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NON-STRONGLY CONVERGING APPROXIMATION METHODS

1. Introduction

Commonly, a large class of approximation methods for
solving the operator equation Ax = y can be interpreted as
follows :

Choose proJjection operators PT and operators AT : im PT—
—> im Pr and consider a approximation equation Atxt = Pty.
If there is a T, SO that, for each T = T, and for each right
side y, these equations have a unique solution xt, and if xT
converges to a solution x of the equation Ax = y, then one
says that the approximation method 01 {AT} converges for the
operator A (see [4],[5]). In some special but interesting
cases (think on integral operators on spaces of bounded
measurable functions as in the papers of Anselone/Sloan,
Chandler/Graham, de Hoog/Sloan, and Silbermann) the usual
convergence xt——e X cannot be guaranteed but it turns out
that the functions x_ converge uniformly to x on each
compact interval. This observation leads to a weaker notion
of convergence, the convergence with respect to a family of
projections. In this paper we study the corresponding
"weakly" converging approximation methods from a point of

view which includes the standard theory.
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Thereby we make essentially use of Simonenko and Kozak’s
techniques in the theory of operators of local type. As an
application, we show how the results of [1]-[3], [7] can be
almost at once derived from our theory. Other possible
applications would be equations in finite differences in
spaces of bounded functions and two-dimensional Wiener-Hopf
equations. Moreover, it should be pointed out that the
methods presented here apply to the matrix case without
changes. It is the authors’aim to return to this circle of

problems in a further comprehensive publication.

2. Convergence with respect to a family of projections

Let X denote a Banach space and R* the set of
non-negative real numbers. By M we denote the set of all
finte wunions of left-sided closed and right-sided open
intervals of R*. Notice that for UV e M, we have Uu V € M,
UnVeMand R'\U e A

Assume that to each U € M a projection operator R.U is

associated such that

R.U + R . = I (I - identity operator),
R \u
(1) 4 RR =RR =R ,
(T VU unv
R + R =R ifUnvV-=o.
v v
(2) sup "RU" = c< o
UeM

- 652 -



Non-strongly approximation methods

(3) | ker R = {0}.

+
weR

Further, put R = {Ru : Ue M}, and let T stand for a

[O,H)

certain unbounded subset of R'.
We say that the (generalized) sequence {XT}TGT of

elements X, € X converges with respect to R to x € X (and

write X —R—) X or Xx = R-1im X, in that case) if the set {xt}
T—0 .
is bounded and if for each w € R

]33 )(xt—x)||——-—)0as1:-——>m.

[O,w
The condition (3) ensures that the R-limit of a given
sequence is unique if it exists. Indeed, if X, i—) x and
x‘rR—) y then, by definition, R x = R y , l.e. x-y

R [Oo,w) [0o,w)
€ker R for each we R .
[o,w)
Now consider the set 4 of all (generalized) sequences
{AT}T €T of bounded operators on X which are subject of the
following conditions :

(4) sup |A_|| < .
ter  ©

There is an A € L(X) such that for each w € R' and x € X :

(5) R[o")Atx - R[o")Ax and ATR[o,n)x Y AR{O")x as T — o.

This will be abbreviated to A'r L) Aor A= R-1lim A_t.

Notice that the R-limit of operators is unique.
Given two subsets U, V € R' put p(U,V) = inf{|u-v|, ueU,
+
veV }, and for h € R set ¢“-r)(h) = sup {ﬂRuAth“ : T eT,

U, Ve M with p(U,V) > h }.
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Then

(8) .lim P )(h) = 0.
%x—0 T
Proposition 1. 4 is a Banach algebra when
provided with the norm "{AT}" := sup "AT“ and with
T

elementwise operations.
Proof. Let {AT}, {Bt} € 4. Then, obviously, {AT} +

{B} ={A_ + B} € 4. Now assume that A —39 A and B JE» B.
T T T T T
The identity

R (AB x - ABx) = R
TT

[0, w) (ATth - ATBx + ATBx - Agx) =

[O,w)

= R[O,H)ATRIO,V)(BT_B)X * Rlo,w)ARlv,m)(B‘r-B)x * R[O,w)(AT-A)Bx

shoys (choose v large enough) that RULH)AtBT —_— R“L")AB

strongly. Similarly, the other assertion of (5) follows.

