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SOME REGULAR AND SINGULAR PAIRS
OF BIRKHOFF INTERPOLATION

Let E be the interpolation matrix of order (n+2)x(m+1)(n+2)
with rows (11...10100...0) and let X be the set of knots

mn
which are the zeros of (1-x°) Pn(x). where Pn(x) is the n

th
Legendre’a polynomial. It has been proved that if m is odd,
the pair (E,X) 1is regular if n is even and singular if n
is odd. But if m is even, the pair (E,X) is singular
regardless of n. This generalizes some of known results and
offers a result of negative character in the theory of
lacunary: interpolation. A

Let E = [ehJ] be an interpolation matrix of order m x
(n+1) of 1's and 0’s with exactly N+1 1’'s and let X =
{xl}T=1 be the interpolation knots. The pair (E,X)
describes the Birkhoff interpolation problem of finding a

polynomial p(x) of degree = N such that

(1) p(j)(x!)=c : (1,4) € e

1,5

’

for arbitrary given reals ciJ where e = {(i, j) | elj= 1 }.

The pair (E,X) is said to be regular if the problem (1)

has a unique solution for arbitrary reals c y otherwise
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it is said to be singular.
If p‘”(xl) = 0, (1,J) € e, then p(x) is said to be

annihilated by (E,X). If E is the Turan’'s matrix Eu:z) of
’

order n x 2n with rows (10100...0) and X is the set of knots

-1 =x <x < ... <x <x =1
n n-1 2 1

which are zeros of (1-x°) P;q(X) (P;(x) being the n*"

Legendre polynomial with normalization Pn(l) = 1), then the
pair (E,X) is regular if n is even and singular if n is odd,
see [4].

It was observed by R.B. Saxena in 1964 and recently
proved by Prasad [2] that if E is the interpolation matrix
E(OJ,S) of (0,1,3) interpolation i.e., E is of order (n+2)
x 3(n+2) with rows (110100...0) and X is the set X of the
zeros of (1—x2)Pn(x). then the pair (E,Xl) is singular.
Since he was Interested only in the regular pair, he
modified the matrix E at the extreme knots of second

(0,1,3)
column and considered the matrix

1 1 0 1
1 0 o 1

of order (n+2) x 3(n+1) and proved [3] that the pair (E1'X1)
is regular if n is even and singular if n is odd. This idea
was extended by A.K. Varma [5] to the matrix E of

(0,1,2,4)
(0,1,2,4) interpolation which is of order (n+2) x 4(n+2)
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with rows (1110100...0). He modified E at the

extreme knots of Srd and Sth columns and(o;:o’rz:;;)dered the
matrix
( 1 1 O 0
1 1 1 1
E2 =

1 1 1 0 1 oO
1 1 o 0 O

of order (n+2) x 4(n+1) and proved that (EZ,Xi) is regular
if n is even and singular if n is odd.
It is then natural to ask how the pair (E’X1) will

behave if E is the matrix E(o 1.2.4) modified at the extreme

knots of the 5™ column only or Iif E 1Is the matrix

E(o124) itself. It will follow that in both cases the

pair (E,Xl) is regular if n 1s even and singular if n is
odd.

Our main aim here is to consider the regularity and
singularity of the pair (E,X), where E is a matrix with
identical rows and X is the set of zeros of (1-x°) Pn(x). We
shall prove the following.

T heorem If E is the matrix of order (n+2) x
(n+2)(m+1), m = 2, with rows (11...10100...0) and X is the

m
set of zeros of (1—x2) Pn(x), then

(i) if m is even, the pair (E,X) is singular, and &
(ii) if m is odd, the pair (E,X) is regular, if n is even

and singular if n is odd.
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The theorem says that the problem of (0,1,2,...,2r-1,
2r+1), r =2 1, on the zero’s of (1-x2) Pn(x) is not uniquely
solvable whereas the problem of (0,1,2,...,2r,2r+2), r z 1,
is uniquely solvable only when n is even.

In the proof of our theorem the following lemmas will
play an essential role.

