DEMONSTRATIO MATHEMATICA Vol. XXII No 3 1989

Luis C. de Andrès, Manuel de Leòn, Paulo R. Rodrigues

CONNECTIONS ON TANGENT BUNDLES OF HIGHER ORDER

Introduction

As it is well known the tangent bundle TM of any manifold M carries a canonical integrable almost tangent structure J (see [Go], [Gr], [YI]). By means of J, Grifone [Gr] gave a new definition of (non-homogeneous) connection on M. In fact, a (non-homogeneous) connection on M is a vector 1-form Γ on TM such that $J\Gamma = J$ and $\Gamma J = -J$. The connection Γ is said to be homogeneous if Γ is homogeneous as a vector 1-form. Obviously, if Γ is Γ on all TM, then it is a linear connection (see [V]); so, we must suppose that Γ is Γ only on TM = TM - { zero section } in order to obtain strictly non-linear homogeneous connections.

The purpose of this paper is to generalize the results of Grifone to tangent bundles of higher order. In fact, the tangent bundle T^kM of order k of any manifold M carries a canonical almost tangent structure of order k, namely J_1 (see [CSC], [DLV1], [DLV2], [DLR1], [DLR2]). Now, the variety of fibrations on T^kM permit us to consider several types of connections of order k on M. If we put $J_r = (J_1)^r$, $1 \le r \le k$, then we obtain k canonical vector 1-forms on T^kM . Thus, a connection of order k and type r, $1 \le r \le k$, on M

(that is, a connection in the fibration $\rho_{k-r}^{k}: T^{k}M \longrightarrow T^{k-r}M$) is given by a vector 1-form Γ on T^kM such that $J_{\Gamma} = J_{\Gamma}$ and $\Gamma J_{k-r+1} = -J_{k-r+1}$. The tension $H = (1/2) [C_1, \Gamma]$ (where C_1 is the generalized Liouville vector field on TkM) measures the non-homogeneous of Γ ; so, Γ is homogeneous if and only if Hvanishes. Now, we may associate to Γ a semispray ξ on T^kM of the same type r in such a way that Γ and ξ are the same paths. The converse is also proved; in fact, to each semispray ξ of type 1 on T^kM we associate k connections Γ_1 , ..., Γ_{L} of order k on M and types 1,...,k, respectively. Furthermore, the Frölicher -Nijenhuis formalism permit us to obtain the curvature and torsion forms of Γ . In fact, the curvature form R of Γ is given by R = (1/2) [h,h], where h is the horizontal projector associated to Γ ; the weak and strong torsion forms t and T are given by $t = [J_r, h]$ and T = $i_{\mathcal{E}}^{t}$ - H, respectively. Finally, we prove the main result of this paper which generalizes the corresponding one obtained by Grifone for the tangent bundle :

Let ξ be a semispray of type 1 and T a semibasic vector 1-form of type 1 on T^kM such that $i_{\xi}T + \xi^* = 0$ (where $\xi^* = [C_1, \xi] - \xi$ denotes the deviation of ξ). Then there exists a unique connection Γ of order k and type 1 on M such that its associated semispray is ξ and its strong torsion is T. The connection Γ is given by

$$\Gamma = (1/(k+1)) \{ -2 L_{\xi} J_1 + (k-1) I + 2 T \}.$$

Consequently, a connection of order k and type 1 on M is completely determined by its associated semispray and its

strong torsion.

In a forthcoming paper [ALR], we shall apply these results to obtain a canonical connection associated to a regular Lagrangian system of higher order (see [DLR2] for the homogeneous case).

1. Tangent bundles of higher order

Let M be an n-dimensional manifold. The tangent bundle of order k of M is the (k+1)n-dimensional manifold T^kM of k-jets at $0 \in R$ of differentiable mappings $\sigma: R \longrightarrow M$. We denote by $\beta: T^kM \longrightarrow M$ the canonical projection defined by $\beta(j_0^k \sigma) = \sigma(0)$. Then T^kM has a bundle structure over M. If k=1, then $T^1M=TM$ is the tangent bundle of M. However, if k>1, $\beta^k: T^kM \longrightarrow M$ is not a vector bundle. As well as being fibred over M, T^kM is also fibred over T^rM , 0 < r < k. A projection map $\rho_r^k: T^kM \longrightarrow T^rM$ is defined by $j_0^k \sigma \longrightarrow j_0^r \sigma$. These projection maps verify

$$\rho_{\mathbf{g}}^{\mathbf{k}} = \rho_{\mathbf{g}}^{\mathbf{r}} \rho_{\mathbf{r}}^{\mathbf{k}} ,$$

for any r, s, with $0 \le s < r < k$; here ρ_0^k is interpreted as β^k .

Notice that T^kM is associated to the principal bundle F^kM of the frames of order k on M (see [Ga]). In fact, T^kM is the tangent bundle of 1^k -velocities of M introduced by Ehresmann (see [Eh], [Mo], [Tu1]).

