o,u) v u v ° * 

I V RVL * S U P I R U A T M • X 
For the other case the proof is analogous. Thus, 

V h ) : = *u> ( h ) = s u p < I V M ' U' V € M' p ( U , V ) > h } s 

s sup q R ^ R y J , T e T, U, V € M, p(U,V) > h } = <p{k }(h), 
X 

as we are done. 
P r o p o s i t i o n 3. Let {A^> e d and put A := 

ft-lim A^. The sequence {A^} is invertible in d if and only 
if the operators A and A^ are invertible for each x and if 
sup [A-1 J < ex» . Thereby, {A }_1 = {A-1}, and ft-lim A_1= A-1. 

X 
P r o o f . First we verify the "if " - part : 

Obviously, (4) holds true for the sequence {A"1}. The proof 
that (6) is valid for bases essentially on Simonenko 
and Kozak's proof that the inverse of an operator of local 
type is again of local type: We show that if {A^} is subject 
of the assumptions of the Proposition,. then 

c*supjA | supJA"1!2 

* T T " T + 4 ° 2 S U P ^ ' 2 > ( ^ T } \A > X X 

for all telR and all n e Z* . This implies lim <p (t) = 0. 
t—*» {A~*> 

Indeed, given any e > 0 there is an nQ such that 

4 •• X 2 c sup || A^ | sup|A~ | /nQ < e/2 

and a t such that o 
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4 c 2 s u p l A - 1 ( t / ( 4 n - 1 ) ) < e / 2 f o r a l l t > t . 
" T » <A > 0 0 

- 2 ^ u p I a ; 1 ! 2 , 
T " T ' 

L e t U, V € M a n d p ( U , V ) : = i n f { | u - v | , u € U, v e V } = 

= r > t . L e t h , r
1 » r

2 > r
3 i r be a n y r e a l n u m b e r s s a t y s f y i n g 

0 s r < r < r < r s r , 0 < h < r - r , h < r - r , 
1 2 3 4 2 1 3 2 

h < r - r , a n d p u t U = { w e R + : r s p ( w , U) s r > , 
4 3 1 1 3 

V : = { w e R + : r s p ( w , U ) s r >. We c l a i m t h a t 
1 2 4 

( 7 ) R A _ 1 R = - R A - 1 R A R A _ 1 R + E , 
U T V U T U T V T v 

1 1 

w h e r e | E f S 3 C 2 s u p ^ f V { k } ( h ) . 

T T 
P u t V ' : = { w € IR+: p ( w , U ) < r } , U ' : = { w € R + : p ( w , U ) a r >. 

t 2 3 
T h e n we h a v e 

R A - 1 R = R R , A _ 1 R = R A _ 1 R , A R , A _ 1 R + e , w h e r e 
U T V U V T V U T U T V T V 1 

»eJI = N V ; V x U . A T R v ' \ l R V « S C2 ^ P l l V « 2 V ,(h)> 
T T 

b e c a u s e p ( R \ U ' , V ' ) > h . F u r t h e r 

R A _ 1 R , A R , A - 1 R = - R A _ 1 R A R_* A _ 1 R , s i n c e U T U T V T V U T U' T IR W T V 

R A - 1 R , A A _ 1 R = 0 . F i n a l l y , 
U T U T T V 

R A _ 1 R , A R ^ A - 1 R = R A _ 1 R A R A _ 1 R + e , w h e r e 
U T U T K W ' T V U T U T V T V 2 

1 1 

IIe I s ||R A _ 1 R A R A 1 R ||+ ||R A _ 1 R A R , A _ 1 R I s 11 2" 11 U T U*\U T V T V11 11 U T U' T (R \ V ' ) \ v T V11 

1 1 1 

* 2 c 2 s u p | A ; 1 1 | 2 <pu ( h ) 
T T 

b e c a u s e p ( U ' \ U . V ^ > h , p ( U ' , ( R + \ V ' J W ^ > h . 

