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CONNECTIONS ON TANGENT BUNDLES OF HIGHER ORDER

Introduction

As it 1is well known the tangent bundle TM of any
manifold M carries a canonical integrable almost tangent
structure J (see [Go], [Gr], [YI]). By means of J, Grifone
[Gr] gave a new definition of (non-homogeneous) connection
on M. In fact, a (non-homogeneous) connection on M is a
vector 1-form I' on TM such that JIr = J and T'J = -J. The
connection I' is sald to be homogeneous if I' is homogeneous
as a vector 1-form. Obviously, if T is c® on all TM, then it
is a linear connection (see [V]); so, we must suppose that I'
is C” only on TM = TM - { zero section } in order to obtain
strictly non-linear homogeneous connections.

The purpose of this paper is to generalize the results
of Grifone to tangent bundles of higher order. In fact, the
tangent bundle TM of order k of any manifold M carries a
canonical almost tangent structure of order k, namely J1
(see [CsC], [DLv1], ([DLv2], [DLR1], [DLR2]). Now, the
variety of fibrations on T*M permit us to consider several
types of connections of order k on M. If we put Jr = (Jl)r.
1 =r =k, then we obtain k canonical vector 1-forms on T*M.

Thus, a connection of order k and type r, 1 s r <= k, on M
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(that 1s, a connection in the fibration p " :T'M — T* M)
is given by a vector 1-form I' on T*M such that Jrr = Jr and

er¢’i = -Jb¢¢1' The tension H = (1/2) [Cl,F] (where C1 is

the generalized Liouville vector fleld on T“M) measures the
non-homogenity of I' ; so, I' is homogeneous if and only if H
vanishes. Now, we may associate to I' a semispray € on TkM of
the same type r in such a way that ' and € are the same
paths. The converse 1is also proved ; 1In fact, to each
semispray £ of type 1 on ™M we associate k connectlions Fl,

.y I‘Il of order k on M and types 1,...,k, respectively.
Furthermore, the Fr¥licher -Nijenhuls formalism permit us to
obtain the curvature and torsion forms of I'. In fact, the
curvature form R of I' is given by R = (1/2) [h,h], where h
is the hogizontal projector associated to I' ; the weak and
strong torsion forms t and T are given by t = [Jr,h] and T =
1§t - H, respectively. Finally, we prove the main result of
this paper which generalizes the corresponding one obtalned
by Grifone for the tangent bundle :

Let £ be a semispray of type 1 and T a semibasic vector
1-form of type 1 on T*M such that iET + E' = 0 (where €‘ =
[C1’€ ] - € denotes the deviation of € ). Then there exists
a unique connection T of order k and type 1 on M such  that
its associated semispray is £ and its strong torsion is T.

The connection I' is given by

r=(1/(k+1)) { -2 L J1 + (k-1) I +2T}.

3

Consequently, a connection of order k and type 1 on M is

completely determined by its associated semispray and its
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strong torsion.

In a forthcoming paper [ALR], we shall apply these
results to obtain a canonical connection associated to a
regular Lagrangian system of higher order (see [DLR2] for

the homogeneous case).

1. Tangent bundles of higher order

Let M be an n-dimensional manifold. The tangent bundle
of order k of M is the (k+1)n-dimensional manifold T'M of
k-Jets at O € R of differentiable mappings o : R —— M. We
denote by B : TkM — M the canonical proJjection defined by
B(J; o) = o(0). Then T"M has a bundle structure over M. If
k =1, then T!M = TM is the tangent bundle of M. However, if
k > 1, Bk : TkM —> M is not a vector bundle. As well as
being fibred over M, TkM is also fibred over T'M, 0 < r < k.

A projection map p: : TkM — T'M is defined by Jl; o —

j:; o. These projection maps verify
X = o pS,
s s'r
for any r, s, with 0 = s < r < k ; here p: is interpreted
as Bk.
Notice that T*M is associated to the principal bundle
FM of the frames of order k on M (see [Gal). In fact, T*M
is the tangent bundle of lk-velocities of M introduced by
Ehresmann (see [Eh], [Mo]l, [Tull).
We shall now describe the local coordinates in T'M. Let
(v, zA) be a coordinate neighborhood of Mand o : R ——> M a
curve on M such that o(0) € U. Put o = z* s ¢, 1 = a = n.

