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Introduction 
As it is well known the tangent bundle TM of any 

manifold M carries a canonical integrable almost tangent 
structure J (see [Go], [Gr], [ YI ] ). By means of J, Grifone 
[Gr] gave a new definition of (non-homogeneous) connection 
on M. In fact, a (non-homogeneous) connection on M is a 
vector 1-form I* on TM such that Jr = J and TJ = -J. The 
connection T is said to be homogeneous if T is homogeneous 
as a vector 1-form. Obviously, if r is C°° on all TM, then it 
is a linear connection (see [V]); so, we must suppose that r 

00 

is C only on TM = TM - { zero section > in order to obtain 
strictly non-linear homogeneous connections. 

The purpose of this paper is to generalize the results 
of Grifone to tangent bundles of higher order. In fact, the 

k 
tangent bundle T M of order k of any manifold M carries a 
canonical almost tangent structure of order k, namely J 
(see [CSC], [DLV1], [DLV2], [DLR1], [DLR2]). Now, the 
variety of fibrations on T M permit us to consider several 
types of connections of order k on M. If we put J = (J )r, r 1 k 
1 < r s k, then we obtain k canonical vector 1-forms on T M. 
Thus, a connection of order k and type r, 1 s r s k, on M 
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(that is, a connection In the flbratlon p k :TkM • Tk"rM) k—r 
Is given by a vector 1-form T on T1^ such that J T • J and r r 
TJ - -J . The tension H - (1/2) [C ,T] (where C is k-r+l k-r+1 1 1 

Ic 
the generalized Liouville vector field on T M) measures the 
non-honogenity of r ; so, r is homogeneous if and only if H 
vanishes. Now, we may associate to r a semispray £ on T ^ of 
the same type r in such a way that r and £ are the same 
paths. The converse is also proved ; in fact, to each 
semispray £ of type 1 on T1^ we associate k connections I* , 
..., r^ of order k on M and types 1 k, respectively. 
Furthermore, the FrSJlicher -Nijenhuls formalism permit us to 
obtain the curvature and torsion forms of I\ In fact, the 
curvature form R of I* is given by R - (1/2) [h, h], where h r is the horizontal projector associated to T ; the weak and 
strong torsion forms t and T are given by t = [J ,h] and T = p 
i^t - H, respectively. Finally, we prove the main result of 
this paper which generalizes the corresponding one obtained 
by Grifone for the tangent bundle : 

Let £ be a semispray of type 1 and T a semibasLc vector 
1 -form of type 1 on TkH such that i^T + = 0 (where = 

[Cy^ ] - £ denotes the deviation of £ ). Then there exists 

a unique connection T of order k and type 1 on M such that 

its associated semispray is £ and its strong torsion is T. 
The connection T is given by 

r = (l/(k+l)) { -2 L ^ + (k-1) I + 2 T }. 

Consequently, a connection of order k and type 1 on M is 
completely determined by its associated semispray and its 

- 6 0 8 -



Connections on tangent bundles 

strong torsion. 
In a forthcoming paper [ALR], we shall apply these 

results to obtain a canonical connection associated to a 
regular Lagranglan system of higher order (see [DLR2] for 
the homogeneous case). 

1. Tangent bundles of higher order 
Let M be an n-dlmenslonal manifold. The tangent bundle 

of order k of M Is the (k+1)n-dlmenslonal manifold T*M of 
k-jets at 0 € R of differentlable mappings <r : R • M. We 
denote by 0 : T M » M the canonical projection defined by 

o*) = <r(0). Then T1^ has a bundle structure over M. If 
k = 1, then T*M = TM Is the tangent bundle of M. However, if 

k k k > 1, p : T M > M is not a vector bundle. As well as 
being fibred over H, TkM is also fibred over TrM, 0 < r < k. 

k k r k A projection map p : T M » T M is defined by j c > r 0 
J <r. These projection maps verify 

k r k 
Ps = PsPr ' 