P u t t i n g t h e s e t h i n g s t o g e t h e r , we g e t o u r c l a i m ( 7 ) . Now l e t 
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n be any positive integer. Put h := t/(4n-l), 1 = r/(4n-l), 

U := {w 6 R+ : (4i-4)l s p(w,U) £ (4i-2)l> , 

V := {w € IR+ : (4i-3)l s p(w,U) s (4i-l)l> , 

where i = 1 n. From what has just been proved 
(r = (4i-4)1, r = (4i-3)l, r = (4i-2)l, r = (4i-l)l) we 1 2 3 4 
obtain 

(8) R A_1R = - R A-1R A R A_1R + E U T V U T U T V T V i 1 1 
with fEj S 3c2 sup||A"112 <p{k }(h) for i = 1 n. 

T T 
Adding the n equalities (8) we arrive at the equality 

n n 
nR A-1R = - V R A_1R A R A_1R + V E = U T V U T U T V T V ^ 1 i=l 1 i i=l 

n 
= - R A_1R A R A_1R + E + V E , U T U U . . . U U T V U . . . U V T V ^ 1 1 n 1 n 1=1 

n 
where E := V R A_1R A R A_1R . U T U T V U . . . U V U V U . . . U V T V 1=1 1 1 1-1 1+1 n 

Since piU^V ) > h for 1 * j it follows that 

|E| * nc2 supIa;1!2 „ (h) 
T T 

and thus 

c4sup|Ar| sup|A~ 1 M 2 

iViM 58 —̂  ¿r1 + 4°2 -PIKT >(h) 
T T 

and we are done with verifying (6) for {A"1}. 
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-l 31 -l Finally, we prove (5) by showing that A^ > A 

H (A'Sc - A_1x) = R A"1 (Ay - A v ) = [0,w) T tO,w) T T 

= R A"1 R, (Ay - A y) + R, A-1 Rr (Ay - A y) (0,W) T 10,V) * T [0,W) T IV,OO) * T* 

with y = A_1x. Hence, if v > w , 

I R 1 0 , k ) ( A T 1 X "
 A"LX)L * C ^PL^1! TR[0,v)(Ay - ATY)L + 

+ <p (v-w) sup|A-A^| ||y|. 
{A > T 

Choose v > w so that <p (v -w) < e/(2 sup|A-A || ||y||). 
{A" > T 

X 

Then we cam find a x € T so that for x > x o o 

lRlO,Vo)(Ay " ATy)t < e / ( 2 c ' 

what yields the first assertion of (5). The proof of the 
second is similarly, and this completes the proof of the 
"if"-part. 

Conversely, assume that {A^} is invertible in d. Then 
there exists a sequence {B } e d such that { B A } = { A B } = 

x x x x x 

{I}. Hence, the operators A^ must be invertible and A^ = B^. 
The uniform boundedness of ||A *|| is obvious since iÂ .1} e d 
by assumption. Let B := ft-lim B . Then, since A B = B A = I, 

^ x x x x x 

the passage to the ft-limit gives AB = BA = I, i.e. A proves 
to be invertible, and B = A 1 = ft-lim A-1. x 

C o r o l l a r y 1. If A is an operator of local type 
then A is continuous in the ft-topology, i.e. if x^ > x 
then Ax — — > Ax. T 
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P r o o f . The corollary follows immediately from 
R A(x-x ) = R AR (x-x ) + R, AR, (x-x ). [0,w) T [0,w) [0, v) T tO.w) [v,eo) T 

For the next corollaries put ft* = {R* : Reft}. Obviously, 
if {A } 6 «4 then the sequence {A*} fulfills (6) with respect *x T 

to ft,. 
C o r o l l a r y 2. a) Let {A > € A with ft-lim A = A. 

t—>00 
If A is invertible for all t € T and if sup|A_1|| < « then 
-l Tft T A A » I, and A is one-to-one. T • . 

b) If the ft -limit of {At} equals A , and if this ft -
limit is uniquely determined then A is one-to-one. 