We shall now describe the local coordinates in T^kM . Let (U, z^k) be a coordinate neighborhood of M and $\sigma: R \longrightarrow M$ a curve on M such that $\sigma(0) \in U$. Put $\sigma^k = z^k \circ \sigma$, $1 \le k \le n$. Then the k-jet $j_0^k \sigma$ is uniquely represented in $(\beta^k)^{-1}(U) = 1$

TkU by

$$(z^{\lambda}, z_{1}^{\lambda}, \ldots, z_{k}^{\lambda})$$

where

$$z^{A} = \sigma^{A}(0), \quad z_{i}^{A} = (1/i!) (d^{i}\sigma^{A}/dt^{i})|_{t=0}, \quad 1 \le i \le k.$$

(in the sequel we put $z_0^A = z^A$).

Now, we can define a canonical mapping

$$T_{k,r-1}: T^kM \longrightarrow T(T^{r-1}M), 1 \le r \le k,$$

given by

$$j_0^k \ \sigma \longrightarrow j_0^1 \ \tau,$$

where $\tau: R \longrightarrow T^{r-1}M$, $t \longrightarrow \tau(t) = j_0^{r-1}\sigma_t$, $\sigma_t(s) = \sigma(s+t)$. A simple computation shows that $T_{k,r-1}$ is locally given by

$$(z^{A},z_{1}^{A},\ldots,z_{k}^{A}) \longrightarrow (z^{A},z_{1}^{A},\ldots,z_{r-1}^{A};\ z_{1}^{A},\ 2z_{2}^{A},\ldots,r\ z_{r}^{A}).$$

We use these maps $T_{k,r-1}$ to construct a differential operator d_T which maps each function f on T^kM to a function d_Tf on $T^{k+1}M$ defined by

$$(d_{T}^{f}) \ (j_{0}^{k+1} \ \sigma \) \ = \ df(j_{0}^{k} \ \sigma \) \ (T_{k+1,k}^{}(j_{0}^{k+1} \ \sigma \)).$$

Then $d_{\underline{f}}$ is locally expressed by

$$(d_{\mathbf{T}}f) = \sum_{i=0}^{k} (i+1) z_{i+1}^{\mathbf{A}} (\partial f/\partial z_{i}^{\mathbf{A}}).$$

So, we have

(1.1)
$$d_{T}(z_{i}^{A}) = (i+1) z_{i+1}^{A}$$
, and

(1.2)
$$d_{T}^{i}(z_{0}^{A}) = (i!)z_{i}^{A},$$

with $0 \le i \le k$.

Since $d_T(fg) = d_T(f)g + d_T(g) f$, then d_T extends to an operator which maps a p-form α on T^kM into a p-form $d_T\alpha$ on $T^{k+1}M$ in such a way that $d_Td = dd_T$ (see [DLR2], [Tu1]).

From (1.1) and (1.2) we deduce

Proposition 1.1. Let X and Y be a vector fields on T^kM . Then X = Y if and only if

$$X((\rho_r^k)^* (d_T^r f)) = Y((\rho_r^k)^* (d_T^r f)),$$

for every function f on M, $0 \le r \le k$ (here, ρ_k^k is to be interpreted as the identity map and T^0M is identified to M).

Now, we shall describe a lifting operator which generalises the vertical lift in tangent bundle geometry, as described in [YI], for example.

Definition 1.1. Let X be a vector field on T^rM , 0 < r < k. The $vertical\ lift$ of X to T^kM (with respect to $\rho_{k-r-1}^{\ k}$: $T^kM \longrightarrow T^{k-r-1}M$) is the unique vector field X^k on T^kM defined by

$$X^{k}((\rho_{s}^{k})^{*}(d_{T}^{s}f)) = \begin{cases} 0 , & \text{if } 0 \leq s \leq k-r-1 \\ \\ (s!)/(s-(k-r))! \ X((\rho_{s-(k-r)}^{k})^{*}(d_{T}^{s}f)), \\ & \text{if } k-r \leq s \leq k \end{cases}$$

for every function f on M.

We remark that the case r=0 was considered by Crampin, Sarlet and Cantrijn [CSC].

If
$$X = \sum_{i=0}^{r} X_{i}^{A}$$
 ($\partial/\partial z_{i}^{A}$), then we deduce from (1.1) and (1.2)

that

(1.3)
$$X^{k} = \sum_{i=0}^{r} X_{i}^{A} \left(\partial / \partial z_{k-r+i}^{A} \right).$$

Using the vertical lift and the map $T_{k,k-r}:T^kM\longrightarrow T(T^{k-r}M)$

we construct a canonical vector field C_1 on T^kM as follows: $C_1(j_0^k \sigma) = (T_{k,k-1}(j_0^k \sigma))^k$.

So, C, is locally expressed by

(1.4)
$$C_{1} = \sum_{i=1}^{k} i z_{i}^{A} (\partial/\partial z_{i}^{A}).$$

The vector field C₁ is generalization of the Liouville vector field (or dilation field) on TM (see [CSC], [DLR1], [DLR2], [DLV1]).

We may also use the vertical lift construction to define k canonical tensor fields of type (1.1) (or vector 1-forms) on T^kM . In fact, for each r, $1 \le r \le k$, we can define a linear endomorphism $(J_r)_z$ of the tangent space $T_z(T^kM)$ of T^kM at $z \in T^kM$ as follows:

$$(J_{p})_{x}(X) = ((\rho_{k-p}^{k})_{x}^{k})^{k}.$$

So, we have

Proposition 1.2. J_r has constant rank (k-r+1)n and verifies

$$(J_r)^s = \begin{cases} 0, & \text{if rs } \leq k+1, \\ \\ J_{rs}, & \text{if rs } > k+1. \end{cases}$$

Furthermore J_1 determines an almost tangent structure of order k on T^kM .