Then the k-jet j; o is uniquely represented in B9 W =
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U by
A A A
(z", Z, .- ,zk)
where

A A A 1 A 1
- = ] =< .
zZ =0 (0), Z1 (171') (d'ordt’) ¢ , 1 =51 k

(in the sequel we put 23 = 2.

Now, we can define a canonical mapping

T T — (T M), 1 =r =k,
k,r-1

given by
k 1
Jg o — J, T

r-1

where T : R — T" M, t — T(t) = j o, o;(s) = o(s+t).

0
A simple computation shows that Tk 4 is locally
given by
(zA,zA, cey zA) _ (zA,zA, e »2 A : zA, 22‘,... ,r zA).
1 k 1 r-1 1 2 r
We use these maps Tkr_1 to construct a differential

operator dT which maps each function f on T*M to a function
d.f on T**'M defined by

k+1 - k k+1
(de) (Jo o) = df(Jo o) (Tk+1,k(J0 o )).

Then de is locally expressed by

k
- A A
(df) = T (1+1) z* (o£/02)).

1=0
So, we have
7 A - (i A
{1.1) dT(zl ) (i+1) I and
i A _ 1A
(1.2) d_r (z0 ) (1')21’

with 0 = i = k.
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Since dT(fg) = dr(f)g + dT(g) f, then dT extends to an
operator which maps a p-form a on TkM into a p-form dTa on
T**'M in such a way that drd = ddT (see [DLR2]}, [Tull).

From (1.1) and (1.2) we deduce

Proposition 1.1. Let X and Y be a vector

fields on T'M. Then X = Y if and only if
k,* r _ k,*®
X((pr) (de)) = Y((pr) (drf))’

for every function f on M, 0 = r = k (here, p: is to be
interpreted as the identity map and TOM is identified to M).
Now, we shall describe a 1lifting operator which
generalises the vertical 1ift in tangent bundle geometry, as
described in [YI], for example.
Definition 1.1. Let X be a vector field on
TrM, 0 < r < k. The vertical lift of X to TkM (with respect

to pk:~1 : ™M —— T*"7'M ) is the unique vector field X*

on TM defined by

r

o, if 0 s s = k-r-1

X*((p%) " (d%F)) = {
s T

(s1)/(s=(k-r))t X((p * ) (d3e)),

(k
if k-r s s sk

.

for every function f on M.
We remark that the case r = 0 was considered by Crampin,
Sarlet and Cantrijn [CSC].

r
If X = z xf (a/az:), then we deduce from (1.1) and (1.2)
1=0
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that

kK _ ¢ A
(1.3) X -lzox‘i‘ (8792 ).

Using the vertical lift and the map Tk k_r:TkM ] T(Tk-rM)

we construct a canonical vector field C1 on TkM as follows :
k _ k k
C1(Jo o) = (Tk,k-l(JO o)) .

So, C1 is locally expressed by

(1.4) C1 =,

N w

i z‘: (a/az‘:).
1

The vector field C1 is generalization of the Liouville
vector field (or dilation field) on TM (see [CSC], [DLR1],
(DLR2], [DLV1]).
We may also use the vertical 1ift construction to define
k canonical tensor fields of type (1.1) (or vector 1-forms)
on TkM. In fact, for each r, 1 = r = k, we can define a
linear endomorphism (Jr)z of the tangent space T;(TkM) of
TM at z € T*M as follows :
(3)_(X) = ((p° ), 0

*

So, we have
Proposition 1.2, Jr has constant rank

{k-r+1)n and verifies

s 0, if rs = k+1,
(Jr) =
J , if rs > k+1.

rs
Furthermore J1 determines an almost tangent structure of

order k on TkM.
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Remar k. An alternative definition of Jr, 1 =<r =k,
has been given by de Leon and Villaverde (see [DLV1],
[DLR2]).