Further, (6) is a consequence of

IRABRE = IRAL IRBR D+ IRA RG] BR]

and standard arguments show that 4 is a Banach algebra.

Convention If the constant sequence {At}TeT
belongs to 4 we write for ©brevity A € 4 and call A an
operator of local type. Condition (1) shows that 1 € 4 and
Rb € 4 for U e A

Propositon 2. If {At}rere 4 with R-1im Ar = A
then AT € 4 and A € 4. B

Proof. It is evident that {At} € 4 implies A_r € 4
for each T € T. Now consider RUA RV' A little thought shows

that we can assume U= [O,u), V = [v,®) or U= [u,®), V= [0O,V)
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without loss of generality. In the first case we obtain

RUAth = RlounAtRV —_— R[ounARv = RUARV strongly, hence,

ﬂRUA Rvﬂ s s:p "RuAthﬂ .

For the other case the proof is analogous. Thus,
¢A(h) 1= ¢(A)(h) = sup (ﬂRuARvn, U VedM p(UV)>h s

s sup {uRqATRvﬂ, TeT, U Ved, p(UV) >h} = w“r’(h)'
as we are done.
Proposition 3. Let {AT} € 4 and put A :=
R-1im Ar' The sequence {Ar} is invertible in 4 if and only
if the operators A and Ar are invertible for each T and if

sup HA;1I < o . Thereby, {AT}-1 = {A;i}, and R-1im A;1= AL
T

Proof. First we verify the "if " - part :
Obviously, (4) holds true for the sequence {A;i}. The proof
that (6) is valid for (A;I} bases essentially on Simonenko
and Kozak’s proof that ‘the inverse of an operator of local
type is again of local type: We: show that if {At} is subject
of the assumptions of the Propositlion,.then

c‘supIATI supIA;1l2
T

T 2 -142 t
+ 4c” suplA " ¢, (gD
T T

» _, (t) =

(A_r

for all teR and all n € Z' . This implies lim ¢ _ (t) = O.
t—0 (A‘t' }

n

Indeed, given any € > O there is an n such that
ct supnAtl supﬂA;?ﬂz/no < €/2
T T
and a to such that
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ac? supIA;llzpu ,(t/(an -1)) < €/2 for all t > t .
T T

Let U, V€ M and p(U,V) := inf{|u-v], ue U, veV} =
r >t. Let h, rl,rz, Pa' P4 be any real numbers satysfying

Osr <r <r <r =sr, 0OKXh<r-r, h<r-r,
1 2 3 4 2 1 3 2

+
h<r-r, and put U1 ={weR : r, = p(w,U) Srs},

Viis{we R' : r, s p(w,U) s r}. We claim that

(7) RA"R=-RARARAR+E,
uT Vv UuT UITVIT

2 -1,2
where [E| = 3c S:PHAT I wut)(h) .
Put V':= {w € R": p(w,U) < r2}, U:={weR": p(w,U) = Pa}'
4
Then we have

RAJR =RR,A™R =RA'R,AR,A” R + e, where
uT V 1

uv T VY vt v TV T
-1 -1,2
||e1|| = ||RUAT Re* oo ARy AT Rv|| s c, s:p"A_t I ¢“T)(h),
because p(R \U’,V') > h. Further
RA'R,AR,A’JR = - RA!R A _Rps AR, since
vt v TV TV uT U T \V’ T V

RA_ R A_ATR = 0. Finally,
vt uvtTT Vv

RARARIR —RARARAR+e,where
vt UVt \v’rv U1:U1:v11: 2

le.]= [RAZ'R AR A R||+ IRA. 'R AR
2

1
-<
UuT U\U 'rv1: 'ru"r(IR\v')\vlt vII

< 2¢c° sup||A;:1||2 e )(h) ,
T T

because p(U'\U,,V ) > h, p(U',(tR*\V’)\vl) > h.
Putting these things together, we get our claim (7). Now let
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n be any positive integer. Put h := t/(4n-1), 1 = r/(4n-1),
U :={weR : (41-4)1 s p(w,U) = (41-2)1} ,