Remark. An alternative definition of J_r , $1 \le r \le k$, has been given by de Leon and Villaverde (see [DLV1], [DLR2]).

If we put $C_r = J_{r-1}C_1$, $2 \le r \le k$, we have the following identities:

(1.6)
$$J_{rs}^{C} = \begin{cases} 0, & \text{if } r+s \leq k+1 \\ C_{r+s}, & \text{if } r+s > k+1, \end{cases}$$

(1.7)
$$L_{C_{\mathbf{r}}} J_{\mathbf{s}} = \begin{cases} 0, & \text{if } r+s > k+1 \\ -sJ_{r+s-1}, & \text{if } r+s \le k+1, \end{cases}$$
(1.8)
$$[J_{\mathbf{r}}, J_{\mathbf{r}}] = 0.$$

A direct consequence of (1.8) is the vanishing of the Nijenhuis tensor $N_{J_1} = (1/2) [J_1, J_1]$ of J_1 . Therefore the almost tangent structure of order k on T^kM defined by J_1 is always integrable (see [DLV1], [DLR2]).

2. Homogeneous and semibasic forms

Let us recall the following definitions (see [DLV2], [DLR2]).

(a) Homogeneous forms

Definition 2.1. A function f on T^kM is said to be homogenous of degree a if $L_{C_2}f = a f$.

Let $h_t:R\longrightarrow R$ be the homotetic of ratio e^t and let $H_t:T^kM\longrightarrow T^kM$ denote the fibre-preserving transformation

induced from h_t , that is $H_t(j_0^k \sigma) = j_0^k (\sigma \circ h_t)$. Since C_1 generates the 1-parameter group of transformations H_t then the condition in Definition 2.1 is equivalent to $f \circ H_t = e^{at}f$.

Definition 2.2. A (scalar) p-form α on T^kM is said to be homogeneous of degree a if L_C $\alpha = a \alpha$.

Definition 2.3 A vector 1-form L on T^kM is said to be homogeneous of degree a if $L_{c_1}L = (a-1)L$.

(b) Semibasic forms

Definition 2.4. A (scalar) p-form α on T^kM is said to be semibasic of type r if $\alpha \in Im J_r^*$.

Since Im $J_{k-r+1}=Ker\ J_r$ we deduce that a Pfaff form α on T^kM is semibasic of type r if and only if $\alpha(J_{k-r+1}X)=0$, for every vector field X on T^kM . Then a Pfaff form α on T^kM is semibasic of type r if and only if α is locally expressed by

(2.1)
$$\alpha = \sum_{i=0}^{k-r} \alpha_{A}^{i} dz_{i}^{A}.$$

Let α be a semibasic Pfaff form of type r on $T^kM.$ Then we can define a map D : $T^kM \, \longrightarrow \, T^*(T^{k-r}M)$ as follows :

$$D(j_0^k \sigma)(Y) = \alpha(j_0^k \sigma)(X),$$

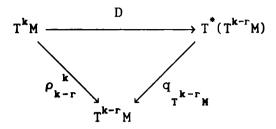
where $Y \in T$ $(T^{k-r}M)$ and $X \in T$ (T^kM) , with $(\rho_{k-r}^k)_*X = Y$

(since α is semibasic of type r then $D(j_0^k \ \sigma)$ is well-defined.

Moreover, if α is locally given by (2.1) then we have

$$D(z_0^A, \ldots, z_k^A) = \sum_{i=0}^{k-r} \alpha_k^i dz_i^A.$$

Therefore, the diagram



is commutative, where q is the canonical projection. The canonical projection of T^{k-r}_M Now, let λ_{k-r} be the Liouville form of $T^*(T^{k-r}M)$ (see [AM], [Go]). Then a simple computation shows that

$$D^{*}\lambda_{k-r} = \alpha.$$

Therefore, we can state the following.

Proposition 2.1. Let α be a semibasis Pfaff form on T^kM of type r. Then α determines the map $D: T^kM \longrightarrow T^*(T^{k-r}M)$ such that

(1)
$$q_{\mathbf{r}^{\mathbf{k}-\mathbf{r}_{\mathbf{w}}}} \circ D = \rho_{\mathbf{k}-\mathbf{r}}^{\mathbf{k}},$$

(2)
$$D^* \lambda_{k=0} = \alpha$$
.

Remark. An alternative proof of Proposition 2.1was given by de Lepn and Rodrigues [DLR2] following the one of Godbillon [Go] for the case k = 1.

Definition 2.5. A vector 1-form L on T^kM , $1 \ge 1$ is said to be semibasic of type r if $J_L = 0$ and $i_{k-r+1X} = 0$, for any vector field X on T^kM .

3. Semisprays of higher order. Potentials

The aim of this section is to introduce a special kind of vector fields on higher tangent bundles.

Definition 3.1. A vector field ξ on T^kM is said to be semispray of type r if $J_r\xi=C_r$.