P r o o f , a) The proof of Proposition 3 shows that the 
hypotheses of Corollary imply that tp (h) — » 0 as h—> to. < A " S T 
Hence, 

Rr (A-1Ax - x) = R (A_1Ax - A-1A x) = [0,W) T [0,W) T T T 

= R A-1R (Ax - A x) + R A-1R (Ax - A x) 
[0,H) T TO, V) T [0,W) T [V,CO) T 

becomes as small as desired if v-w is large enough. On the 

other hand, A_1AR, x - R x = A-1 (A - A ) R x , r I o, w) [0,w) T T [0,w) 
-l ft 

and this becomes small as T is large enough. Thus, A^ A > I, 
and this shows, moreover, that A must be one-to-one. 

b) Apply a) to {A*}, A*. C o r o l l a r y 3. Assume that R — » I strongly. . [0,w) 
a) Then ft fulfills (1) - (3). 
b) Let A be an operator of local type and put for T e T 

A : = R , AR, . If the operators A : imR > imR T [0,T) 10,T) ^ T [0,T) [0,T) 
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are invertible and if sup|A < oo then A is invertible. 

P r o o f . a) Obviously, ft* satisfies (1), (2). To see 
that (3) is fulfilled take y e n ker R* . Then 

w €R + [°' W ) * 4. 
<R, x, y > = <x, R y> = 0 for each w 6 IR and for each 

x e X. Since the set {R x : w e R+, x € X > is dense in „ [0,w) X, the element y e X must be the zero functional. 
* b) If A is of local type with respect to ft then A is of 

* • local type with respect to ft . Since obviously {R } 
K

 m
 j [ 0 , T ) T € T 

is in A (with respect to K ), and since A is an algebra we • • • 
obtain {R A R } e A. Now Corollary 2 applies to 

[ 0 , T ) [ 0 , T ) * ™ 

{R* A*R* + R* > what gives that ker A* = {0} and 
[ 0 , T ) [ 0 , T ) [ T , 0 0 ) ° 

the assertion follows. 

3. Weakly convergent approximation methods 
Besides the family ft of projections which defines the 

convergence we consider another family ft = {P^}t€T 
projection operators on X which is related to ft by the 
condition 

(9) {P } e A , and ft-lim P = I. 
T T 

(Examples : a) P = R for each r , 
* T [ 0 , T ) 

b) P^ = I for each t ). 
Let A be an bounded operator on X and consider the equation 
Ax = y. Let {A > , A : im P » im P , be a sequence 

X X X X 

of operators which converges with respect to ft to A as 
t —> 00, and assume that there is a t e T so that the 0 
approximate equation \ X

T
 = has a unique solution x^ 
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for all right sides y and for all t 6 T with t s tq . 
We shall say that the approximation method IÎ iÂ } 

converges for the operator A (and write A e II-iA > in that 
J\ T 

case) if the sequence (x } converges with respect to R 
~ o 

to a solution x of the equation Ax = y. In case that A^= P^A 
P we write simply IIJP instead n,_{P AP } ; this special T A A T T 

approximation method is also called the finite section 
method. 

P r o p o s i t i o n 4. Let A : im P » im P and T T T {At> e A with ft-lim At = A. Then A e n{AT> if and only if A 
is invertible and if there exists a t e T such that o 
A : im P » im P is invertible for t e T, r £ t , and 
t _ t t o 

sup || A"11| < oo . 
T i T 0 

P r o o f . Let A € IU{A >. Then, by definition, the 
J\ T 

operators A : im P » im P are invertible for t £ t 
t _ t t o 

.Denote by A : im P » im P the inverse of A . Since 
- l R T T T - i T A y » x , the supremums sup ¡A y|| are bounded for each 
» . T T^T 0 

y € X. The uniform-boundedness-principle shows that then 
sup |A 1|| must be bounded. 
T > T T 0 