If we put Cr = ercl, 2 =r = k, we have the following
identitied :

0, if r+s = k+1
(1.6) JC =
r s
C , 1if r+s > k+1,
r+s
o, if r+s > k+1
(1.7) Lc Js =
r -sJ , if r+s = k+1,
r+s-1
{(1.8) {J,J1=0.
r 8

A direct consequence of (1.8) is the vanishing of the

Ni jenhuis tensor NJ = (1/2) [J1’J1] of J1' Therefore the
1
almost tangent structure of order k on TkM defined by J1 is

always integrable (see [DLV1], [DLR2]).

2. Homogeneous and semibasic forms

Let us recall the following definitions (see [DLV2],
[DLR2]).
(a) Homogeneous forms

Def inition 2.1, A function f on ™M is said

to be homogenous of degree a if Lc f=af.
1
Let ht : R —> R be the homotetic of ratio e and let

Ht : TkM — TkM denote the fibre-preserving transformation
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induced from h, that is H (jk o) = Jk (0 o h). Since C
t t Yo 0 t 1

generates the 1-parameter group of transformations Ht then
the condition 1in Definition 2.1 is equivalent to
f o Ht = e*'f.

Definition 2.2. A (scalar) p-form a on T™*M is

said to be homogeneous of degree a if Lc o= a o
1
Def inition 2.3 A vector i1-form L on TkM is

said to be homogeneous of degree a if LC L = (a-1)L.
1
(b) Semibasic forms

Definition 2.4. A (scalar) p-form a on T'M is
said to be semibasic of type r if a € Im J:.

Since Im quwl = Ker Jr we deduce that a Pfaff form «
on T*M is semibasic of type r if and only if a(quw1X) = 0,
for every vector field X on TkM. Then a Pfaff form a on T*M
is semibasic of type r if and only if « is locally expressed

by

kST
(2.1) a = z o dz'.

A1

1=0
Let « be a semibasic Pfaff form of type r on TM. Then we
can define a map D : T"M —— T (T*"M) as follows :
D(Jy o) (¥) = algh o) (X),

k-r Kk K _
where Y € T N (T" M) and X e T « (T'M), with (pk_r)‘X =Y

I, @ Y

(since a is semibasic of type r then D(jg o) is well-
defined.

Moreover, if a is locally given by (2.1) then we have
k-r

Dz}, ... ,Z)) =

1=0

i

A
dz .
A 1
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Therefore, the diagram

T*M > T (TX™M)

™M

is commutative, where q er is the canonical projection.
T M
Now, let Amw be the Liouville form of T'(TbTM) (see [AM],

[Go]). Then a simple computation shows that

»
Da = a.
k-r
Therefore, we can state the following.
Proposition 2.1. Let a be a semibasis Pfaff
form on TkM of type r. Then a determines the map

k & _k-r
D: TM —— T (T "M) such that

(1) ¢q

(2) DA = a.
k-r
Re mar k. An alternative proof of Proposition 2.1lwas
given by de Lepn and Rodrigues [DLR2] following the one of
Godbillon [Go] for the case k = 1.
Definition 2.5 A vector 1-form L on TkM, 1 =1

is said to be semibasic of type r if JL = 0 and '1J L =
. r K-r+1X
= 0, for any vector field X on T M.

3. Semisprays of higher order. Potentials

The aim of this section is to introduce a special kind

of vector fields on higher tangent bundles.
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Definition 3.1. A vector field £ on T'M is
said to be semispray of type r if Jre = Cr.

From (1.5) we deduce that a semispray € on T*M of type r
is locally given by

_ A A A A _ A A
£ = z, (a/azo) + 2 z, (6/821) +...+ (k-r+1) quwl(a/azkr) +

A A A A
+ §k_r‘1(a/azk_r+1) + .., 0+ Ek (6/azk),
where EA = EA(zB. e ,zB), k-r+1 s { sk, 1 = A,B s n.
1 10 Kk

Definition 3.2 Let £ be a semispray on T'M
of type r. A curve o in M is called a path (or solution) of
£if jkc is an integral curve of £.

Consequently, a curve o in M is a path of £ if and only
if it verifies the following system of differential
equations :

1+1 A 141

(3.1) (17i1) (@'*'etrat'h = E:(ap, de?zdt, ... , d*e%sat",

k-r+1 = i = k, 1 = A,B = n.