From (1.5) we deduce that a semispray ξ on T^kM of type r is locally given by

$$\xi = z_{1}^{A} (\partial/\partial z_{0}^{A}) + 2 z_{2}^{A} (\partial/\partial z_{1}^{A}) + \ldots + (k-r+1) z_{k-r+1}^{A} (\partial/\partial z_{kr}^{A}) +$$

$$+ \xi_{k-r+1}^{A} (\partial/\partial z_{k-r+1}^{A}) + \ldots + \xi_{k}^{A} (\partial/\partial z_{k}^{A}),$$

where $\xi_i^A = \xi_i^A(z_0^B, \ldots, z_k^B)$, $k-r+1 \le i \le k$, $1 \le A, B \le n$.

Definition 3.2. Let ξ be a semispray on T^kM of type r. A curve σ in M is called a path (or solution) of ξ if $j^k\sigma$ is an integral curve of ξ .

Consequently, a curve σ in M is a path of ξ if and only if it verifies the following system of differential equations:

(3.1)
$$(1/i!)$$
 $(d^{i+1}\sigma^A/dt^{i+1}) = \xi_i^A(\sigma^B, d\sigma^B/dt, \dots, d^k\sigma^B/dt^k),$
 $k-r+1 \le i \le k, \quad 1 \le A, B \le n.$

We shall express the non-homogeneity of a semispray

Definition 3.3. Let ξ be a semispray on T^kM of type r. We shall call deviation of ξ the vector field $\xi^* = [C_1, \xi] - \xi$.

A simple computation shows that $J_{\xi}^* = 0$.

Definition 3.4. A semispray ξ on T^kM of type r is called *spray* of type r if ξ has zero deviation, that is $[C_1, \xi] = \xi$. If ξ is a spray then their paths are called *geodesics*.

From (3.1) and (3.2) we deduce that ξ is a spray if and only if the functions ξ_i^A , $k-r+1 \le i \le k$, are homogeneous of

degree i+1.

The next proposition is an easy consequence of (1.6), (1.7) and (1.8).

Proposition 3.1. Let ξ be a semispray on T^kM of type 1. Then we have

(1)
$$J_{1}[\xi, J_{k}X] = -k (J_{k}X),$$

(2)
$$J_1[\xi, J_1X] - J_2[\xi, X] = -J_1X$$
,

for every vector field X on T^kM .

Next, we shall introduce the potential of a semibasic form.

Definition 3.5. Let α (resp. L) be a scalar p-form (resp. a vector 1-form) on T^kM semibasic of type r. Then the potential α^0 of α (resp. L^0 of L) is the scalar (p-1)-form (resp. vector (1-1)-form) given by

$$\alpha^0 = i_{\xi}\alpha$$
, (resp. $L^0 = i_{\xi}L$)

where ξ is an arbitrary semispray of type r on T^kM . Obviously, α^0 (resp. L^0) does not depend on the choice of ξ since α (resp. L) is semibasic. Moreover, we have

Proposition 3.2. α^0 and L^0 are semibasic of type r.

(We notice that the scalar p-form α is not necessarily skew- symmetric).

From (1.1) and (1.3) we deduce

Proposition 3.3. Let ξ be a semispray on T^kM of type 1. Then

$$L_{\mathcal{E}}((\rho_{\mathbf{r}}^{\mathbf{k}})^*\alpha) = (\rho_{\mathbf{r}+1}^{\mathbf{k}})^* (\mathbf{d}_{\mathbf{T}}\alpha),$$

for every p-form α on T^kM , where r < k.

4. Connections of higher order

The variety of fibrations on T^kM permit us to consider several types of connections of order k on M.

Definition 4.1. A vector 1-form Γ on T^kM such that

(4.1)
$$J_{r} = J_{r}, \Gamma J_{k-r+1} = -J_{k-r+1}$$

will be called a connection on M of order k and type r.

Remark. Obviously, we may consider connections of order k on M which are C^{∞} on $T^kM = T^kM-\{$ zero section $\}$, not necessarily on all T^kM . Then a connection of order k and typer on M is a connection in the fibration $\rho_{k-r}^{k}: T^kM \longrightarrow T^{k-r}M$ (see [R]). Since

$$\rho_{k-r}^{k}(T^{k}M) = Im J_{k-r+1} = Ker JJ_{r},$$

we deduce that Γ defines an almost product structure on T^kM , that is, $\Gamma^2 = I$. Therefore, we can consider the *horizontal* and *vertical projectors* associated to Γ :

$$h = (1/2) (I + \Gamma), v = (1/2)(I - \Gamma),$$

respectively. From (4.1) we have

(4.2)
$$\begin{cases} J_{r}h = J_{r}, hJ_{k-r+1} = 0, J_{r}v = 0, vJ_{k-r+1} = J_{k-r+1}, \\ Im v = V & k \end{cases}$$

If we put H = Im h, then

$$T(T^{k}M) = H \oplus V^{\rho_{k-r}^{k}}(T^{k}M).$$

Thus, the linear map

$$(\rho_{k-r}^{k})_{\bullet}: H_{z} \longrightarrow T_{\rho_{k-r}^{k}(z)}(T^{k-r}M), z \in T^{k}M,$$

is an isomrphism. So, is X is a vector field on $T^{k-r}M$ then there exists a unique horizontal vector field X^H on T^kM such that

$$(\rho_{k-r}^k)_{\bullet} X^H = X ;$$

X^H will be called the *horizontal lift* of X to T^kM with respect to Γ. Also, let σ be a curve on T^{k-r}M, and z ∈ T^kM such that $\sigma(0) = y$ and $(\rho_{k-r}^k)(z) = y$. Then there exists a unique horizontal curve σ^H on T^kM such that $\sigma^H(0) = z$, and $\rho_{k-r}^{\ k} \circ \sigma^H = \sigma$; σ^H will be called the *horizontal lift* of σ to T^kM with respect to Γ.