Next we verify the invertibi1ity of A. By the definition 
of the approximation method, A is onto. Put Q := I - P , T T 

A : = A + Q for t a t and A = I for t < t . By (9), the 
T T T 0 T 0 

sequence {A } is in ̂  and ft-lim A = A. It is immediate from 
t t 

what has been proved above that A^ is invertible for all 
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x 6 T and that sup|A-1| < « . Hence, by Corollary 2, A must 
X 

be one-to-one. 
The other direction is an evident consequence of 

Proposition 3 applied to the sequence {A^}. 
Our final goal in this section is a perturbation theorem 

for the approximation method H,_{A >. To that end let to A X 
stand for the set of all sequences {C^} 6 A with ||Ct|| — > 0 
as x — > oo . The set £ forms a closed two-sided ideal of the 
algebra A. 

P r o p o s i t i o n 5. Let {A } e d , ft-lim A = A. X X 
Then the following statements are equivalent : 

a) A is invertible, and the operators A^ are invertible 

for x large enough (say x a x ), and sup ||A-1| < co . 0 _ T T>T 0 
b) The coset {A^} + t is invertible in the quotient 

algebra d/% . 
P r o o f , a) ^ b) Apply Proposition 3. 
b) => a) Assume there are sequences {B^} € A and {C^}, 

{D } € £ such that A B = I + C , B A = I + D . A little X X X X X X X 
thought shows that then the operators A^ must be invertible 
for r a x and that the norms of their inverses are o 
uniformly bounded. Moreover, taking the K-limit we obtain AB 
= BA = I (where B = ft-lim Bt), i.e. A is invertible. 

C o r o l l a r y 4. Let {A > € A, A : im P » im P J X X X X 
and ft-lim A = A. If A € IL.U } then A e IL,{A + P C P ) for X X X X X X X X 
each sequence e 

R e m a r k . It should be pointed out that the "usual" 
approximation methods are included in our general approach. 
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To see this, put R = I if U € M. contains an interval of the u 
form [0,w) and put Ro = 0 elsewhere. It is easy to check 

that (l)-(3) are fulfilled and that the ^-convergence of 

sequences of elements {xt) and of operators is nothing 

else than the usual convergence of ix^} and the strong 

convergence of {A^}, respectively. Further, (6) holds true 

for arbitrary sequences {A > since R = 0 for v > 0 and, T IV, CO) 

consequently, the algebra A is the algebra of all strongly 

convergent sequences {A^}. Particularly, Propositions 1-3 

are almost evident. Condition (9) means that the projections 

P^ converge strongly to the identity operator. In this 

setting, Propositions 4 and 5 are wellknown (see, e.g. [4] 

or [5]). 

Finally we remember the fact that, generally, the class 

of all possible perturbations includes not only small 

perturbations (i.e. the ideal £) but, moreover, the ideal of 

the compact operators. It would be not too hard to construct 

a perturbation ideal larger than £ in our general context, 

too. But to avoid undue confusions we prefer to define such 

a larger ideal only for the special approximation method 

considered in the next section. 

4. The finite section method for Wlener-Hopf integral 

equations in spaces of measurable functions 

Before we are going to study finite sections of Wiener-

Hopf integral operators we specify our general approach to 

the finite section method. 
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n 
Put T = IR\ and for given U € A with U = U [a ,b ) 

i=i 
(where O s a < b < a < b < . . . < a s » ) we define 1 1 2 2 n n 
R = J] (P - p ). Thereby we assume for definitness that U a b 

1=1 1 1 

P = I, P =0. Particularly, R = P . In that case, o CO " [0,T) x 
condition (9) is automatically fulfilled, i.e. the strong 
convergence is no longer needed. 