It 
for any r, s, with 0 s s < r < k ; here pQ is interpreted 
as 0k. k 

Notice that T H is associated to the principal bundle 
FkM of the frames of order k on M (see [Ga]). In fact, TkM Ic 
is the tangent bundle of 1 -velocities of M introduced by 
Ehresmann (see [Eh], [Mo], [Tul]). 1c 

We shall now describe the local coordinates in T M. Let 
(U, z ) be a coordinate neighborhood of M and or : R » M a curve on M such that <r(0) e U. Put <rA = zA ° <r, 1 s a s n. 

k k -1 Then the k-jet j <r is uniquely represented in O ) (U) = 
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TkU by 
, k A A. (z , Z , ... ,Z) 1 k 

where 

zA = <rA(0), zA = (1/i!) ( d W d t 1 ) I , 1 s i s k. i t=o 
(in the sequel we put zA = zA). 

Now, we can define a canonical mapping 

T : TkM » T(Tr_1H), 1 s r s k, k,r-l 
given by 

«k i1 
J0

 > J0
 T' 

where x : R > Tr_1M, t — » x(t) = Jo~1(rt> °t(s) = <r(s+t)-
A simple computation shows that ^ is locally 
given by 

(A A Ax / A A A A —. A A\ Z ,z z ) > (z , z z ; z , 2z r z ). I k 1 r-1 1 2 r 
We use these maps T to construct a differential k,r-i k 

operator dT which maps each function f on T M to a function 
d f on Tk+1M defined by T 

(df) (Jk+1 or ) = df(jk <r ) (T (Jk+1 <r )). 
T 0 0 k+1 ,k 0 

Then dTf is locally expressed by 
k 

(df) = £ (i+i) z,A (af/azA). T " 1+1 i 
1 = 0 So, we have 

(1.1) d (zA ) = (i+1) z A , and T 1 1+1 
(1.2) d^ (zj ) = (i!)zA . 

with 0 s i s k. 
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Since d (fg) = d (f)g + d (g) f, then d extends to an 
T T T T 

It 
operator which maps a p-form a on T M into a p-form d a on 

V+1 
T M in such a way that d d = dd (see [DLR2], [Tul]). 

T T 
From (1.1) and (1.2) we deduce 

P r o p o s i t i o n 1.1. Let X and Y be a vector 

fields on T M. Then X = Y if and only if 

X( (p ) (d'f)) = Y( (p ) (df)), 
r T r T 

It 

for every function f on M, 0 s r ^ k (here, p^ is to be 

interpreted as the identity map and T°M is identified to M). 

Now, we shall describe a lifting operator which 

generalises the vertical lift in tangent bundle geometry, as 

described in [YI], for example. 

D e f i n i t i o n 1.1. Let X be a vector field on 

TrM, 0 < r < k. The vertical lift of X to TkM (with respect 

to p k : TkM > Tk"r_1M ) is the unique vector field Xk 
k-r-l 

on TkM defined by 

Xk((pk)*(d°f)) = • 
s T 

0 , if 0 s S S k-r-l 

(s!)/(s-(k-r))! X((p K, ) (d'f)), 
B-(k-r) T 

if k-r a s s k 

for every function f on M. 

We remark that the case r = 0 was considered by Crampin, 

Sarlet and Cantrijn [CSC]. 
r 

If X = Y X* id/dzA), then we deduce from (1.1) and (1.2) 
L 1 1 

1 = 0 
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that 
r 

(1.3) xk = Y x* (a/az A ). 
L I k-r+i 

1 = 0 

Using the vertical lift and the map T :TkM > T(Tk_rM) 
k,k-r 

k 
we construct a canonical vector field C on T M as follows : 

So, C is locally expressed by 

k 
(1.4) C = £ i zA (a/azA). 

i = i 

The vector field C is generalization of the Liouville 

vector field (or dilation field) on TM (see [CSC], [DLR1], 

[DLR2], [DLV1]). 