From (4.1) we deduce that Γ is locally given by the matrix

(4.3)
$$\Gamma = \begin{bmatrix} I_{(k-r+1)n} & 0 \\ \\ -2\Gamma^{(i,j)B} & -I_{rn} \end{bmatrix}$$

where $\Gamma^{(i,j)B}_{A} = \Gamma^{(i,j)B}_{A}(z_0^C, \dots, z_k^C)$, $0 \le i \le r-1$, $0 \le j \le k-r$.

Next, we shall consider a particular case of connections.

Definition 4.2. Let Γ be a connection on M of order k and type r. The tension of Γ is the vector 1-form H on T^kM given by

$$H = (1/2) [C_1, \Gamma] = [C_1, h].$$

The connection Γ is said to be homogeneous if its tension vanishes, that is Γ is an homogeneous vector 1-form of degree 1.

From Definition 4.2 we easily deduce that Γ is homogeneous if and only if the function $\Gamma^{(i,j)B}_{A}$ is homogeneous of degree k-r+1-i-j, $0 \le i \le r-1$, $0 \le j \le k-r$, $1 \le A, B \le n$.

The following proposition is a direct consequence of (4.3).

Proposition 4.1. The tension H of a connection Γ of order k and type r on M is a semibasic vector 1-form of type r.

Definition 4.3. A curve σ in M is called a path of a connection Γ of order k and type r on M if $j^k \sigma$ is a horizontal curve in $T^k M$. If Γ is homogeneous, then their paths are called geodesics.

From (4.3) we get that σ is a path of Γ if and only if σ verifies the following system of differential equations :

(4.4)
$$(1/i!)(d^{i+1}\sigma^B/dt^{i+1}) =$$

$$= -\sum_{j=0}^{k-r} (1/j!) \Gamma_A^{(i-k+r-1,j)B}(d^{j+1}\sigma^A/dt^{j+1}),$$

 $k-r+1 \le i \le k$, $1 \le A, B \le n$.

Remark. If Γ is a homogeneous connection of order 1 on M, then Γ defines a linear connection ∇ on M. In such a case, this system of differential equations becomes the usual one for the geodesics of ∇ (see [Gr], [DLR2]).

5. Semisprays associated to connections of higher order

In this section, we shall prove that, canonically associated to a connection of order k and type r on M, there exists a semispray on T^kM of the same type.

Let Γ be a connection of order k and type r on M. If ξ' is an arbitrary semispray on T^kM of the same type, then, from (4.2) $\xi = h\xi'$ is a semispray on T^kM of type r which not depends on the choice of ξ' . ξ will be called the associated semispray of Γ . Notice that $\Gamma\xi = \xi$. Moreover, if H is the tension of Γ , we have

$$H^0 = i_{\xi}H = H(\xi) = [C_1, h\xi] - h[C_1, \xi] = [C_1, \xi] - h[C_1, \xi].$$

Since $\xi^{\bullet} = [C_1, \xi] - \xi \in \text{Im } J_{k-r+1}$, we deduce

$$h([C_1, \xi] - \xi) = h[C_1, \xi] - \xi = 0.$$

Therefore, we have $H^0 = \xi^*$. So, the following proposition has been proved.

Proposition 5.1. Let Γ be a connection of order k and type ron M with tension H. Then the associated semispray \mathcal{E} of Γ verifies $\mathcal{E}^* = H^0$.

Corollary 5.1. If Γ is homogeneous, then ξ is a spray.

From (3.1) and (4.3) we deduce that the local expression of the semispray associated to Γ is

$$\xi = z_{1}^{A}(\partial/\partial z_{0}^{A}) + 2z_{2}^{A}(\partial/\partial z_{1}^{A}) + \dots + (k-r+1)z_{k-r+1}^{A}(\partial/\partial z_{k-r}^{A}) +$$

$$+ \xi_{k-r+1}^{A}(\partial/\partial z_{k-r+1}^{A}) + \dots + \xi_{k}^{A}(\partial/\partial z_{k}^{A}),$$

where

(5.1)
$$\xi_{i}^{A} = -\sum_{j=0}^{k-r} (j+1) z_{j+1}^{B} \Gamma_{B}^{(i-k+r-1,j)A},$$

 $k-r+1 \le i \le k$, $1 \le A, B \le n$.

Next, we give an alternative construction of the semispray ξ associated to Γ . Indeed, ξ is given by

$$\xi_z = (T_{k,k-r}(z))_z^H$$
, $z \in T^kM$.