We shall express the non-homogeneity of a semispray

Definition 3.3. Let £ be a semispray on T'M
of type r. We shall call deviation of § the vector field
€= Ic €l - & .'

A simple computation shows that JPE = 0.

Def inition 3.4. A semispray £ on ™M of type
r is called spray of type r if € has zero deviation, that is
[C1’€] = £ If € is a spray then their paths are called
geodesics.

From (3.1) and (3.2) we deduce that £ is a spray if and

only if the functions E?, k-r+1 = i =< k, are homogeneous of
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degree i{+1.

The next proposition 1s an easy consequence of (1.6),
(1.7) and (1.8).

Proposition 3.1. Let € be a semispray on TkM
of type 1. Then we have

(1) J1[£, ka ] =-k (JxX)'
(2) Jile, Jix ] - J2[€.X 1= -Jix,

for every vector fleld X on TkM.

Next, we shall introduce the potential of a semibasic
form.

Definition 3.5. Let a (resp. L) be a scalar
p-form (resp. a vector l-form) on TkM semibasic of type r.
Then the potential o’ of « (resp. L° of L) is the scalar
(p-1)-form (resp. vector (1-1)-form) given by

0 0
a iea, (resp. L 1€L)

where £ is an arbitrary semispray of type r on TkM.
Obviously, o° (resp. LP) does not depend on the choice of §
since a (resp. L) is semibasic. Moreover, we have

Proposition 3.2 ap and Lo are semibasic of

type r.

(We notice that the scalar p-form a is not necessarily
skew-, symmetric).

From (1.1) and (1.3) we deduce

Proposition 3.3. Let £ be a semispray on TkH
of type 1. Then

Le((p)) ) = (o],

for every p-form a on TkM, where r < k.

)" (da),
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4. Connectlions of higher order

The variety of fibrations on T*M permit us to consider
several types of connections of order k on M.

Definition 4.1. A vector 1-formT on T*M such
that

(4.1) Jr=J, rJ = -J

r r k-r+1 k-r+1
will be called a connection on M of order k and type r.

Re mar k. Obviously, we may consider connections of
order k on M which are C* on T*M = T*M-{ zero section }, not
necessarily on all TkM. Then a connection of order k and
typer on M is a connection in the fibration pkfr : T'M —s

T“'M (see [R]). Since
k

P
VES(T"™) = Im J = Ker JJ ,
k-r+1 r

we deduce that I' defines an almost product structure on TkM,
2

that is, I'' = I. Therefore, we can consider the horizontal
and vertical projectors associated to T :
h=1(1/2) (1 +7T), v =(1/72)(I - T),

respectively. From (4.1) we have

Jh=J, =0, Jv=0, vJ = J .
T r k-r+1 r k-r+1 k-r+i
(4.2) A
pk
Imv=V “T(T)
If we put H = Im h, then
k

p
T(T*M) = H e V *"(T*M).
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Thus, the linear map

y . H—>T (T“"™M), z € TN,

k-r ¢ °
pk-r(Z)

is an isomrphism. So, is X is a vector field on Tk-rM then

(p

there exists a unique horizontal vector field X"l on TkM such
that

k
k

(p _r),XH =X;

XH_ will be called the horizontal lift of X to TM with
respect to I'. Also, let o be a curve on Tk-rM, and z € TkM
such that ¢(0) = y and (p:_r)(z) = y. Then there exists a
unique horizontal curve o on TM such that a'H(O) = z, and
P o ¢ = 0o ; o will be called the horizontal lift of o
to T*M with respect to T.

From (4.1) we deduce that I' is locally given by the

matrix

I(k-r+1)n 0
(4.3) r=

- o8 -1
A rn
where 198 r“"’BA(zg....,zi), 0= i= r-1, 0.= js k-r.
Next, we shall consider a particular case of

connections.

Definition 4.2. Let I be a connection on M of
order k and type r. The tension of T is the vector 1-form H

on T'M given by
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H = (1/2) [Ci,l"] = [Ci’h 1.

The connection I' is sald to be homogeneous if its tension
vanishes, that is I' is an homogeneous vector 1-form of
degree 1.

