

Valeriu Popa

THEOREMS ON MAPPINGS INTO HAUSDORFF SPACE

In the present paper some properties of H.a.c. functions and weakly continuous functions into Hausdorff space are investigated.

Let X be a topological space. A subset S is said to be semi-open [4] if there exists an open set U of X such that $U \subset S \subset \text{Cl}' U$. A subset S is said to be preopen (resp. α -set) [6] (resp. [9]) if $S \subset \text{Int Cl } S$ (resp. $S \subset \text{Int Cl}(\text{Int } S)$). The family of all preopen set in X will be denoted by $\text{PO}(X)$. The complement of semi-open set (resp. preopen set, resp. α -set) is called semi-closed (resp. preclosed, resp. α -closed). The set $\bigcap \{ FcX ; F \text{ is preclosed and } AcF \}$ is called the preclosure of A and denoted by $\text{Pcl } A$ [1].

Let X and Y be two topological spaces. The function $f: X \longrightarrow Y$ is H-almost continuous (H. a. c.) at $x \in X$ if for each open set $V \subset Y$ containing $f(x)$, $x \in \text{Int Cl}(f^{-1}(V))$ [2].

The function $f: X \longrightarrow Y$ is H. a. c. if it has this property in any point $x \in X$. The function $f: X \longrightarrow Y$ is weakly continuous (w. c.) [5] at $x \in X$ if for any open set $G \subset Y$ with $f(x) \in G$, there exists an open set $U \subset X$ containing x such that $f(U) \subset \text{Cl } G$.

The function $f: X \longrightarrow Y$ is w.c. if has this property in any point $x \in X$. The function $f: X \longrightarrow Y$ is semi-continuous

[4] (resp. precontinuous [6], resp. α -continuous [8]) if inverse image of each open set is semi-open (resp. preopen, resp. α -set) in X .

The concepts of H-continuous continuity and precontinuity are equivalent [6].

Some properties on mappings into Hausdorff space are studied in [7], [10] - [13], [15], [16].

The purpose of the present note is to investigate some properties of H. a. c. and w. c. functions into Hausdorff space.

The following theorem was proved in [15].

Theorem 1. Let X be an arbitrary topological space and let Y be a Hausdorff space. Let f and g be functions from X into Y . If f is continuous and g is H-almost continuous, then the set $\{x \in X : f(x) = g(x)\}$ is preclosed in X (Theorem 3 ; [15]).

The purpose of Theorem 2 is to generalize and improve Theorem 1. The method used to prove Theorem 2 is similar with the method used in the demonstration of Theorem 1 from [3].

Theorem 2. Let X and Y be two topological spaces. If $g : X \rightarrow Y$ is H. a.c. and S is a closed subset of $X \times Y$ then $p_1(S \cap G(g))$ is preclosed in X , where $G(g)$ denotes the graph of a function g and $p_1 : X \times Y \rightarrow X$ represents the projection.

P r o o f Let $x \in \text{Pcl } [p_1(S \cap G(g))]$, where S is a closed subset of $X \times Y$, let U be an arbitrary open set containing x , and let V be an arbitrary open set containing

$g(x)$ in Y . Since g is H. a. c., $g^{-1}(V) \in \text{PO}(X)$ by Theorem 1 of [6]. It is shown in Lemma G of [7] that an intersection of an open set with a preopen set is preopen. Therefore $U \cap g^{-1}(V)$ is preopen. Since $x \in \text{Pcl } [p_1(S \cap G(g))]$, by Lemma 2.2 of [1], $[U \cap g^{-1}(V)] \cap p_1(S \cap G(g)) \neq \emptyset$.

Let $u \in [U \cap g^{-1}(V)] \cap [p_1(S \cap G(g))]$ be. This implies that $(u, g(u)) \in S$ and $g(u) \in V$. Therefore $(U \times V) \cap S \neq \emptyset$ and, consequently, $(x, g(x)) \in \text{Cl } S$, thus $(x, g(x)) \in S \cap G(g)$. Hence $x \in p_1(S \cap G(g))$ is preclosed.