V oi=1{we R" : (41-3)1 = p(w,U) = (41-1)1} ,
where i1 =1, ..., n. From what has Jjust been proved
(r'1 = (4i-4)1, r, = (41i-3)1, r, = (4i-2)1, r, = (4i-1)1) we

obtain

(8) RAR =-RA'R AR AR +E
uT Vv UuT Uitvit v
with |E | = 3c? sup||A_1||2 ¢, (h) for i=1 n.
1 z T .} P
Adding the n equalities (8) we arrive at the equality
n
nRA"R=—zRARARAR+2E=
uT v (o uT TV TN !
-1 -1 n
= - RA'R A_R AR +E+ YE ,
vT V... vy T VU .., UV T V i
1 n 1 n 1=1
2 1 1
where E := TRAR A_R 'R..
uT U T VUV ... UY vy vy...uUyVvy T V
= i 1 1-1 141 n

Since p(Ui,VJ) >h for i # j it follows that

IE] = nc® sup|a'® o, ,(0)
T T

and thus

4 ~-1y2
1 c S;IPIIATII s:pllAT I
IRAL R =

2 -1,2
= + 4c sup“AT I i )(h) ,
T T

and we are done with verifying (6) for {A;l}.

- B57 -



S. Roch, B. Silbermann

Finally, we prove (5) by showing that A;‘ R,

R (A -A'x)=Rr_ ATl

o,w 't to,w' T (Ay - A‘ty) =

=R_ A'R (Ay - Ay) + R A™?

B R i A X)) ool Rrv.m (A — AY)

with y = A"'x. Hence, 1f v > w ,

“Rlo,w)

-1 -1 -1
(Ax - A x)| sc s:p||At | ﬂR[o,v)(Ay -AY)| +
to _ (v-w) sup||A—AT|| Ivl-
(At } T

Choose o > w so that ¢ -1
a, }

Then we can find a ‘to € T so that for t > 1.'0

(vo—w) < g/(2 S:P"A'AT" ||y||)

-1
IR )(Ay - A-ry)“ < e/(2¢c s:p"A_t 1 .

[0,vO

what yields the first assertion of (5). The proof of the
second 1s similarly, and this completes the proof of the
“if"-part.

Conversely, assume that {A'r} is invertible in 4. Then
there exists a sequence {Bt} € 4 such that {BtAT} = {A‘tBT} =
{I}. Hence, the operators AT must be invertible and A;1= B‘r'
The uniform boundedness of ||A;1 | is obvious since {A:} € 4
by assumption. Let B := R-lim BT. Then, since AtB-t': BTAT= I,
the passage to the R-1limit gives AB = BA = I, i.e. A proves
to be invertible, and B = A = R-lim A7

Corollary 1. If A is an operator of local type
then A is continuous in the R-topology, i.e. if x_t:R—) X

then AxTR—) Ax.
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Pr oo f. The corollary follows immediately from

R[O,H)A(x_x‘t) = RIO,H)ARIO,v)(x_xT) * R[O,w)mlv,w)(x_x‘t)'

For the next corollaries put R = {R. : R € R }. Obviously,

If {A} € 4 then the sequence {A’} fulfills (6) with respect
&

to R..

Corollary 2. a)let {At}edwithi—limAr=A.
T—»

If A_ is invertible for all T € T and if sup"A;I“ < w then
T

A;IA fR—) I, and A is one-to-one.

b) If the R -limit of {A_:} equals A", and if this R -
limit is uniquely determined then A' is one-to-one.
Proof. a) The proof of Proposition 3 shows that the
hypotheses of Corollary imply that ¢ 1 (h) — 0 as h~— .
(A_r }
Hence,
R (A'Ax - x) =R (A'Ax - A'A x) =
[O,w) T [O,w) T T T