We may also use the vertical lift construction to define 

k canonical tensor fields of type (1.1) (or vector 1-forms) 
it 

on T M. In fact, for each r, 1 s r s k, we can define a 
it 

linear endomorphism (J ) of the tangent space T (T M) of 
r z z 

TkM at z e TkM as follows : 

(J ) (X) = ((p k ) X)k. 

r z k-r • 

So, we have 

P r o p o s i t i o n 1.2. J has constant rank r (k-r+l)n and verifies 

(J )8 = r 

0 , if rs S k+1, 

J , if rs > k+1. 
rs 

Furthermore J determines an almost tangent structure of 

order k on TkM. 
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R e m a r k . An alternative definition of J , 1 s r s k, r 
has been given by de Leon and Villaverde (see [DLV1], 
[DLR2]). 

If we put C = J C , 2 s r s k, we have the following r r-1 1 
identities : 

(1.6) J C = r s 
0 , if r+s s k+1 

C , if r+s > k+1, r+s 

(1.7) L J = C s r 

0 , if r+s > k+1 

-sJ , if r+s s k+1, r+s-l 

( 1 . 8 ) [J ,J ] = 0. r s 

A direct consequence of (1.8) is the vanishing of the 
Nijenhuis tensor N = (1/2) [J ,J ] of J . Therefore the 

i it 
almost tangent structure of order k on T M defined by J is 
always integrable (see [DLV1], [DLR2]). 

2. Homogeneous and semibasic forms 
Let us recall the following definitions (see [DLV2], 

[DLR2]). 
(a) Homogeneous forms 

D e f i n i t i o n 2.1. A function f on TkM is said 
to be homogenous of degree a if L f = a f . 

l 
Let h : R > R be the homotetic of ratio e and let t k k : T M » T M denote the fibre-preserving transformation 
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induced from h , that is H (jk <r) = jk (<r <> h ). Since C t t Jo Jo t 1 
generates the 1-parameter group of transformations Ht then 
the condition in Definition 2. 1 is equivalent to 
f o H = eatf. t 

D e f i n i t i o n 2.2. A (scalar) p-form a on TkM is 
said to be homogeneous of degree a if L a = a a. 

l it D e f i n i t i o n 2.3 A vector 1-form L on T M is 
said to be homogeneous of degree a if L L = (a-l)L. 

l 
(b) Semibasic forms 

it 
D e f i n i t i o n 2.4. A (scalar) p-form a on T M is 

said to be semibasic of type r if a € Im J . r Since Im J = Ker J we deduce that a Pfaff form a k-r+l r It on T M is semibasic of type r if and only if <x(J X) = 0, k-r+l 
for every vector field X on TkM. Then a Pfaff form a on TkM 
is semibasic of type r if and only if a is locally expressed 
by k-r 
(2.1) a = V a1 dz\ L A i 

1 = 0 
It 

Let a be a semibasic Pfaff form of type r on T M. Then we 
can define a map D : TkM > T*(Tk-rM) as follows : 
D(j* <r)(Y) = <x(jk <r) (X), 
where Y e T (Tk"rM) and X € T (TkM), with (p k ) X = Y 

k-r k k-r • J or JO* 0 0 
It 

(since a is semibasic of type r then D(jQ <r) is well-
defined. 

Moreover, if a is locally given by (2.1) then we have 
<>- ki>; < 1=0 
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Therefore, the diagram 
D 

T*(Tk_rM) 

Tk"rM 
is commutative, where q is the canonical projection. k-r T M ^ 
Now, let X be the Liouville form of T (Tk rM) (see [AM], k-r 
[Go]). Then a simple computation shows that 

D*A = a. k-r 
Therefore, we can state the following. 

P r o p o s i t i o n 2.1. Let a be a semibasis Pfaff 
it 

form on T M of type r. Then a determines the map 
D : TkM > T*(Tk_rM) such that 
( 1 ) ^ k-r ° D = P k - r ' T M 

(2) D* X = a. k-r 
R e m a r k . An alternative proof of Proposition 2. lwas 

given by de Lepn and Rodrigues [DLR2] following the one of 
Godblllon [Go] for the case k = 1. 

D e f i n i t i o n 2.5. A vector 1-form L on TkM, 1 £ 1 
is said to be semibasic of type r if J L = 0 and i L = r J k-r+lX 
= 0, for any vector field X on TkM. 