In what follows denote by B the algebra of all operators 
of local type and by R the set of all bounded operators K 
for which |KQt| —> 0 and |Q K|| —> 0 as x — > » , where Qt= 
I - P = R ' T [T,eo) 

P r o p o s i t i o n 6. a) ft £ 2 , and the set ft 
forms a closed two-sided ideal of B. 

b) Let A e B, choose ft said ft as above and let (l)-(3) be 
fulfilled. If A e Tl^P , K e ft , and if A + K is invertible 
then A + K e jĵft. 

P r o o f . a) The inclusion ft £ B is almost obvious. 
Let us prove that, e.g., ft is a left-sided ideal of B. For 
arbitrary B 6 B and K € ft we have ¡BKQ̂ || » 0, and ||Q̂ BKj| £ 
=s ||Q B P || ||K|| + |Q B|| |Q K|| which becomes as small as T [1 T fl 
desired if n is choosen suitably and if x is small enough, 

b) Kozak's formula 
(10) (P BP )-1 = P B_1P - P B_1Q (Q B_1Q )_1Q B_1P X X X X x x x x x x 
holding for arbitrary invertible operators B shows that the 
operators P^BP^ are invertible for x large enough and that 
the norms of their inverses are uniformly bounded if and 
only if the operators Q^B ̂ ^ are invert ible for x large 
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enough and If only If t he norms of t h e i r Inverses a r e 
uni formly bounded. 

Taking In to account P ropos i t i on 4 we have only t o v e r i f y 
t h a t t h e o p e r a t o r s Q t(A + K ) - 1Q t a r e i n v e r t l b l e f o r t l a rge 
enough and t h a t t h e norms of t h e i r Inverses a r e uni formly 
bounded. 

To see t h i s n o t i c e t h a t aga in by P ropos i t i on 4 the 
ope ra to r A must be i n v e r t l b l e and t h a t by P ropos i t i on 3 the 
o p e r a t o r s A-1 and (A+K)-1 a r e of loca l type. The i d e n t i t y 

(A + K)"1 - A"1 - (A + K)_1K A-1 

y i e l d s 

Q (A+K)_1Q = Q A_1Q - Q (A+K)_1KP A_1Q - Q (A+K)-1KQ A_1Q . T T T T T h> T T (i> T 

Now choose an w € T such t h a t |Qt(A+K)~1KQwA~1Qt|| becomes a s 
small a s d e s i r e d . F ix ing t h i s w, the norm 
[Q (A+K) *KP A 1Q II becomes small as r —> » s i n c e A 1 i s of • T w T" 

loca l type. This guarantees the i n v e r t i b i l i t y of Q^tA+K)" Q^ 
f o r x l a rge enough, and we aire done. 

Now we t u r n our a t t e n t i o n to an example which was 
s t u d i e d in [1] , [3] , and [7] : the f i n i t e s e c t i o n method f o r 
Wiener-Hopf o p e r a t o r s in spaces with uniform convergence. 
Thereby, we only quote the r e s u l t s and give ske tches of the 
p roof s and r e f e r to [6] and [7] f o r a d e t a i l e d t rea tment 
where, moreover, e s t i m a t i o n s of the speed of convergence a r e 
given. 

Let M resp . C the Banach spaces of a l l bounded 
measurable resp . cont inuous f u n c t i o n s on the r e a l ha l f a x i s 
R+, and l e t MQ, Cq s t and t h e i r subspaces 
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M = {x € M : ess sup x(s) — > 0 as a o ^ s t a 

C = {x 6 C : lim x(s) = 0 > . o 

and 

If G is one of the spaces mentioned, let G^ be the set 
of all functions x for which (l+s)Mx(s) € G. When endowed 
with the norm |x| : = | (l+si'Scis) | , G*4 becomes a Banach 

G" C 

space. In the sequel we denote by E^ one of the spaces M*1 or 
C". 

Put T = IR+ , let the projections P^ specialize as 

(Pxx)(s) = 
x(s) if s s T 

0 if S > T , 

set T = {P } ^ and choose ft as above, x xfco 
Further let a be a function whose Fourier transform <p is 

in L 1 , I M ' ( I R ) : = ( L 1 ( I R ) ) ' I and define the Wiener-Hopf integral 

operator W^ by 

r" 
(11) (W x)(s) := x(s) - a(s-t) x(t) dt. 