P -1 - -1 _
- RIO’H’AT Rlo.v)(Ax ATX) * R[o.w)At R[v.oo)(Ax ATX)

becomes as small as desired if v-w is large enough. On the

other hand, A"lAR x - R

- -1 -
T 10,w) to,m* = A'r (A A'r) R

lo,u)x
and this becomes small as T is large enough. Thus, A:A 1) I,
and this shows, moreover, that A must be one-to-one.
b) Apply a) to {A_:}, A
Corollary 3. Assume that Rlo’w)-—a I strongly.
a) Then R fulfills (1) - (3).
b) Let A be an operator of local type and put for T € T
AT:= R[o,'r)AR[o,'r)' If the operators At:imR[o,'r)——) 1mR[0’_n
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are invertible and if sup"A;lu < o then A is invertible.
T

Proof. a) Obviously, R" satisfies (1), (2). To see

that (3) is fulfilled take y € n ker R‘ . Then
wéRf [O,w)
<R X, y > = <x,R' y> = 0 for each w € R" and for each
{o,w) [O,w)

x € X. Since the set {R weR, xe X} is dense in

X
[O,w)
X, the element y € X must be the zero functional.

b) If A is of local type with respect to R then A" is of

» *
local type with respect ti R . Since obviously {RHLT)}TET
is in 4 (with respect to R ), and since £ is an algebra we

* LR
obtain {R[o,t)A RIo,T)) € 4. Now Corollary 2 applies to

» *

* » .
{R[O,T)A R[o,r) + R[T’m)} what gives that ker A = {0} and

the assertion follows.

3. Weakly convergent approximation methods

Besides the family R of projections which defines the

convergence we consider another family ? = {Pr}ter of

projection operators on X which is related to R by the

condition
(9) {Pr} € 4, and R-1lim PT = I.
T
(Examples : a) P_ =R for each T ,
T [0,T)
b) PT =1 for each T ).

Let A be an bounded operator on X and consider the equation

Ax = y. Let {At}TET

of operators which converges with respect to R to A as

», A_ : im P.—— im P_ , be a sequence
T T T

T — o, and assume that there is a To € T so that the

approximate equation ATxT = Pty has a unique solution X,
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for all right sides y and for all T € T with T = T
We shall say that the approximation method H?{AT}
converges for the operator A (and write A € H?{AT} in that

case) if ;he sequence (xt}t>T converges wWith respect to R

to a solution x of the equation Ax = y. In case that AT= PTA
PT we write simply HR? instead “R{PrAPt} ; this special
approximation method is also called the finite section
method.

Proposition 4. Let Ar : im Pr — im PT and
{AT} € 4 with R-1im At = A. Then A € H{AT} if and only if A
is invertible and if there exists a To € T such that
A_: imP_ —— im P_ is invertible for Tt € T, T =z T, and

T T T )
sup "A_1|
T

=T
(o]

Proof. Let A € H?{AT}. Then, by definition, the

|<oo.

operators AT ¢ im PT — im PT are invertible for Tt = To
.Denote by A;l : im P — im P_ the inverse of A_ . Since

A;ly —8—9 X , the supremums sup "A;ly" are bounded for each

=T
]
y € X. The uniform-boundedness-principle shows that then

sup "A;iﬂ must be bounded.

TZTO
Next we verify the invertibility of A. By the definition
of the approximation method, A is onto. Put Q_r =1 - P.r ,

AT 1= AT + Qr for t = T, and At =1 for T < T, By (9), the
sequence {XT} is in 4 and R-1lim KT = A. It is immediate from

what has been proved above that XT is invertible for all

- 661 -



S. Roch, B. Silbermann

T € T and that supﬂx;ln < o . Hence, by Corollary 2, A must
T

be one-to-one.

The other direction 1is an evident consequence of
Proposition 3 applied to the sequence {Xt}.

Our final goal in this section is a perturbation theorem
for the approximation method "i{At}' To that end let ©
stand for the set of all sequences {C } € 4 with |C | — 0
as T —> o . The set € forms a closed two-sided ideal of the
algebra 4.

Proposition 5. Let {At} ed, R-lim A=A
Then the following statements are equivalent :

a) A is invertible, and the operators Ar are invertible
for © large enough (say T = To), and sup “A;lﬂ <.