Therefore, we have

Proposition 5.2. Γ and ξ have the same paths.

Proof. Let σ be a path of Γ . Then $j^k \sigma$ is a horizontal curve in $T^k M$. Thus,

$$((\mathbf{j}^k\sigma)(\mathbf{t})) = (T_{\mathbf{k},\mathbf{k}-\mathbf{r}}(\mathbf{j}^k\sigma)) \overset{H}{\underset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{H}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{t})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j}^k\sigma)(\mathbf{j})}}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{j})}{\overset{(\mathbf{j}^k\sigma)(\mathbf{$$

at $(j^k\sigma)(t)$, and, so, σ is a path of ξ .

The converse is trivial.

R e m a r k. The reader can obtain directly Propositition 5.2. from (3.1) and (4.4).

6. Torsion and curvature of higher order connections

Let Γ be a connection of order k and type r on M.

Definition 6.1. The weak torsion of Γ is the vector 2-form t on T^kM given by

$$t = (1/2) [J_r, \Gamma] = [J_r, h].$$

From the above definitions one has

Proposition 6.1. The weak torsion tof Γ is a semibasic form of type r.

Definition 6.2. The strong torsion of Γ is the vector 1-form T on T^kM given by

$$T = t^{O} - H,$$

where H is the tension of Γ .

Proposition 6.2. We have $T^0 + \xi^* = 0$, where ξ is the associated semispray to Γ .

Proof. In fact,

$$T^{0} = (t^{0} - H)^{0} = (t^{0})^{0} - H^{0} = -H^{0} = -\epsilon^{*}$$

since Proposition 5.1.

Now, we introduce the curvature of Γ .

Definition 6.3. The curvature of Γ is the vector 2-form on T^kM given by

$$R = -(1/2)[h,h].$$

A straightforward computation shows that R is semibasic of type r.

We end this section proving the Bianchi identities for Γ . Proposition 6.3. We have

- (1) $[J_r, R] = [h, t],$
- (2) [h,R] = 0.

Proof. (1) From the Jacobi identity, we deduce

$$[J_r, [h, h]] + [h, [h, J_r]] + [h, [J_r, h]] = 0.$$

Then

$$[J_R] = [h, t].$$

(2) is proved in a similar way.

Proposition 6.4. We have

$$[C_4, R] = -[h, H].$$

Proof. As above, the result follows directly from the Jacobi identity.

Corollary 6.1. If Γ is homogeneous, then also is R.

Remark. If Γ is an homogeneous connection of order 1 on M, then the torsion and curvature forms of Γ may be related, in a natural way, with the torsion and curvature tensors of the induced linear connection ∇ on M (see [Gr], [V]).

7. Associated connections to semisprays of higher order

In this section, we shall prove that, associated to a semispray ξ on T^kM of type 1, there exist k connections Γ_1 , ..., Γ_k on M of order k and types 1, ..., k, respectively.

Before proceeding further, we shall need the following auxiliary lemma, obtained directly from Proposition 3.1.

Lemma 7.1. We have

(1)
$$(L_{\xi}J_1)J_k = kJ_k$$
,

(2)
$$J_1(L_{\varepsilon}J_1) = -J_1$$
.

Proposition 7.1. Let ξ be a semispray on T^kM of type 1. Then the vector 1-form Γ_1 given by

(7.1)
$$\Gamma_1 = (1/(k+1)) \{-2 L_{\xi_1} + (k-1) I \}$$

defines a connection of order k and type r on M.

Proof. In fact, from (2) of Lemma 7.1, we have

$$J_{1}\Gamma_{1} = -(2/(k+1)) J_{1} (L_{\xi}J_{1}) + ((k-1)/(k+1)) J_{1} =$$

$$= (2/(k+1)) J_{1} + ((k-1)/(k+1)) J_{1} = J_{1}.$$

On the other hand, from (1) of Lemma 7.1, we obtain

$$\Gamma_{1 k}^{J} = -(2/(k+1)) (L_{\xi}^{J}_{1}) J_{k} + ((k-1)/(k+1)) J_{k} =$$

$$= -(2/(k+1)) J_{k} + ((k-1)/(k+1)) J_{k} = -J_{k}.$$

This ends the proof.

Remark. We notice that, for each integer r, $1 \le r \le k$, there exists a connection Γ_r of order k and type r on M. Γ_r is given by

(7.2)
$$\Gamma_{r} = A_{0} I + \sum_{i=1}^{r} A_{i} L_{\xi}^{i} J_{i},$$

where

$$A_{0} = (k-2r+1)/(k+1),$$

$$A_{r} = (-1)^{r} (2/(k+1)k(k-1) ... (k-r+2)),$$

$$A_{r-s} = (-1)^{s} (s!) {r \choose s} {k-r+s \choose s} A_{r}, 1 \le s \le r-1.$$

For k = 1, (7.2) becomes

$$\Gamma = - (L_{\xi}J)$$
 (see [Gr]).

For k = 2, we have

$$\Gamma_1 = -(2/3) L_{\varepsilon} J_1 + (1/3) I$$
,

$$\Gamma_2 = (1/3) L_{\xi}^2 J_2 - (2/3) L_{\xi}J_1 - (1/3) I$$

(see [Ca2], [DL1]).