9 o 
It is a simple matter to verify that the operator (11) is of 
local type (i.e. that it belongs to B with respect to ft). 
Moreover, the condition <p e L 1 ' ' ^ I ' ( I R ) guarantees that, if W 

-l ^ is invertible, (W ) = W + K with a compact operator K 

acting from M^ into (see [7]), what implies that K e ft. 
P r o p o s i t i o n 7 . Let € L 1 , I M ' ( I R ) . If the 

operators W and W are invertible then W e IL,?* . 
<P -1 (p ft 

<P 
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P r o o f . By Proposition 4 and by Kozak's formula (10) 
it suffices to verify the invertlbllity of QT

W^1QT
 f o r T 

large enough and the uniform boundedness of the norms of the 
inverses. Since W-1- W 6 X we have essentially to deal 

with the invertlbllity of Q W Q . 
T v'1 T 

Let W W stand for the Wiener-Hopf factorization of 
<P- <P+ 

W which exists by the invertlbllity assumptions. Then 
v'1 

Q W Q = Q W Q W Q . Thereby, the operators Q W . Q are 
T T tp- T <P* T T <P± T 

invertlble, and their inverses are the operators 
Qt(W^+)_1Qt> respectively. Thus, the Invertlbllity of 

Q W Q is proved, and the uniform boundedness is almost T T 

evident. 
R e m a r k . In the scalar case the invertlbllity of W^ 

Implies that of W . I n the system case this is no longer 
<P~ 

true. 
Now we are going to characterize some suitable 

perturbations for the finite section method 11̂ ?. i.e. we 
quote some operators belonging to the ideal R. 

Define an operator K : E^ > E*1 by 
00 

(12) (Kx)(s) = | k(s,t) x(t) dt , s e IR+, x e E^ , 
o 

and put k (t) := k(s,t). For the remainder of this section s 
we require that 

(13a) k € L1,_,X(IR+) for all s € IR+ , s 
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(13b) supjld+s)^^ < oo 

(13c) 
Id+s')^ - (l+sA II — > 0 as s' » S' s 11 1 , -fl 

+ uniformly with respect to s e R , 

(13d) \ (l+s)^k II — > 0 as s — » » . " s»i,-H 
P r o p o s i t i o n 8. If (13a-d) are fulfilled, the 

operator K defined by (12) belongs to 
P r o o f . We only verify that ||KQt| — » 0. To that end 

put 
CO v^fs) := (l+s)M J |k(s, t) | (l+t)"M dt (a,s e IR+). 

a 

Obviously, v € C(IR ), {v } is a bounded and equiconti-
a a a€lK 

ft nuous function set, and v > 0 as a — > oo . The last a 

assertion bases on the following facts : 
a) For fixed s, v (s) tends to zero as a — > oo . 

a 

b) The convergence of equicontinuous functions to a 
continuous function is uniform on compact intervals. 

.T 
For t € IR+, the operator (KP x)(s) = k(s,t) x(t) dt is 

T o 
compact as acting from into The assumption (13d) 
implies that v^is) — » 0 as s — » oo uniformly with respect 
to x. Given e > 0 there exists an sq such that sup v^is) <e sis 

ft 0 
for all x £ 0. Because v » 0, we can find a T such that x o 
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||v | < e whenever x £ x . From the obvious inequality 
so 

||KQ x| s sup v (s) supl (l+sj^xts) | 
T T 

s S Ï T 

we finally deduce |KQ x|| s sup v^is) < 2e for all T - T 0 > 
s 

and this proves the assertion. 

P r o p o s i t i o n 9. Let <p e L1 ' ' ̂  ', and let K be 

the operator (12) fulfilling (13a-d). If W + K and W are <P -1 
<P 

invert ible then W + K € II ? . 
<p R 

P r o o f . Combine the Proposition 6, 7 and 8. 