3. Semlsprays of higher order. Potentials 
The aim of this section is to introduce a special kind 

of vector fields on higher tangent bundles. 

- 615 -



L. C. de Andres, M. de Lecfn, P. R. Rodrlgues 

D e f i n i t i o n 3.1. A vector field £ on TkM is 
said to be semispray of type r If J 5 = C . r r It 

From (1.5) we deduce that a semispray £ on T M of type r 
is locally given by 
€ = zA 0/3z A) + 2 zA 0/Sz A) +. ..+ (k-r+1) z A 0/3z A ) + 1 0 2 1 k-r+1 kr 

+ £ A (a/az A ) + . . . + (a/azA), k-r+1 k-r+1 ^k k 

where = £A(zB zB), k-r+1 s i s k, 1 * AfB s n. 1 1 0 k 
It 

D e f i n i t i o n 3.2. Let £ be a semispray on T M 
of type r. A curve <r in M is called a path (or solution) of 
£if j cr is an integral curve of 

Consequently, a curve or in M is a path of £ if and only 
if it verifies the following system of differential 
equations : 
(3.1) (1/i! ) (d 1 +V/dt 1 + 1) = ?A(<rB, d<rB/dt dVB/dtk), 

k-r+1 s i s k, 1 i A,B 5 n. 
We shall express the non-homogeneity of a semispray 

It 
D e f i n i t i o n 3.3. Let £ be a semispray on T M 

of type r. We shall call deviation of £ the vector field 
[ c i . -
A simple computation shows that J £ = 0 . r It 
D e f i n i t i o n 3.4. A semispray £ on T M of type 

r is called spray of type r if £ has zero deviation, that is 
[C , = If £ is a spray then their paths are called 
geodesies. 

From (3.1) and (3.2) we deduce that £ is a spray if and A only if the functions £ , k-r+1 s i £ k, are homogeneous of 
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degree i+1. 
The next proposition Is an easy consequence of (1.6), 

(1.7) and (1.8). 
k 

P r o p o s i t i o n 3.1. Let £ be a semispray on T M 
of type 1. Then we have 
(1) J^Ç, J X ] = -k (JX), 

(2) JJÇ, J X ] - J2[Ç,X J = -JX, 

for every vector field X on TkM. 
Next, we shall introduce the potential of a semibasic 

form. 
D e f i n i t i o n 3.5. Let a (resp. L) be a scalar 

p-form (resp. a vector 1-form) on T*M semi basic of type r. 
Then the potential a° of a (resp. L° of L) is the scalar 
(p-l)-form (resp. vector (l-l)-form) given by 

a0 = l^a, (resp. L° = l^L) 
it 

where Ç is an arbitrary semispray of type r on T M. 
Obviously, a° (resp. L°) does not depend on the choice of Ç 
since a (resp. L) is semlbasic. Moreover, we have 

P r o p o s i t i o n 3.2. a0 and L° are semlbasic of 
type r. 

(We notice that the scalar p-form a is not necessarily 
skew- symmetric). 

From (1.1) and (1.3) we deduce it 
P r o p o s i t i o n 3.3. Let Ç be a semispray on T M 

of type 1. Then 
L-UpVa) = (pk )* (da), 
ç r r+1 T 

k for every p-form a on T M, where r < k. 
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4. Connections of higher order 

The variety of flbratlons on T^l permit us to consider 

several types of connections of order k on M. 

D e f i n i t i o n 4.1. A vector 1-form T on T M such 

that 

(4.1) j r = j , r j = - J 
r r k-r+1 k-r+1 

will be called a connection on M of order k and type r. 

R e m a r k . Obviously, we may consider connections of 

order k on M which are C00 on TkM = TkM-{ zero section >, not 
it 

necessarily on all T M. Then a connection of order k and 
k k 

typer on M is a connection in the fibratlon p : T M » 
k-r 

T k _ rM (see [R]). Since 
k p 

V k_r(TkM) = Im J = Ker JJ , k-r+l r 
It 

we deduce that r defines an almost product structure on T M, 

that is, r 2 = I. Therefore, we can consider the horizontal 

and vertical projectors associated to r : 

h = (1/2) (I + D , v = (1/2) (I - D , 

respectively. From (4.1) we have 

(4.2) 

J h = J , hJ = 0, J v = 0, vJ = J 
r r k-r + 1 r k-r+1 k-r+1 

Im v = V k_r(TkM) . 