Next, we shall compute the tension, weak and strong torsions and the semispray associated to Γ_1 .

First, let us notice that the horizontal and vertical projectors of $\boldsymbol{\Gamma}_{\!\scriptscriptstyle \bullet}$ are

$$h_1 = (1/(k+1)) \{k \ I - L_{\xi}J_1\}, \text{ and } v_1 = (1/(k+1)) \{I + L_{\xi}J_1\},$$

respectively. Then the associated semispray of $\Gamma_{_{\! 1}}$ is

$$\xi_1 = h_1 \xi = (1/(k+1)) \{k\xi - (L_{\xi}J_1)\xi\} = (1/(k+1)) \{k\xi - [\xi, C_1]\} =$$

$$= \xi + (1/(k+1)) \xi^*$$

Now, from the Jacobi identity, we obtain that the weak torsion t_1 of Γ_1 vanishes, that is $t_1=0$. Moreover, the tension of Γ_1 is

$$H_1 = (1/2) [C_1, \Gamma_1] = -(1/(k+1)) [C_1, [\xi, J_1]],$$

since $[C_1, I] = 0$. Therefore, from the Jacobi identity, we obtain

$$H_1 = - (1/(k+1)) [\xi^*, J_1].$$

Finally, the strong torsion of Γ , is

$$T_1 = (1/(k+1)) [\xi^*, J_1].$$

From these facts we deduce

Proposition 7.2. If ξ is a spray on T^kM , then Γ_1 is an homogeneous torsionless connection which associated semispray is ξ .

8. Decomposition theorem

In this section, we shall prove that the strong torsion and the associated semispray characterize a connection of order k and type 1 on M.

We shall need the following result.

Proposition 8.1. Let Γ and Γ' be two connections of order k and type 1 on M with the same strong torsion and the same associated semispray. Then $\Gamma = \Gamma'$.

Proof. Let ξ , t, T and H (resp. ξ' , t', T' and H') be the associated semispray, weak torsion, strong torsion and tension of Γ (resp. Γ'). If we put $B = \Gamma' - \Gamma$, we have $J_1B = 0$ and $BJ_k = 0$. Therefore, B is a semibasic vector 1-form of type 1 on T^kM . Moreover, $B\xi = \Gamma'\xi - \Gamma\xi = \xi' - \xi = 0$, since $\xi = \xi'$. Now, we have

$$t' = (1/2)[J_1, \Gamma'] = (1/2)[J_1, \Gamma + B] = (1/2)[J_1, \Gamma] + (1/2)[J_1, B] =$$

$$= t + (1/2)[J_1, B],$$

$$H' = (1/2) [C_1, \Gamma'] = H + (1/2) [C_1, B],$$

$$T' = (\dot{t}')^0 - H = T + (1/2) ([J_1, B]^0 - [C_1, B]).$$

Since T' = T, we get

$$[J_1, B]^0 = [C_1, B].$$

Therefore, we deduce

(8.1)
$$BJ_{1}[\xi,X] - J_{1}[\xi,BX] - B[\xi,J_{1}X] = 0,$$

for every vector field X on T^kM . Since $BX \in Im \ J_k$ and B is semibasic, we obtain

$$J_{1}[\xi,BX] = -k (BX),$$

by Proposition 3.1. On the other hand, we have

$$BJ_1[\xi, X] - B[\xi, J_1X] = B(J_1[\xi, X] - [\xi, J_1X])$$

= $-B([\xi, J_1]X) = -B([\xi, J_1](h_1X)),$

since B is semibasic. But $[\xi, J_1]h_1 = -h_1$. Then, we deduce

$$BJ_{1}[\xi, X] - B[\xi, J_{1}X] = B(h_{1}X) = BX.$$

Consequently, (8.1) becomes

$$BX + k (BX) = (k+1) (BX) = 0.$$

So, BX = 0, and then B vanishes. This ends the proof.

Next, we can state our main theorem, which generalizes a result due to Grifone [Gr] for the case k = 1.

Theorem 8.1. (Decomposition theorem). Let ξ be a semispray of type 1 and T a semibasic vector 1-form of type 1 on T^kM such that $T^0 + \xi^* = 0$. Then there exists a unique connection Γ of order k and type 1 on M such that its associated semispray is ξ and its strong torsion is T. The connection Γ is given by

$$\Gamma = \Gamma_{\downarrow} + (2/(k+1)) T,$$

where Γ_1 is given by (7.1).