5. A composite quadrature rule method for Wiener-Hopf 

integral operators 

In this section we apply our approach to a composite 

quadrature rule method (the Nystrom method) which was 

proposed by Chandler/Graham in [2] for solving the integral 

equation (I-K)x = y in spaces of continuous functions. 

Thereby K denotes the operator 

r00 
(Kx)(s) = k(s,t) x(t) dt , s £ 0 

o 

in the space CQ. 

The Nystrom method is understood as follows For 

integers n suppose a mesh 0 = z(n)<...< z(n>= eo is selected. O n 

» • x (n) , (n) ( n K , . ( n ) (n) (n) Let I = (z , z ) and h = z - z I i-i' l l l i-i 
For any function v, v n denotes the restriction v, 

i |j(n) 

Further, assume that h|n>< y for some constant y independent 

of i and n. 
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Moreover, suppose that we are given an m-point 
quadrature rule on [0,1] : 

1 m 
j v(C) dC v(C ) , (v e C) 
0 j=l J 

where w^ and £ are the quadrature weights and points, 
respectively. Now define £(n)= z(n) + h(n>C for i=l,...,n-l. 
For |3 = /3(n) we define the approximation operator K by n 

(14) (K x) (s) := Y w(n)k(s,<(n)) x « ( n ) ) h(n) , 
( 1 , J ) € Q( n) J U U 1 

where Q(n) = {(i,j) : ẑ  < 0(n), l s j s m } , x e C . 
Given this definition of K , the Nystrom solution x of n n 

the equation (I-K)x = y is defined by 

(15) x (s) - (K x ) (s) = y(s), s € IR+. 
n n n 

We shall now discuss the precise choice of the meshes 
{z|n)} and of the upper bounds |3(n) here and refer to [2] 
for details. We only want to point out that the Nystrom 
method considered, for instance, in the space C of all 
bounded continuous functions is subject of our general 
approach with only slight modifications. 

First notice that according to (15) the projections P 
must equal the identity operator I for each T e T S Z+. 
Then, of course, condition (9) from section 3 is satisfied. 
A problem arises when the convergence-generating projections 
R must be chosen, since they don't map C into itself. ( 0 , T ) J * 

On the other hand, the concept of section 4 where we 
embedded C into M fails here, too, since the quadrature rule 
(14) cannot be defined for arbitrary x e M. But it turns out 
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that the Banach space PC of all functions f on IR+ which 
possess one-sided limits at each point s e R+ when endowed 
with the norm ||f|| = sup |f(t)| is a natural candidate to 

overcome these difficulties at least partially, because 
a) C is a closed subspace of PC . 
b) The projections R[q chosen as in section 4 map PC 

into itself. 
c) Under suitable conditions (see (16) below) the 

operators K and K are bounded on PC. n 
On the other hand the approximation operators K map n 

actually PC into C, but we don't know whether they converge 
in any sense to K. For this reason we modify our 
generalapproach as in section 2 as follows : Assume that X 
and X^ are Banach spaces and that X^ is a closed subspace of 
X. Let the projection family be given on X as in section 
2, but consider the following weaker notion of convergence 
of operators A^ € L(X) to A e L(X) : 
A^ converges to A with respect to R and Xi if for each w € 
IR+ and for each x e X l 

R A x > R Ax. tO,w) T [0,w) 
Notice that the (R.X^-limit is only uniquely determined 

on the supspace X^ of X. 
The following modification of Proposition 4 ^ is 

sufficient for our aims. 