If we put H = Im h, then 

T(TkM) = H © V k r(TkM). 
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Thus, the linear map 

( p k ) : H > T _ (Tk_rM), z 6 TkM, k-r • z k 
Pk-r(Z> 

„k-r. Is an isomrphism. So, is X is a vector field on T M then 
there exists a unique horizontal vector field X11 on TkM such 
that 

(pk_r).X» = X ; 

x" will be called the horizontal lift of X to TkM with 
respect to I\ Also, let <r be a curve on Tk_rM, and z e TkM 
such that <r(0) = y and (pk )(z) = y. Then there exists a 

k-r H k H unique horizontal curve <r on T M such that <r (0) = z, and 
k H H p o or = <r;<r will be called the horizontal lift of or k-r it to T M with respect to r. 

From (4.1) we deduce that T is locally given by the 
matrix 

(4.3) r = 

, 0 (k-r+l)n 

- 2 r ( 1 , J ) B - i 

where r ( 1 , J ) B
A = r<i,J)B

A(z^ z^), 0s i< r-1, 0 s js k-r. 
particular case of Next, we shall consider 

connections. 
D e f i n i t i o n 4.2. Let T be a connection on M of 

order k and type r. The tension of f is the vector 1-form H 
on T M given by 
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H = (1/2) [C^T] = [Cith ]. 

The connection r is said to be homogeneous if its tension 
vanishes, that is r is an homogeneous vector 1-form of 
degree 1. 

From Definition 4.2 we easily deduce that T is 
homogeneous if and only if the function r(1 is 
homogeneous of degree k-r+l-i-J, 0 s i s r-1, 0 s j s k-r, 
1 s A,B s n. 

The following proposition is a direct consequence of 
(4.3). 

P r o p o s i t i o n 4.1. The tension H of a 
connection T of order k and type r on M is a semi basic 
vector 1-form of type r. 

D e f i n i t i o n 4.3. A curve or in M is called a 
path of a connection T of order k and type r on M if j <r is 

Jc 
a horizontal curve in T M. If T is homogeneous, then their 
paths are called geodesies. 

From (4.3) we get that or is a path of T if and only if or 

verifies the following system of differential equations : 

(4.4) (l/i!)(d1+VB/dt1+1) = 

= - V (1/J!) r"~lt+r~1,J)B(dJ+V/dtJ+1), 
j=o A 

k-r+1 s i s k, 1 s A,B s n. 
R e m a r k . If T is a homogeneous connection of order 

1 on M, then T defines a linear connection V on M. In such a 
case, this system of differential equations becomes the 
usual one for the geodesies of V (see [Gr], [DLR2]). 
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5. Semisprays associated to connections of higher order 
In this section, we shall prove that, canonically 

associated to a connection of order k and type r on M, there 
k exists a semispray on T M of the same type. 

Let r be a connection of order k and type r on M. If 
it is an arbitrary semispray on T M of the same type, then, 

it 
from (4.2) £ = h£' is a semispray on T M of type r which not 
depends on the choice of . £ will be called the associated 

semispray of T. Notice that H; = Moreover, if H is the 
tension of r, we have 

H° = lcH = = [C ,h?] - h[C ,£] = [C - h[C ,£]. q l l l l 

Since £ = [C ,£]-£ e Im J , we deduce ^ 1 ^ ^ k-r+l 

hitC^Cl - V = M C ^ S l - € = 0. 

o * 
Therefore, we have H = £ . So, the following proposition 
has been proved. 

P r o p o s i t i o n 5.1. Let T be a connection of 
order k and type r on M with tension H. Then the associated 
semispray £ of T verifies = 

C o r o l l a r y 5.1. If r is homogeneous, then £ is 
a spray. 