=T

b) The coset {At} + € is invertible in the quotient
algebra 4/€ .

Proof. a) =ab) Apply Proposition 3.

b) » a) Assume there are sequences {Bt} € 4 and {Ct}.
{DT} € © such that AtBr =1+ CT R BTAT =1+ Dr . A little
thought shows that then the operators Ar must be invertible
for T = T and that the norms of their inverses are
uniformly bounded. Mcreover, taking the R-limit we obtain AB
= BA = 1 (where B = R-1im Br)’ i.e. A is invertible.

Corollary 4. Let {AT} € 4d, Ar: im PT———e im P_r
and R-1im A=A If Ae H*{AT} then A € “i{At + PTCTPt) for
each sequence {CT} € €.

Remar k. It should be pointed out that the "usual”

approximation methods are included in our general approach.
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To see this, put RU =1 if U € M contains an interval of the
form [0,w) and put Ru = 0 elsewhere. It is easy to check
that (1)-(3) are fulfilled and that the R-convergence of
sequences of elements_{xr} and of operators {At) is nothing
else than the usual convergence of {xt} and the strong
convergence of {AT}, respectively. Further, (6) holds true
for arbitrary sequences {AT} since thw) =0 for v > 0 and,
consequently, the algebra 4 is the algebra of all strongly
convergent sequences {AT}. Particularly, Propositions 1-3
are almost evident. Condition (9) means that the proJjections
PT converge strongly to the identity operator. In this
setting, Propositions 4 and 5 are wellknown (see, e.g. [4]
or [5]).

Finally we remember the fact that, generally, the class
of all possible perturbations includes not only small
perturbations (i.e. the ideal £) but, moreover, the ideal of
the compact operators. It would be not too hard to construct
a perturbation ideal larger than ©® in our general context,
too. But to avoid undue confusions we prefer to define such
a larger ideal only for  the special approximation method

considered in the next section.

4. The finite section method for Wiener-Hopf integral

equations in spaces of measurable functions

Before we are going to study finite sections of Wiener-
Hopf integral operators we specify our general approach to

the finite section method.
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n
Put T =R, and for given Ue M with U=U [ai,bl)
1=1
(where 0 s a <b <a <b <...<a sSw) we define
1 1 2 2 n

n
RU = Y(P - P, ). Thereby we assume for definitness that
=1 1 1

P =1, P = 0. Particularly, R
o [ [o,T)

condition (9) is automatically fulfilled, i.e. the strong

= PT . In that case,

convergence 1s no longer needed.

In what follows denote by B the algebra of 'all operators
of local type and by R the set of all bounded operators K
for which "KQTH —> 0 and "QTK" —> 0 as T —> o , where QT=
I -P_ =R 7 .

T [T,

Proposition 6. a) Rs B, and the set R
forms a closed two-sided ideal of B.

b) Let A € B, choose ? and R as above and let (1)-(3) be
fulfilled. If A € “g? , Ke R, and if A + K is invertible
then A + K € nﬁ?.

Proof. a) The inclusion R € B is almost obvious.
Let us prove that, e.g., R is a left-sided ideal of B. For
arbitrary B € B and K € R we have "BKQTH —> 0, and "QTBK" =
= |o.B Pp" Ix|] + "QTB" "Q“K" which becomes as small as
desired if p is choosen suitably and if T is small enough.

b) Kozak’s formula
-1 _ -1 _ -1 -1 -1 -1
(10) (PTBPT) = PTB Pr PTB QT(QTB QT) QrB Pr
holding for arbitrary invertible operators B shows that the
operators PTBPT are invertible for t large enough and that

the norms of their inverses are uniformly bounded if and

only if the operators QTB_loT are invertible for T large
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enough and if only if the norms of their inverses are
uniformly bounded.

Taking into account Proposition 4 we have only to verify
that the operators Qt(A + K)-itl.r are invertible for t large
enough and that the norms of their inverses are uniformly
bounded.

To see this notice that again by Proposition 4 the
operator A must be invertible and that by Proposition 3 the
operators A and (A+l()_1 are of local type. The identity

(A+KT=a1- A+ )k AT
yields

. P -1 -1 -1, -1 -1
Qt(A+K) Q =QA Q QT(A+K) KP A Q Q_r(A+K) KQA Q.