From Definition 4.2 we easily deduce that I is
(1,§)B

A
homogeneous of degree k-r+l1-i-j, 0 s i sr-1, O s j = k-r,

1 s ABsn.

The following proposition is a direct consequence of
(4.3).

Propos1iti1l1on 4.1. The tension H of a

homogeneous if and only if the function T is

connection I' of order k and type r on M is a semibasic
vector 1-form of type r.

Definition 4.3. Acurve ¢ in M is called a
path of a connection I' of order k and type r on M if ch' is
a horizontal curve in TkM. If T is homogeneous, then their
paths are called geodesics.

From (4.3) we get that o is a path of T if and only if ¢
verifies the following system of differential equations :

(4.4) (1711)(a"*eBrat!*y =

k-r
=-7 (wynr
}=0

(l-k+r-1,j)B(dj+1o_A/dtj+1)
A »

k-r+1 =1 <k, 1 s A,B =< n.
Remar k. If T iIs a homogeneous connection of order
1 on M, then I' defines a linear connection V on M. In such a
case, this system of differential equations becomes the

usual one for the geodesics of V (see [Gr], [DLR2]).
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5. Semisprays associated to connections of higher order

In this section, we shall prove that, canonically
associated to a connection of order k and type r on M, there
exists a semispray on TkM of the same type.

Let T be a connection of order k and type r on M. If &’
is an'arbitrary semispray on TkM of the same type, then,
from (4.2) € = h€' is a semispray on T*M of type r which not
depends on the choice of £’. £ will be called the associated
semispray of I'. Notice that T'§ = §. Moreover, if H is the

tension of I', we have

. ) ) ) ) B
H = 1€H = H(E) = [Cl,hE] h[Cl,E] = [cl.El h[Cl.El-

Since E‘ = [CI,E]—E € Inm quwi' we deduce
h([CI.E] - &) = h[Cl.E] - £ =0.

Therefore, we have H = E.. So, the following proposition
has been proved. '

Proposition 5.1, Let I' be a connection of
order k and type r on M with tension H. Then the associated
semispray € of I' verifies E‘ = .

Corollary 5.1. IfT is homogeneous, then £ is
a spray.

From (3.1) and (4.3) we deduce that the local expression

of the semispray associated to T is

_ A A A A _ A A
£ zl(a/azo) + 222(8/621) + ... + (k r+1)zk_r+1(8/azk ) +

A A A ‘A
+ E;_r+1(a/azkfr+1) + ...+ §k(6/azk),

where
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k-r
A _ B (1-k+r-1, J)A
(5.1) £ = JZO(JH) 2o Ty

k-r+1 =1 sk, 1 =AB =sn.
Next, we give an alternative construction of the

semispray & associated to I'' Indeed, £ is given by

_ H k
Ez = (Tk,k__r(z))z , z € TM,

Therefore, we have

Proposition 5.2. T and £ have the same
paths.

Pr oof. Let o be a path of I'. Then ch is a

horizontal curve in TkM. Thus,

TN
(Goren =(r,  _en " = (TN,
e (o) (J oW

K TR oo
since Tk ‘or Jo (t) = (J o)(t). On the other hand, we have

k K _ kr .
(Jo)(t) = (J o)(t). Consequently,

—_—
(21" (Forct) = p*

k-~

i —— T —

(j*¢)(t) is the horizontal 1ift of T, k_r((jko')(t)) to T'M

at (ch)(t), and, so, ¢ is a path of £.
The converse is trivial.
R e m a r k. The reader can obtain directly

Propositition 5.2. from (3.1) and (4.4).

6. Torsion and curvature of higher order connections

Let ' be a connection of order k and type r on M.
Definiltion 6.1. The weak torsion of T is the

vector 2-form t on TkM given by
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t = (1/2) [Jr,F] = [Jr,h].

From the above definitions one has
Proposition 6.1. The weak torsion t of T is
a semibasic form of type r.
Def inition 6.2. The strong torsion of T is
the vector 1-form T on TkM given by

T=1t%-#,

where H is the tension of T.

Proposition 6.2. We have T0 + E‘ = 0, where
€ is the associated semispray to T.