From (3.1) and (4.3) we deduce that the local expression 
of the semispray associated to T is 
€ = zA(d/3zA) + 2zA(3/azA) + ... + (k-r+l)z A (.d/dz A ) + 1 0 2 1 k-r+l k-r 

+ £ * (d/dz A ) + ... + £A(a/azA), k-r+l k-r+l k k 

where 
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(5 .1 ) = - V ( J + D z B
 r

( 1 - k + r - 1 ' J ) A , 1 u J+l B 
J = 0 

k-r+1 =s i s k, 1 £ A,B s n. 
Next, we give an a l t e r n a t i v e c o n s t r u c t i o n of the 

semispray £ a s s o c i a t e d to T. Indeed, £ i s given by 

€ = (T (z ) ) H , z e TkM. z k,k-r z 
There fore , we have 

P r o p o s i t i o n 5 .2 . T and £ have the same 
pa ths . 

P r o o f . Let <r be a pa th of I\ Then j V i s a 
h o r i z o n t a l curve in T M. Thus, 

( ( j V ) ( t ) ) = (T (jk<r)) " = ( ( j k " r o0 ( t ) ) \ k,k-r k k (j <r)(t) ( j cr)(t) 
k —k—r ^ s i n c e T J V ( t ) = ( j " V ) ( t ) . On the o the r hand, we have k,k-r 

(p k
k

r )* ( j k «r ) ( t ) = Pk
k

r ( j V ) ( t ) = ( j k r o - ) ( t ) . Consequently, 

( j V H t ) i s t he h o r i z o n t a l l i f t of T ( ( j V ) ( t ) ) t o TkM 

k,k-r 
a t ( j <r)( t) , and, so, <r i s a pa th of 
The converse i s t r i v i a l . 

R e m a r k . The r eade r can o b t a i n d i r e c t l y 
P r o p o s i t i t i o n 5 .2 . from (3 .1) and (4 .4 ) . 

6. Tors ion and cu rva tu re of h igher o rder connect ions 
Let T be a connect ion of order k and type r on M. 
D e f i n i t i o n 6 .1 . The weak torsion of T i s t he 

it vec to r 2-form t on T M given by 
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t = (1/2) [J , n = [J ,h]. 

r r 

From the above definitions one has 

P r o p o s i t i o n 6.1. The weak torsion t of T is 

a semibaslc form of type r. 

D e f i n i t i o n 6.2. The strong torsion of T is k the vector 1-form T on T M given by 

T = t° - H, 

where H is the tension of r. 

P r o p o s i t i o n 6.2. We have T° + Ç* = 0, where 

Ç Is the associated semispray to r. 

P r o o f . In fact, 

T° = (t° - H)° = (t°)° - = -H° = -ç*. 

since Proposition 5.1. 

Now, we introduce the curvature of T. 

D e f i n i t i o n 6.3. The curvature of T is the 
it vector 2-form on T M given by 

R = - (1/2) [h,h]. 

A straightforward computation shows that R is semibaslc of 

type r. 

We end this section proving the Blanchi identities for T. 

P r o p o s i t i o n 6.3. We have 

(1) [J ,R] = [h,t], 

r 

(2) [h,R] = 0. 

P r o o f . (1) From the Jacobi identity, we deduce 
[J ,[h,h]] + [h,[h,J ]] + [h,[J ,h]] = 0. 
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Then 
[J ,R] = [h,t]. 

r 

(2) Is proved in a similar way. 
P r o p o s i t i o n 6.4. We have 

[C^R] = - [h,H], 

P r o o f . As above, the result follows directly from 
the Jacobi identity. 

C o r o l l a r y 6.1. If r is homogeneous, then also 
is R. 

R e m a r k . If T is an homogeneous connection of order 
1 on M, then the torsion and curvature forms of T may be 
related, in a natural way, with the torsion and curvature 
tensors 6f the induced linear connection V on M (see [Gr], 
[V]). 

7. Associated connections to semisprays of higher order 
In this section, we shall prove that, associated to a 

it 
semispray Ç on T M of type 1, there exist k connections r , 
. . . , r*k on M of order k and types 1 k, respectively. 