Now choose an w € T such that [Q_(A+K)"'KQ A'Q_| becomes as
small as desired. Fixing this W, the norm
HQT(A+K)-1KPHA_101" becomes small as T —> o since A is of
local type. This guarantees the invertibility of QT(A+K)-IQ,L,
for t large enough, and we are done.

Now we turn our attention to an example which was
studied in (1], [3], and [7] : the finite section method for
Wiener-Hopf operators in spaces with uniform convergence.
Thereby, we only quote the results and give sketches of the
proofs and refer to [6] and [7] for a detailed treatment
where, moreover, estimations of the speed of convergence are
given.

Let M resp. C the Banach spaces of all bounded
measurable resp. continuous functions on the real half axis

»

R* and let Mo, C0 stand their subspaces
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M = {x € M: ess sup|x(s)] — 0O asa — »}
sza :

and

Co ={xe€C: 1lim x(s) =0 } .
s8—)0

If G is one of the spaces mentioned, let c* be the set
of all functions x for which (1+s)”x(s) € G. When endowed
with the norm |x} p s |(1+s)ux(s)|G , G* becomes a Banach

G

space. In the sequel we denote by E" one of the spaces M or
m
c.

+

Put T=R , let the projections Pr specialize as

x(s) ifss=s=<
(PTx)(s) =
i 0 ifs>t,

set P = {Pt}tzo and choose R as above.

Further let a be a function whose Fourier transform ¢ is
in Ll'I“I(R) := (LY(R))* and define the Wiener-Hopf integral
operator w¢ by

(11) (Wx)(s) 1= x(s) = Ia(s—t) x(t) dt.
)
It is a simple matter to verify that the operator (11) is of

local type (i.e. that it belongs to B with respect to R).
Moreover, the condition ¢ € Li’lul(R) guarantees that, if ww

is invertible, (W«’)_1 =W P K with a compact operator K
14

acting from M into Cﬁ (see [7]), what implies that K € R.
Proposition 7. Let ¢ € LLI#I(R). If the

operators w¢ and W -1 are invertible then w¢ € H?? .
14
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Proof. By Proposition 4 and by Kozak’s formula (10)
it suffices to verify the invertibility of Qtw;lQT for T
large enough and the uniform boundedness of the norms of the

inverses. Since w;‘- W __ € R we have essentially to deal

?
with the invertibility of Qtu -101.' .

?
Let Hw_w% stand for the Wiener-Hopf factorization of

1

W 1 which exists by the Iinvertibility assumptions. Then
?

QTW -1Q1: = Qtww_Q_tH%Q_t . Thereby, the operators Qtw¢ tQ't are

invertible, and their inverses are the operators

QT(H¢+)-IQT, respectively. Thus, the invertibility of

QTW -IQ‘!.' is proved, and the uniform boundedness is almost
14

evident.
Remar k. In the scalar case the invertibility of H¢

implies that of W 4 In the system case this is no longer

'
true.

Now we are going to characterize some suitable
perturbations for the finite section method H:R?. i.e. we
quote some operators belonging to the ideal R.

Define an operator K : E“ — E! by

(12)  (®(s) = [ k(s,t) x(t) dt , s € R, x ¢ B,
o

and put ks(t) := k(s,t). For the remainder of this section

we require that

(13a) ke L MR") for all s e R,
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(13b) sup"(1+s)uks"1_n <w,
s ’

J(1+s ), - (1+s)Mk | —>0as s’ —s
(13c) s st

uniformly with respect tos € R’,

(13d) I(1+s)“k | — 0as s — o .
s"1,-pd
Proposition 8 If (13a-d) are fulfilled, the
operator K defined by (12) belongs to R.
Proof. Weonly verify that "KQT" — 0. To that end
put

’ 00
v (s) := (1+s)“J' Ik(s,t)| (1+t)™ dt  (a,s € RY).
a

Obviously, v, € C(R"), {va} + is a bounded and equiconti-

a€R
nuous function set, and va —3—» 0 as a — o . The last
assertion bases on the following facts :

a) For fixed s, va(s) tends to zero as a — o .