Lemma 1. If

K(x)=[ 1-x) PP(x) I, r=1,2,...,
r n

then
(1) k' (x) =0, i=01,...,2r-1,
r v
(11) x:”’ (x,) =0, v=12...,n.
Pr oo f. (i) is obvious. We prove (ii) using

induction on r. To start the induction we first see that
(2) K1 (xv) =0, v=1,...,n
This follows from the equation

[( 1-x2) pn(x)"']

9

x=xv -
— ’ 2 ’
=86 Pn(xv) [(l-xv)Pn(xv) - ZxVPn(xv)]

whose right hand side vanishes owing to the differential
equation

(3) (1-x2)P;'(x) - 2xP’ (x) + n(n+1)P (x) = 0.

Now we assume that

(2r-1)
(4) K}-1 (xv)

=0
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and prove that

(5) K(2r+1)(x ) = 0.
r v

By Leibnitz formula we have

KV = (K (x) K ()15 =
r r-1 1
_ pl2r+1) 2r+1 (2r) »
—I(r_1 (x)KJx)+ (1 )Kp1(X)K1(X)+
2r+1 (2r-1) ’ s 2r+1 (2r-2) » s
+ o ) K.r_1 (x) 1(l (x) + ( s ) K.P_1 K1 (x) +
2r+1
. Z 2+ gZED oy ey
i r-1 1
1=4

Now using (i) and the assumption (4) we immediately obtain
(5).

Lemma 2 Let Q(x)=I[01-x)P (x)]" a(x) be a
polynomial of degree = (n+2)(m+1)-1, where q(x) is a
polynomial of degree =< n+l1 and let

Q"‘”(xv) =0, wv=0,1,...,n+.

Then q(x) satisfies the conditions

2 ’ - = =
(1) (1-x")q(x)-mx q(x)=0 v=1,...,n
(11)  2q° (1) + m(nsn+1)q(1) = O,

(1i1) 2q’(-1) - m(n®+n+1)q(-1) = 0.
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Proof. First we assume that m = 2r. Then

Ax) = [(1=x*)P_(x)*1" [(1-x*)"q(x)] =
= K (x) [(1-x")"q(x)].
By Leibnitz formula and Lemma 1, we have for v = 1,...,n,
(6) Q™ (x ) = (2r+1) (1-x2)" K V(%) -

. [(l—xvz)q’(xv) - 2r X, q(xv)].

2r+1

To compute Q (#1), we write

Qx) = ¢2r(x)[1>n(x)2' q(x)1,

where
¢2r(x) = (x>-1)%F
Then
0¥ * (1) = (2r+1)(1) P (1)%Fq(1) + (2P+1)¢(2P)(1) .
< [P (OTq (1) + 2r P(OFP (1)q(1)]
and
QT (-1) = ¢V (-1) P (-1)%q(-1) + (2r+D)g 27 (-1) -

2r-1

. [Pn(—l) "q"(-1) + 2r P (- 1)-P;(—1)q(—1)].

Now we using the facts that
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P(1) =1=(-1)"P (-1)
n n

(7)

Pr(1) = M o gyt pr ey

and

(2r)

0.2 (1) = 2% (2r)t = :”(-1)
(8)
(2r+1) _ n2r | = _p2r+t.
or (1) =2 (2r+1)!' r 0, (-1) ,

we obtain

(@) V(1) = 2¥(2r+1)1 [q' (1)+r(n%+n+1)q(1)]
and
(10) Q& (-1) = 2% (2r+1)! [q’ (-1)-r(n®+n+1)q(~1)].

‘Thus the conditions

Qz”l(xv) =0, v =0,1,...,n+1

imply (i), (ii) and (iii) of Lemma 2 for m = 2r.

Now let m = 2r+1. Then
Qx) = [(1-x°) P ()1 q(x) =
= K (x) [(1-x2)’*‘Pn(x) q(x)1.

By Leibnitz formula and Lemma 1 we have for v = 1,2,...,n,

- 589 -



P. Bajpai, R. B. Saxena

(2r+2) (2r)

(11) (x ) = (2r+2)(2r+1)(1- X, 2yr (x )P (x ) -

2., _
. [(l-xv)q (xv) (2r+1)xvq(xv)].