Before proceeding further, we shall need the following 
auxiliary lemma, obtained directly from Proposition 3.1. 

L e m m a 7.1. We have 
(1) (LCJ ) J = k J , q 1 k k 

(2) J (LfJ ) = - J . 
P r o p o s i t i o n 7.1. Let Ç be a semispray on T M 

of type 1. Then the vector 1-form T given by 
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(7.1) rt « (l/(k+l)) i-2 + (k-1) I > 

defines a connection of order k and type r on M. 
P r o o f . In fact, from (2) of Lemma 7.1, we have 

Jirj = - (2/(k+l)) ( L ^ ) + ((k-l)/(k+l)) Jx -

= (2/(k+l)) Jt + ((k-l)/(k+l)) Jt = J^ 

On the other hand, from (1) of Lemma 7.1, we obtain 

r J = - (2/(k+l)) (LCJ ) J + ((k-l)/(k+l)) J = lk q 1 k k 
= " (2/(k+l)) J + ((k-l)/(k+l)) J = - J . 

k k k 
This ends the proof. 
R e m a r k . We notice that, for each Integer r, is rs k, 

there exists a connection I* of order k and type r on M. 
T Is given by r r 
(7.2) r = A 1 + R A l' J , r 0 L i f t 1=1 ^ 

where 

Aq = (k-2r+l)/(k+l), 

A = (-l)r (2/(k+l)k(k-l) ... (k-r+2)), r 

A = (-l) s (s!) ( R ) ( K" R + S) A , 1 s s s r-1. r-s B s r 

For k = 1, (7.2) becomes 

T = - (L^J) (see [Gr]). 

For k = 2, we have 

ri = - (2/3) L J + (1/3) I , 
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T = (1/3) Li J - (2/3) LeJ - (1/3) I 2 ? 2 £ i 
(see [Ca2], [DL1]). 

Next, we shall compute the tension, weak and strong 
torsions and the semispray associated to r̂ . 

First, let us notice that the horizontal and vertical 
projectors of r are 

ht = (l/(k+l)) {k I - L^JJ, and = (l/(k+l)) {I + L^Jj, 

respectively. Then the associated semispray of r is 

h ^ = (l/(k+l)){k€ - (L^)?} = (l/(k+l)Hk£ - tC.Cj) = 

= C + (l/(k+l)) 
Now, from the Jacobi identity, we obtain that the weak 
torsion t of T vanishes, that is t = 0 . Moreover, the 1 1 l 
tension of T is l 

H = (1/2) [CJ.TJ] = - (l/(k+l)) [C^IC.JJ], 

since [C , I] = 0. Therefore, from the Jacobi identity, we 
obtain 

Hj = - (l/(k+l)) [c'.Jjl. 
Finally, the strong torsion of r is 

Tt = (l/(k+l)) [^.Jj. 

From these facts we deduce 
k 

P r o p o s i t i o n 7.2. If ^ is a spray on T M, 
then r is an homogeneous torsionless connection which 
associated semispray is 
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8. Decomposition theorem 

In this section, we shall prove that the strong torsion 

and the associated semlspray characterize a connection of 

order k and type 1 on M. 

We shall need the following result. 

P r o p o s i t i o n 8.1. Let r and P be two 

connections of order k and type 1 on M with the same strong 

torsion and the same associated semlspray. Then r = I" . 

P r o o f . Let t, T and B (resp. , t \ T' and H' ) 
be the associated semlspray, weak torsion, strong torsion 

and tension of r (resp. I"). If we put B = P - r, we have 

J B = 0 and BJ = 0. Therefore, B is a semibasic vector 
1 k 

1-form of type 1 on TkM. Moreover, = P £ - 0, 

since £ = . Now, we have 

t'= (1/2HJ , P ] = (l/2)[Jifr+B]= (l/2)[Ji,r]+ (1/2)[J ,B] = 

= t + (1/2)1^,B], 

H' = (1/2) [C ] = H + (1/2) [C ,B], 

T' = (t')° - H = T + (1/2) ([Ji(B]° - [C ,B]). 