b) The convergence of equicontinuous functions to a

continuous function is uniform on compact intervals.
. T
For T € R, the operator (KPTx)(s) = I k(s,t) x(t) dt is
o

compact as acting from M" into CM. The assumption (13d)
implies that vt(s) —> 0 as s —> o uniformly with respect
to T. Given € > O there exists an So such that sup vt(s) <e

sZs
o}

for all T = 0. Because VT —2—+ 0, we can find a TO such that

- 668 -



Non-strongly approximation methods

"vrus < & whenever T = T . From the obvious inequality
o

"Kthﬁ = sup vt(s) sup| (1+s)"x(s) |

s sZT

we finally deduce "Kth“ = sup vt(s) <2 foralltzrt ,
5

and this proves the assertion.
Proposition 9 LetgecL" ™ andlet K be

the operator (12) fulfilling (13a-d). If N¢ + Kand W _, are
¢
invertible then Ww + K e HR P .

Proof. Combine the Proposition 6, 7 and 8.

5. A composite quadrature rule method for Wiener-Hopf

integral operators

In this section we apply our approach to a composite
quadrature rule method (the Nystrom method) which was
proposed by Chandler/Graham in [2) for solving the integral

equation (I-K)x = y in spaces of continuous functions.

Thereby K denotes the operator
[o2]
(Kx)(s) = j k(s,t) x(t) dt , s 20
0

in the space Co'

The Nystrom method is understood as follows : For
integers n suppose a mesh 0 = zgﬂ<...< z:”= o is selected.
Let I:n) = (z(n) z(n)) and h(n) = z(n) _ z('n)

1-1° 71 1 | i-1
For any function v, v?ﬂ denotes the restriction v| ("
1
i

Further, assume that hrﬂ< 7 for some constant y independent

of 1 and n.
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Moreover, suppose that we are given an m-point
quadrature rule on [0, 1]

1 m
I v({) dC ~» z wv(), (veC(C)
J J
0 j=1
where wj and CJ are the quadrature weights and points,
(n)_ _(n) (n)

respectively. Now define clj = 21—1+ hj Cj for i=1,...,n-1.

For B = B(n) we define the approximation operator K.n by

(14) (K x)(s) := wk(s, ™) xe'™)y n!®

i
(1,3)€ Q(n) ) H H

where Q(n) = {(i,J) : z < B(n), 1 = j=m}, x € C.
Given this definition of Kn , the Nystrom solution xn of
the equation (I-K)x = y is defined by

(15) x (s) - (Kx)(s) = y(s), s € R".
n nn

We shall now discuss the precise choice of the meshes
{z?“} and of the upper bounds B(n) here and refer to {[2]
for details. We only want to point out that the Nystrom
method considered, for instance, in the space C of all
bounded continuous functions is subject of our general
approach with only slight modifications.

First notice that according to (15) the projections PT
must equal the identity operator I for each Tt € T & z'.
Then, of course, condition (8) from section 3 is satisfied.
A problem arises when the convergence-generating projections
R“LT) must be chosen, since they don’'t map C into itself.

On the other hand, the concept of section 4 where we

embedded C into M fails here, too, since the quadrature rule

(14) cannot be defined for arbitrary x € M. But it turns out
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that the Banach space PC of all functions f on R" which
possess one-sided limits at each point s € R' when endowed

with the norm ||f‘||o° = sup If(t)] is a natural candidate to
R

overcome these difficulties at least partially, because

a) C is a closed subspace of PC .

b) The projections RHLT) chosen as in section 4 map PC
into itself.

c) Under suitable conditions (see (16) below) the
operators K and Kn are bounded on PC.