(2r+2)(

To compute Q +1), we write

2r+1

Qx) =, (x) [(1-x2)Pn(x) q(x)],

and use Leibnitz formula

(2r+2) (2r+1) 2r+1

Q (1) = -2(2r+2) ?,. (1) Pn(l) q(1) +

+ (2r+2)(2r+1) w(zr)(l)[ PP *(1) q(1) -

P {2“1(1)q (1)+(2r+1)P, (1), “)q“)}]

(2r+2) (2r+1) 2r+1

(-1) = -2(2r+2) ¢~ "' (-1) P (-1)" "q(-1) +

+ (2r+2)(2r+1) ¢‘2"( 1)[ 2”‘( 1) q(-1) +

+ 2 {%2r+1( 1)q’ (- 1)+(2r+1)P (-1) P;(-l)q(-l)}].
Now using (7) and (8) we get

(2r+2)(

(12) Q 1) = -2% (2r+2)1[2q’ (1)+(2r+1) (n®+n+1)q(1)],

(13) Q'F*? (-1)=(-1)" 2% (2r+2)112q’ (-1)-(2r+1) (n®+n+1)q(-1)].

- 580 -



Regular and singular pairs

(2r+2)
(xv)

(11), (12), (13), prove the lemma for odd m.
Lemma 3. Let q(x) be a polynomial of degree =< n+1
which satisfies the following n+2 conditions :

The conditions Q =0, v = 0,1,...,n+l, owing to

(1) (l—xs)q’(xv) - mx q(x) =0, v=12...,n
(11)  2q°(1) + m(n® + n + 1) q(1) = 0,
(111)  2q°(-1) - m(n® + n + 1) q(-1) = 0.

Then q(x) satisfies the relation

P (x)

n

2 _ (m+3) (n°+n+1)+1 ]

(l—xa)q'(x) -mx q(x) = a[x >
(n+3)(n"+n+1)-3

with arbitrary constant a.

Proof. Owing to (i), we can write

(14)  (1-x%) q’(x) - m x q(x) = (ax® + bx + cIP (x),
where a, b, ¢ are constants. From (14), we have

-mq(l) = (a+ b + c)Pn(l)

and
mq(-1) = (a - b + c)Pn(—IL

Differentiating (14), we get
(15) (1-x%) q’ ' (x) - (m¥2) x @’ (x) - m q(x) =

- = (ax® + bx + c)P;(x) + (2ax+b)Pn(x).

From (15), we have
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-(m+2) q'(1) - m q(1) = (a+b+c)P;(1) + (2a+b)Pn(1)
and

(m+2) q' (-1) - m q(-1) = (a—b+c)P;(-1) + (-2a+b)Pn(-1).
Now using the fact that

P (1)
n

1= (-1)" P (-1) ,

(186)
n(n+1)
2

P’ (1) = (-1 p(-1) ,
n n

we obtain

-mq(1) = (a + b+ c) ,

mq(-1) = (a - b +c) (-1 n(§+1) :
-(m+2) (1) = (a-c) + (a+b +c) n(g+1) ,
(m+2) @’ (-1) = (-1)™" [(a—c) + (a-b+c) n(g+1) )

Substituting q(1), q’(1), q(-1), q’(-1) in (ii) and (iii),

we get
(a-b-3c) + (a+b+c)(nZ+n+1)(m+3) = O

and

(a+b-3c) + (a—b+c)(n2+n+1)(m+3) = 0.

From these equations we have b =0 and

(a-3c) + (a+c)(n®+n+1)(m+3) = O
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2
= (m#3) (n"+n+1)+1

(m+3) (n°+n+1)-3

C

This proves the lemma.
Proof of the theorem. Let E be the interpolation
matrix of order (n+2) x (n+2)(m+1), m > 2 with rows

(11....110100...0) and X1 be the set of zeros of

m
(1-x2)Pn(x). Let Q(x} be a polynomial of degree s
(n+2) (m+1)-1 annihilated by (E,X). We have to verify if Q(x)

1s identically zero.
Since Q(xv) = Q'fx”) =, ,.= de(xv) =0, v =0,1,...,n+1,
we can write
Qx) = [(1-x")P_(x)1" q(x),

where q(x) is a polynomial of degree = n+l. We apply the

conditions
= 0, v =0,1,...,n+1.