Corollary 1. If $f: X \longrightarrow Y$ has a closed graph and $g: X \longrightarrow Y$ is H. a. c. then the set $\{x \in X : f(x) = g(x)\}$ is preclosed.

Proof. Since $\{x \in X : f(x) = g(x)\} = p_1[G(f) \cap G(g)]$ and since $G(f)$ is a closed subset of $X \times Y$ the result follows from Theorem 2.

Corollary 2. If $f: X \longrightarrow Y$ is weakly continuous, $g: X \longrightarrow Y$ is H. a. c. and Y is Hausdorff, then the set $\{x \in X : f(x) = g(x)\}$ is preclosed.

Proof. It is shown in Theorem 10 of [12] that a weakly continuous function into a Hausdorff space has a closed graph, hence the result follows from Corollary 1.

Corollary 3. Theorem 1.

Proof. It is known from [5] that continuity implies weak continuity.

Corollary 4. If $f, g: X \longrightarrow Y$ are α -continuous and Y is a Hausdorff then the set $\{x \in X : f(x) = g(x)\}$ is α -closed. (Theorem 4.9 [13]).

Proof. If f and g are α -continuous then by Theorem 3.2 of [13] f and g are semi-continuous and H.a.c. and by

Theorem 1 of [14], f and g are w. c. Then by Corollary 2 of [3] the set $\{x \in X : f(x) = g(x)\}$ is semi-closed and by the set $\{x \in X : f(x) = g(x)\}$ is preclosed. By Lemma 3.1 of [13] A is α -closed.

The following theorem was proved in [15].

Theorem 3. Let $f_1: X_1 \rightarrow Y$ and $f_2: X_2 \rightarrow Y$ be two H. a. c. mappings. If Y is a Hausdorff space, then the set $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$ is a preclosed set in the space $X_1 \times X_2$.

The following theorem shows that " f_1 is H. a. c." in Theorem 3 can be replaced by " f_1 is weakly continuous".

Theorem 4. Let $f_1: X_1 \rightarrow Y$ and $f_2: X_2 \rightarrow Y$ be two mappings where :

- a) Y is a Hausdorff space,
- b) f_1 is weakly continuous,
- c) f_2 is H. a. c..

Then the set $\{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$ is a preclosed set in the space $X_1 \times X_2$.

Proof. Let $A = \{(x_1, x_2) : f_1(x_1) = f_2(x_2)\}$. We shall show that the set $X_1 \times X_2 - A$ is preopen. Let $(x_1, x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. As Y is the Hausdorff, there exists two open sets $V_i \subset Y$, $i=1,2$ such that $f_1(x_1) \in V_1$ and $V_1 \cap V_2 = \emptyset$. This implies $\text{Cl } V_1 \cap V_2 = \emptyset$. As f_1 is w. c. by Theorem 2 of [5], $x \in f_1^{-1}(V_1) \subset \text{Int } f_1^{-1}(\text{Cl } V_1)$. As f_2 is H. a. c., $x \in f_2^{-1}(V_2)$, were by Theorem 1 of [6], $f_2^{-1}(V) \in \text{PO}(X_2)$. Let $U = \text{Int } f_1^{-1}(\text{Cl } V_1) \times f_2^{-1}(V_2)$ be, then by Lemma 2 of [15], $U \in \text{PO}(X_1 \times X_2)$. If $(y_1, y_2) \in U$ then $y_1 \in \text{Int } f_1^{-1}(\text{Cl } V_1)$ and

$y_2 \in f_2^{-1}(V_2)$ so $f_1(y_1) \in \text{Cl } V_1$ and $f_2(y_2) \in V_2$ or $\text{Cl } V_1 \cap V_2 = \emptyset$. So $(y_1, y_2) \in X_1 \times X_2 - A$. Then $(x_1, x_2) \in U \subset X_1 \times X_2 - A$ and by [6] $X_1 \times X_2 - A$ is a preopen set in $X_1 \times X_2$ and so A is a preclosed set in $X_1 \times X_2$.