Proof. Existence: Let $\Gamma = \Gamma_1 + (2/(k+1))$ T. Then $J_1\Gamma = J_1$ and $\Gamma J_k = J_k$, because T is semibasic of type 1. So Γ is a connection of order k and type 1 on M. Now, if h is the horizontal projector of Γ , we have

$$h\xi = (1/2) (I + \Gamma)(\xi) = (1/2) (I + \Gamma_1)(\xi) + (1/(k+1))T(\xi)$$

$$= h_{1}(\xi) + (1/(k+1))T^{0} = \xi + (1/(k+1))\xi^{*} + (1/(k+1))T^{0} = \xi.$$

Furthermore, the weak torsion of Γ is

$$t = (1/2) [J_1, \Gamma] = t_1 + (1/(k+1)) [J_1, T] = (1/(k+1)) [J_1, T],$$

and the tension of Γ is

$$H = (1/2) [C_1, \Gamma] = H_1 + (1/(k+1)) [C_1, T]$$

= $(1/(k+1)) ([C_1, T] - [\xi^*, T]).$

Therefore, the strong torsion of Γ is

$$T' = t^0 - H = (1/(k+1)) ([J_1,T]^0 + [C_1,T] - [\xi^*,J_1]).$$

But, an easy computation shows that

$$([J_1,T]^0 + [C_1,T] - [\xi^*,J_1])(X) = -T([\xi,J_1]X) - J_1[\xi,TX].$$

Consequently, we have

$$T'X = T'(h_1X) = -(1/(k+1)) \{T([\xi, J_1](h_1X) + J_1[\xi, T(h_1X)]\} =$$

$$= -(1/(k+1)) (-T(h_1X) - k T(h_1X)) = T(h_1X) = TX,$$

since T and T' are semibasic of type 1. Then T = T'.

<u>Uniqueness</u>: It is a direct consequence of Proposition 8.1.

Remark. The decomposition theorem proves that a connection of order k and type 1 on M is completely determined by its associated semis pray and its strong torsion.

C o r o l l a r y 8.1. Let Γ be a connection of order k and type 1 on M. Then the strong torsion of Γ vanishes if

and only if its weak torsion and tension also vanish.

Consequently, there are no non-homogeneous connections (of order k and type 1) with zero strong torsion.

REFERENCES

- [ALR] L. C. De Andrès, M. de Leòn,
 P. R. Rodrigues: Connections associées
 canoniquement à un lagrangien d'supérieur (to appear).
- [AM] R. Abraham, J. Marsden: Foundations of Mechanics, 2nd ed., Benjamin, New York, 1978.
- [Ca1] G. C a t z : Sur le fibré tangent d'ordre 2, C. R. Acad. Sci. Paris, 278(1974), 277-280.
- [Ca2] G. C a t z : Gerbes et connexions sur le fibré tangent d'ordre 2, C. R. Acad. Sci. Paris, 278(1974), 347-349.
- [CSC] M.C rampin, W.Sarlett, F.Cantrijn:
 Higher order differential equations and higher order
 Lagrangian mechanics, Math. Proc. Camb. Phil. Soc.,
 99(1986), 565-587.
- [DL] M. d e L e o n : Connections and f-structures on T²M, Kodai Math. J. 4(1981), 189-216.
- [DLR1] M. de Leòn, P. R. Rodrigues:

 Formalisme hamiltonien symplectique sur les fibrès tangents d'ordre supèrieur, C. R. Acad. Sci. Paris, 301(1985), 455-458.
- [DLR2] M. de Leon, P. R. Rodrigues:

 Generalized Classical Mechanics and Field Theory,

 North-Holland, Amsterdam, 1985.

- [DLV1] M. de Leòn, C. Villaverde: Calcul diffèrentiel sur les fibrès tangents d'ordre supèrieur, C. R. Acad. Sci. Paris, 292(1981), 881-884.
- [DLV2] M. d e L e ô n , C. V i l l a v e r d e : Sprays et connexions sur les fibrès tangents d'ordre supèrieur,C. R. Acad. Sci. Paris, 293(1981), 51-54.
- [Eh] Ch. E h r e s m a n n : Les prolongements d'une space fibrè diffèrentiable, C. R. Acad. Sci. Paris, 240(1955), 1755-1757.
- [Ga] J. G a n c a r z e w i c z : Lifting of functions and vector fields to natural bundles, Dissertationes Mathematicae, CCXII, 1983.
- [Go] C. G o d b i l l o n : Géomètrie différentielle et Mèchanique analytique, Hermann, Paris, 1969.
- [Gr] J. G r i f o n e : Structure presque-tangente et connexions, I, Ann. Inst. Fourier, Grenoble, 22, 1(1972), 287-334.
- [Mo] A. Morimoto: Prolongations of geometric structures, Lect. Notes Math. Inst., Nagoya Univ., 1969.
- [R] A. Roux: Jets et connexions, Publ. Math. Univ. Lyon, 7(7) (1970), 1-42.
- [Tu1] W. T u l c z y j e w : Sur la differential de Lagrange, C. R. Acad. Sci. Paris, 280(1975), 1295-1298.
- [Tu2] W. T u l c z y j e w : Les jets generalises, C. R. Acad. Sci. Paris, 281(1975), 349-352.
- [V] J. V i l m s : Connection on tangent bundles : J. Diff. Geometry, 1(1967), 235-243.

[YI] K. Yano, S. Ishihara: Tangent and cotangent bundles, Marcel Dekker, New York, 1973.

Authors' adresses :

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DEL PAÍS VASCO, APARTADO 644, BILBAO, SPAIN;

CECIME, CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS, SERRANO, 123, 28006 MADRID, SPAIN;

DEPARTAMENTO DE GEOMETRIA, INSTITUTO DE MATEMATICA, UNIVERSIDADE FEDERAL FLUMINENSE, 24000 NITEROI, RJ, BRAZIL

Received August 17, 1987.