According to Lemma 3, the polynomial q satisfies the relation

2
(17 (1-x3)q’ (x)-m x q(x) = a[x2 (m+3)(n2+n+1)+1 ] P (x)
(m+3) (n“+n+1)-3 "
with constant a. The question is whether q(x) = O.
Since Pk are linearly independent, for some const«; .. a
we have
n+1
(18) q(x) = Z 2 Pk(x).
k=0
Thus the :27 and side of :17) takes th= form
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n+1
(19) k;m—xz)P;(x) -mx P (x)la - mxP(x)a.

Using the recurrence relations

(n+1) P = (nt1) x P - nP
n+1 n

n-1

(20) .

(1-%x%) Pn =nP ., " nX Pn s
we get

(1-x") P (x) - m x P (x) =

_ 1

- [k(k+1—m) P (x) - (ke1)(kem) pk(x)]
and

2 _ n(n-1) (n+1)2 n2
X &Jﬂ'_hfﬂ'PmJX)+[(2m1Hmﬁw +42 1]PJX)+

(n+1) (n+2)

(2n+1) (2n+3) n+2(X)'

Since
Po(x) =1 and P1(X) =x,

the equation (17) takes the form

n n+2
(k+1) (k+2-m) k(k-1+m) _
2k+3 A Pk(X) }: k-1 k-1 Pk(X) -

k=0 k=1

=AP (x) +BP(x)+CP (x),
n-2 n n+2
where
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A = n(n-1)
an®-1
B = [ (n+1)? . n®  _ (me3)(nP+ne1)41 ] N
{2n+1)(2n+3) an2-1 (m+3) (n2+n+1)-3
_ (n+1)(n+2)
C= Gy 2
Consequently
2-m _
=3 2 =0
(k+1)(k+2-m) = _ k(k-1+n) = _
2k+3 k+1 2k-1 k-1 '
k=1,...,n-3,
(n-1)(n-m) (n-2) (n-3+m)
-1 2n-1 2n-5 a s M
n(n+1-m) _ (n-1)(n-2+m) =0
2n+1 m 2n-3 n-2 '
(n+1) (n+2-m) _ n{n-1+m) - B
2n+3 n+1 2n-1 n-1 ’

_ (n+1)(n+m)

2n+1 n 0,
_ (n+2) (n+1+m) = C
2n+3 n-1 ’

Let m be an odd number, then we have

(i) if n is odd ,

and
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a = a = =a =a =0
m-3 m-5 2 0
but a , a ,...,a are not necessarilly zero. Hence
m-1 m+1 n+1

q(x) is not identically zero and in this case (E,X) is
singular,

(ii) If n is even,

)
I
)
I
]
o
1
»
1
o

n-2 2 [+]
and
a = a = = a =0
1 3 n-3
For the coefficients a and a _, the equations
n-1 n+1
(n-1) (n-m) _
Zn-1 a1 0 M
(n+1)(n+2-m) =~ _ n(n-14m) = _ 4
2n+3 n+1 2n-1 n-1 ’

_ (n+2) (n+1+m)
2n+3 n+1

= C.

must be satisfied. Putting the values of A, B and C, we see
that a must be zero i.e. an_1 and am1 are also zero. Thus
q(x) is identically zero and therefore, in this case (E,X)

is regular.
Now let, m be even. We see that :

If n is even, then

a = a = = a =a =0
n~-2 2 o
and
a = a = =a =a =0
m-3 m-5 3 1
but a ,a ,..., a are not zero.
m-1 m+1 n+1

If n is odd, then
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a = a = ...=a =a =0,
3 1

but not all a.o. nz..... a.m1 are not zero. Thus. in both
cases (n even or n odd) q(x) is not identically zero and so

(E,X) is singular.
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