Corollary 5. If $f : X \longrightarrow Y$ is α -continuous and Y is Hausdorff, then the set $\{(x_1, x_2) : f(x_1) = f(x_2)\}$ is α -closed in the product space.

Proof. By Theorem 3.2 of [13] f is semi-continuous and H. a. c.. By Corollary 1 of [15] H is a preclosed set and by Theorem 4 of [11] A is semi-closed set. By Lemma 3.1 of [13] A is α -closed.

Definition. A space X is said to be pre- T_2 if for each pair of distinct points x and y in X there exist disjoint pre-open sets U and V such that $x \in U$ and $y \in V$.

Theorem 5. If X is a topological space and for each pair of different points x_1 and x_2 from X , there is a H. a. c. function $f : X \longrightarrow Y$ with Y a Hausdorff space so that $f(x_1) \neq f(x_2)$, then X is a pre- T_2 space.

Proof. Let $x_1 \neq x_2$ be. Then as Y is Hausdorff and $f(x_1) \neq f(x_2)$, there are two open sets V_1 and V_2 with $f(x_1) \subset V_1$, $i = 1, 2$ so that $V_1 \cap V_2 = \emptyset$. As f is H. a. c. by Theorem 1 of [6] there are two preopen sets U_i , $i = 1, 2$ such that $x_1 \in U_1$ and $f(U_1) \subset V_1$, $i = 1, 2$. From $V_1 \cap V_2 = \emptyset$ it follows that $f(U_1) \cap f(U_2) = \emptyset$, which implies that $U_1 \cap U_2 = \emptyset$, i.e. X is a pre- T_2 space.

REFERENCES

- [1] N. El Deeb, I.A. Hasanein, A.S. Mashhour, T. Noiri : On P -regular space, Bull. Math. Soc. Sci. Math. R. S. R., 27(75), 4(1983), 311-315.
- [2] T. Husain : Almost continuous mappings, Prace Mat., 10(1966), 1-7.
- [3] D. S. Janovic : Concerning semi-continuous functions, Math. Chronicle, 12(1983), 109-111.
- [4] N. Levine : Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [5] N. Levine : A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [6] A. S. Mashhour, M. E. Abd El-Mousel, S.N. El-Deeb : On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Egypt, 51(1981).
- [7] A.S. Mashhour, I. A. Hasanein, S. N. El-Deeb : A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math., 13(10), (1982), 119-123.
- [8] A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb : α -continuous and α -open mappings, Acta Math. Hung., 41, 3-4(1983), 213-218.
- [9] O. Njastad : On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [10] T. Noiri : On weakly continuous mappings, Proc. Amer. Math Soc., 46, 1(1974), 120-124.
- [11] T. Noiri : A note on semi-continuous mappings, Atti Acad. Lincei, Rend. Sc. Fis. Mat. Natur., 55,(1973), 400-403.

Theorems on mappings

- [12] T. Noiri : Between continuity and weak continuity,
Bull. U. M. I., (4) 9(1974), 647-654.
- [13] T. Noiri : On α -continuous functions, Časopis pro
pest. mat. 109(1984), 118-126.
- [14] V. Popa : Asupra unor forme slabite de continuitate,
Stud. Cerc. Matem., 33(1981), 543-546.
- [15] V. Popa : Properties of H-almost continuous functions,
Bull. Math. Soc. Sci. Math. R. S. R., 31(79), 2(1987),
163-168.
- [16] A. Prakash, P. Srivastava : Theorems on
mappings into Urysohn spaces and Hausdorff spaces,
Bull. U. M. I., (4), 12(1975), 321-326.

HIGHER EDUCATION INSTITUTE, 5500 BACAU, ROMANIA

Received July 23, 1987.