P r o p o s i t i o n 4'. Let A e L(X), A : im P — » imP X T T 
be operators such that 
(i) sup|At|x < 00 , 
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(li) A_ 
( * , X ) 

-> A , 

(ill) {At> and A are of local type on X in the sense of (6), 

(iv) A is invertible in L(X) , 

(v) A : im P 
X X 

.-1 

-> im P is invert ible for x fc x and 
x o 

SUP||A~ lx
 < 00 

If X is invariant for A, A-1, A , A - 1 (t * x ) then 
l x x o 

A' € II-iA*} where A', A* denotes the restriction of A and 
A X x 

A onto X . 
x 1 

The proof runs paralelly to that of Proposition 4. 

Now put ,X = PC, Xj = C, write K = K°+ K
1 where 

(K' 
00 

x)(s) = j k°(s-t) x(t) dt 

and 

( K S C H S ) = [ k 1(s,t) x(t) dt . 
o 

Hereby we assume that 

JO JO I 

(16a) J |k°(t) | dt < o) , J 2-k°(t) dt < 
-CO -00 

00 . 

For all integer n £ 0, 

(16b) 

sup f II _a a_ 

I I asm atn 
k(s,t) : s e 

as™ at" 11 L 1 
< 00 

sup T || ——— ——— k^(s,t)|| : s € 1 < 00 
I i as" at" II1 J 
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( 16c) lim - t - 0 
s , s —» » 11 1 2 "L 1 2 

These c o n d i t i o n s ensure t h a t K i s bounded both on C and PC 
and t h a t K1 i s compact. 

P r o p o s i t i o n 10. If (16a-c) a r e f u l f i l l e d 
then 

( 4 ' ) 

(5 ' ) 

s u p j K j < . . 
neZ 

R K x I0,T) n R Kx f o r x e C. tO,T) 

( 6 ' ) 

sup R R J [0 , t ) n [fi,») « 0 as H~T » » , 

-> 0 as f i -r » « 

P r o o f . For a proof of (4*) see [2] , Lemma 1 f o r m=0. 
Next we show the f i r s t a s s e r t i o n of ( 6 ' ) : Let x e PC. Then 

Rr K R x 
[ 0 , T ) n ifi.ca) 

_ r (n) , , >(nK ,„( n) , (n) = sup | I Wj k i s , ^ ) x(C t J ) h 
s ST ( i , j ) e Q ( n ) 

Ç * M » J H 

M L s u P 
s ST E. (n) (n) h W 

1 J 
(1,J)€Q(n) 
C £ M 1J M 
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bST _ <•» * 1 1 : z <p(n) 

v<n>ll 9 i 1 
+ hl l a t « 8 ' 0 ! |S(ft..>J 

by Lemma 1, (iii) of [2]. Hence, 

R K R I s II [0,T) n [(l.oo) |oo 

S C i sup f |k(s,t)| dt + y sup f I k(s,t) d< 1 . 
Six sit MJ 1 a t J 

The first supremum tends to zero since the operator K is of 
local type under the assumptions (15a-c) ; the proof for the 
second supremum runs completely analogously. Similarly, the 
second assertion of (6') can be shown. 

For verifying (5* ) we have to prove that for each t, ji e 
IR+ and for each x e C 

(17) sup |f (s) | — > 0 as n » oo 
s*T n 

where f = (K - K )x. n n 
Since x is continuous for fixed s we have |f (s) | » 0. n 

The assertion (17) follows from the fact that the family 
{f > is equicontinuous at each point s e IR+ which is a n 
simple consequence of Lemma 1, (iii), of [2] again, and the 
proof is complete. 

Further, notice that C is an invariant subspace for 
±i ±1 (I-K) and (I-K ) if the inverse operators exist, n 
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Thus, Proposition 4' combined with Proposition 10 gives 

the convergence of the Nystrom method. 

P r o p o s i t i o n 11. Let (16a-c) be fulfilled. If 

K is Invertible from PC to PC (and from C to C) then the 

meshes {z|n)} and the bounds ß(n) can be chosen so that the 

Nystrom method ILXK } converges on the space C of all 
A n 

bounded continuous functions on R . 

R e m a r k . See [2] for the concrete choice of the 

meshes and bounds. 
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