Proof. In fact,

0

T° = (t°

-0 = t9° - K% = -H° = ¢,

since Proposition 5.1.
Now, we introduce the curvature of T.
Def inition 6.3 The curvature of T is the

vector 2-form on TkM given by
R = - (1/2) [h,h].

A straightforward computation shows that R is semibasic of
type r.
We end this section proving the Bianchi identities for T.
Proposition 6.3. We have

(1) [Jr,R] = [h,t],

(2) [n,R] = 0.
Proof. (1) From the Jacobl identity, we deduce

(3. [n,h1] + [h,[h,J 1] + [h,[J,hI] = O.
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Then
[Jr,R] = [h, t].

(2) is proved in a similar way.
Proposition 6.4. We have

[CI,R] = - [h,H].

Proof. As above, the result follows directly from
the Jacobi identity.

Corollary 6.1. If T is homogeneous, then also
is R.

Remark. IfT is an homogeneous connection of order
1 on M, then the torsion and curvature forms of I' may be
related, in a natural way, with the torsion and curvature

tensors &f the induced linear connection V on M (see [Grl,

[vl).

7. Assoclated connections to semisprays of higher order

In this section, we shall prove that, associated to a
semispray £ on TkM of type 1, there exist k connections Fl,
. Fk on M of order k and types 1, ... , k, respectively.

Before proceeding further, we shall need the following
auxiliary lemma, obtained directly from Proposition 3.1.

Lemma 7.1. We have

(1) (L Ji) Jk

]
P
[

3

(2) J1 (LEJI) =
Proposition 7.1. Let £ be a semispray on T'M

\
|
[

of type 1. Then the vector 1-form Fl given by
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(7.1) Fl = (1/(k+1)) {-2 L€J1 + (k-1) 1}

defines a connection of order k and type r on M.
Proof. In fact, from (2) of Lemma 7.1, we have

J.r
11

- (2/(k+1)) J1 (L Ji) + ((k-1)/(k+1)) J1 =

3

(2/7(k+1)) J1 + ((k-1)/(k+1)) J1 = Jl.

On the other hand, from (1) of Lemma 7.1, we obtain
I‘le = - (2/(k+1)) (L€J1) Jk + ((k-1)/(k+1)) Jk =

= - (2/(k+1)) Jk + ((k-1)/(k+1)) Jk = - Jk'

This ends the proof.
Remar k. We notice that, for each integer r, 1= rs k,

there exists a connection Fr of order k and type r on M.

Fr is given by

(7.2) r =A I+ z A Lé J

where

Ab = (k-2r+1)/(k+1),

A = (-1)" (2/(k+1)k(k~-1) ... (k-r+2)),

r

A= s) O) FT™ A, 1ss sl

For k = 1, (7.2) becomes

r =- (LEJ) (see [Gr]).

For k = 2, we have

F1 =-(2/73) L J1 +(1/3) 1,

£
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_ 2
F2 = (1/3) Lg

(see [Ca2], [DL1]).

Next, we shall compute the tension, weak and strong

J2 - (2/3) L J1 - (1/3) 1

3

torsions and the semispray associated to Fi.
First, let us notice that the horizontal and vertical

projectors of l"1 are

h1 = (1/(k+1)) {k I - L J1}’ and v, = (1/(k+1)) {I + L J1}’

3 3

respectively. Then the associated semispray of Fl is

§1= h1€ = (1/(k+1)){k&§ - (L J1)€} = (1/(k+1)){k§ - [E,Cll) =

3

= £+ (1/(k+1)) €.
Now, from the Jacobi identity, we obtain that the weak
torsion t1 of Fl vanishes, that is t1 = 0. Moreover, the

tension of F1 is

H = (1/2) [C1’r1] = - (1/(k+1)) [Cl,[E,Jlll,
since [Cl,I] = 0. Therefore, from the Jacobi identity, we
obtain
H = - (1/(k+1)) [g',Jll.

Finally, the strong torsion of l"1 is

T, = (1/(k+1)) [E',Jll.

From these facts we deduce
Proposition 7.2 If £ is a spray on TkM,
then F1 is an homogeneous torsionless connection which

associated semispray is £.
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8. Decomposition theorem

In this section, we shall prove that the strong torsion
and the associated semispray characterize a connection of
order k and type 1 on M.