Since T' = T, we get 

[J^B] 0 = [Ci(B], 

Therefore, we deduce 

(8.1) BJJC.X] - JJ^.BX] - B [S.^X] = 0, 

for every vector field X on TkM. Since BX e Im J^ and B is 

semibasic, we obtain 
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JJC.BX] = - k (BX), 

by Proposition 3.1. On the other hand, we have 

BJJS.X] - B [^.^X] = B U J S . X ] - [S.^X]) 

= - BQS.JJX) = - BdC.Jji^X)), 

since B is semibasic. But [£,J = Then, we deduce 

BJJ^.X] - B [S.^X] = BC^X) = BX. 

Consequently, (8.1) becomes 

BX + k (BX) = (k+1) (BX) = 0. 
So, BX = 0, and then B vanishes. This ends the proof. 

Next, we can state our main theorem, which generalizes a 
result due to Grifone [Gr] for the case k = 1. 

T h e o r e m 8.1. (Decomposition theorem). Let £ be a 
semispray of type 1 and T a semibasic vector 1-form of type 

k 0 * 
1 on T M such that T + f; = 0 . Then there exists a unique 
connection r of order k and type 1 on M such that its 
associated semispray is £ and its strong torsion is T. The 
connection r is given by 

r = r + (2/(k+l)) T , 

where r is given by (7.1). 
P r o o f . Existence : Let T = r + (2/(k+l)) T. Then 

J T = J and rJ = J , because T is semibasic of type 1. So l l k k 
T Is a connection of order k and type 1 on M. Now, if h is 
the horizontal projector of r, we have 

h£ = (1/2) (I + D ( C ) - (1/2) (I + I ^ H O + (l/(k+l))T(£) 
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= h t ( S ) + ( l / ( k + l ) ) T ° = ? + ( l / ( k + l ) ) £ * + ( l / ( k + l ) ) T ° = 

F u r t h e r m o r e , t h e weak t o r s i o n o f T i s 

t = ( 1 / 2 ) [ J i t r ] = t i + ( l / ( k + l ) ) [ J ^ T ] = ( l / ( k + l > ) [ J j . T ] , 

a n d t h e t e n s i o n o f r i s 

H = ( 1 / 2 ) [ C ^ T ] = ^ + ( l / ( k + l ) ) [ C ^ T ] 

= ( l / ( k + l ) ) ( [ C i , T ] - [ C * , T ] ) . 

T h e r e f o r e , t h e s t r o n g t o r s i o n o f r i s 

1» = t° - H = ( l / ( k + l ) ) ( [ J i t T ] ° + [ C i t T ] - I ^ . J j l ) . 

B u t , a n e a s y c o m p u t a t i o n shows t h a t 

U J j . T ] 0 + [ C ^ T ] - I ^ . J j D i X ) = - K t C . J j X ) - J J C . T X ] . 

C o n s e q u e n t l y , we h a v e 

T ' X = T ' ( h ^ X ) = - ( l / ( k + l ) ) { K i e . J j K ^ X ) + J J C . K ^ X ) ] } = 

= - ( l / ( k + l ) ) ( - T ( h X) - k T ( h X ) ) = T ( h X) = TX, 

s i n c e T a n d T a r e s e m i b a s i c o f t y p e 1. T h e n T = T ' . 

U n i q u e n e s s : I t i s a d i r e c t c o n s e q u e n c e o f P r o p o s i t i o n 

8 . 1 . 

R e m a r k . The d e c o m p o s i t i o n t h e o r e m p r o v e s t h a t a 

c o n n e c t i o n o f o r d e r k a n d t y p e 1 o n M i s c o m p l e t e l y 

d e t e r m i n e d b y i t s a s s o c i a t e d s e m i s p r a y a n d i t s s t r o n g 

t o r s i o n . 

C o r o l l a r y 8 . 1 . L e t T be a c o n n e c t i o n o f o r d e r 

k a n d t y p e 1 o n M. T h e n t h e s t r o n g t o r s i o n o f r v a n i s h e s i f 
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and only if its weak torsion and tension also vanish. 
Consequently, there are no non-homogeneous connections 

(of order k and type 1) with zero strong torsion. 
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