On the other hand the approximation operators Kn map
actually PC into C, but we don’t know whether they converge
in any sense to K. For this reason we modify our
generalapproach as in section 2 as follows : Assume that X
and X1 are Banach spaces and that X1 is a closed subspace of
X. Let the projection family R be given on X as in section
2, but consider the following weaker notion of convergence
of operators Ar € L(X) to A € L(X)

AT converges to A with respect to R and X1 if for each w €

R' and for each x e X1

R AX — R Ax.
[O,w) T [O,w)

Notice that the (R,Xi)—limit is only uniquely determined
on the supspace X1 of X.
The following modification of Proposition 4  is
sufficient for our aims.
Proposition 4. Let A € L(X), AT:im PT——+ imPT
be operators such that

(i) SUP"At"x <o,
T
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(R,Xi)
(11) At—-—)A ,

(111) {At} and A are of local type on X in the sense of (8),
(iv) A is invertible in L(X) ,

(v) A_ : im P_. —— im P_ is invertible for T 2 T and
T T T 0

-1
supjA_||, < = .
T T "x . »
If X is invariant for A, A", A, A
1 T T

A’ € H*{A;} where A’, A; denotes the restriction of A and

(t = ro) then

AT onto Xl.
The proof runs paralelly to that of Proposition 4.
Now put X = PC, X = C, write K = K%+ k' where

o0
(%) (s) = I K%(s-t) x(t) dt
0

(Kl _ ® 1
x)(s) = j k'(s,t) x(t) dt .
0

Hereby we assume that

(16a) _mjplko(t)l dt < « ,_Jw|gE ko(t)l dt < o .

For all integer n = O,

r

sup { b 8 k(s,t) , ¢ SE€ rR* } < oo,

as™ at" L
(16b) 4
sup { R kl(s,t) , P S€ R* } < o .
as"™ at" L
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(16c) lim

sl,sz—-) ]

These conditions ensure that KP is bounded both on C and PC

k‘-k‘u =0 .
- - 1
1 2L

and that K1 is compact.
Proposition 10. If (16a-c) are fulfilled

then
(4*) sup+"Kh“ < o .
n€Z
(5") R[O,T)Knx —_ R[o,’r)Kx for x € C.
sup R[o,t)KhR[p,m) ° 0 as 1t —> o,
THyH,n
(6”) 1
Ts;pn Rlu,m)KhR[o,t) 0 0 as p-1t — o .

Proof. For a proof of (4’) see [2], Lemma 1 for m=0.

Next we show the first assertion of (6’) : Let x € PC. Then

[Fco % R |

_ (n) (n) (n) (n)
= sgpl Z wJ k(s,cU ) x(CU ) h1 =
8=
(1,1)€Q(n)
S
(n) _ (n) (n)
< ||x||°° sup z hln wjn k(s,cl? )| =
s=
(1,J)€Q(n)
ClJZ [

N iedal
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(n)
= ||x||°° C sup Z [“k(s, )1 L (e, 0) +
s=T 1:z <B(n) 1
T
mj 8 (n) )

by Lemma 1, (iii) of [2]. Hence,
“ R[O,t)KnR[p,m)um =

=C [ sup I Ik(s,t)] dt + ¥ sup I ' 3t k(s,t)l dg ]
sST s<T M

The first supremum tends to zero since the operator K is of
local type under the assumptions (15a-c) ; the proof for the
second supremum runs completely analogously. Similarly, the
second assertion of (6') can be shown.

For verifying (5’) we have to prove that for each T, p €

R* and for each x € C

(17) sup If (s)] —>0asn —>w
sS=T n

where f = (K - K )x.
n n

Since x is continuous for fixed s we have Ifn(s)l — 0.
The assertion (17) follows from the fact that the family
{fn} Is equicontinuous at each point s € R" which is a
simple consequence of Lemma 1, (iii), of [2] again, and the
proof is complete.

Further, notice that C is an invariant subspace for

+ +
(1-K)~! and (I—Kn)"1 if the inverse operators exist.
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Thus, Proposition 4’ combined with Proposition 10 gives
the convergence of the Nystrom method.

Proposition 11. Let (1B6a~c) be fulfilled. If
K is invertible from PC to PC (and from C to C) then the
meshes {z?n} and the bounds B(n) can be chosen so that the
Nystrom method “ﬂ{Kh} converges on the space C of all
bounded continuous functions on R'.

Remar k. See [2] for the concrete choice of the

meshes and bounds.
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