We shall need the following result.

Proposition 8.1. let T and I'" be two
connections of order k and type 1 on M with the same strong
torsion and the same associated semispray. Then I' = T’.

Proof. Let & t, T and H (resp. &, t’, T' and H')
be the associated semispray, weak torsion, strong torsion
and tension of T (resp. I'’). If we put B = I’ -~ I', we have
J1B = 0 and BJk = 0. Therefore, B is a semibasic vector
1-form of type 1 on T*M. Moreover, BE = T'§ - T§ = €' -€ = O,

since £ = £’. Now, we have
t'= (1/2)[J1,F’] = (1/2)[J1,F+B]= (1/2)[J1,F]+ (1/2)[J1,B] =

=t + (1/2)[J,B],

H = (1/2) [cl,r'] =H + (1/2) [cl,B].

(o}

T =) -H=T+ (1/2) ([JI,B]O - [c,,B]).

Since T' = T, we get
0—
[JI,B] = [C1’B]'

Therefore, we deduce

(8.1) BJ1[E,X] - JI[E,BX] - B [€,J1X] =0,

for every vector field X on TkM. Since BX € Im Jk and B is

semibasic, we obtain
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JI[E,BX] = - k (BX),

by Proposition 3.1. On the other hand, we have

BJI[E.X] - B [£,J X] = B(J [£,X] - (€, X1)
= - B([£,J,1X) = - B([§,J 1(h X)),

since B is semibasic. But [E,Jllh1 = —hl. Then, we deduce
BJI[E,X] - B [§,J1X] = B(hIX) = BX.
Consequently, (8.1) becomes

BX + k (BX) = (k+1) (BX) = 0.
So, BX = 0, and then B vanishes. This ends the proof.

Next, we can state our main theorem, which generalizes a
result due to Grifone [Gr] for the case k = 1.

Theorem 8.1. (Decomposition theorem). Let & be a
semispray of type 1 and T a semibasic vector 1-form of type
1 on T*M such that T° + §‘ = 0. Then there exists a unique
~connection I' of order k and type 1 on M such that its
~assocliated semispray is £ and its strong torsion 1s T. The

connection I' is given by
r=r + (2/(k+1)) T ,

where r is given by (7.1).

Proof. Existence : Let I =T + (2/(k+1)) T. Then
JIF = J1 and I‘Jk = Jk , because T is semibasic of type 1. So
I' is a connection of order k and type 1 on M. Now, if h is

the horizontalnprojector of T', we have

h§ = (1/2) (I + I')(§) = (1/2) (I + Fl)(E) + (1/(k+1))T(§)

- 628 -



Connections on tangent bundles

= h(8) + (1/(ks1))T° = € + (1/(k+1))E" + (1/(k+1)) T° = £.

Furthermore, the weak torsion of T is
t = (172) [JI,F] = t.1 + (1/(k+1)) [J1’T] = (1/(k+1)) [JI.T].
and the tension of T is

H = (172) [C,T] = H + (1/(k+1)) [C,, Tl

= (1/(k+1)) ([C,T] - [€,TD).
Therefore, the strong torsion of T is

T = t°

- = (1/(k+1)) ([J,T1° + [C,TI - (€, 1),
But, an easy computation shows that

(L3, T1° + [C,T] - [€7,J DX = - TUEJI X - J [€.TX].
Consequently, we have

T'X = T'(hIX) = - (1/(k+1)) {T([§,J1](h1X) + J1[€’T(h1X)]} =

= - (1/(k+1)) (—T(h1X) -k T(hIX)) = T(hIX) = TX,

since T and T’ are semibasic of type 1. Then T = T’.

Uniqueness : It is a direct consequence of Proposition

R e mar k. The decomposition theorem proves that a
connection of order k and type 1 on M is completely
determined by 1its associated semis pray and its strong
torsion.

Corollary 8.1. Let I' be a connection of order

k and type 1 on M. Then the strong torsion of I' vanishes if
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and only if its weak torsion and tension also vanish.
Consequently, there are no non-homogeneous connections

(of order k and type 1) with zero strong torsion.
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