

Priti Bajpai, R.B. Saxena

SOME REGULAR AND SINGULAR PAIRS
OF BIRKHOFF INTERPOLATION

Let E be the interpolation matrix of order $(n+2) \times (m+1)(n+2)$ with rows $(11\dots10100\dots0)$ and let X be the set of knots which are the zeros of $(1-x^2)^m P_n(x)$, where $P_n(x)$ is the n^{th} Legendre's polynomial. It has been proved that if m is odd, the pair (E, X) is regular if n is even and singular if n is odd. But if m is even, the pair (E, X) is singular regardless of n . This generalizes some of known results and offers a result of negative character in the theory of lacunary interpolation.

Let $E = [e_{i,j}]$ be an interpolation matrix of order $m \times (n+1)$ of 1's and 0's with exactly $N+1$ 1's and let $X = \{x_i\}_{i=1}^m$ be the interpolation knots. The pair (E, X) describes the Birkhoff interpolation problem of finding a polynomial $p(x)$ of degree $\leq N$ such that

$$(1) \quad p^{(j)}(x_i) = c_{i,j}, \quad (i, j) \in e$$

for arbitrary given reals $c_{i,j}$ where $e = \{(i, j) \mid e_{i,j} = 1\}$.

The pair (E, X) is said to be regular if the problem (1) has a unique solution for arbitrary reals $c_{i,j}$, otherwise

it is said to be singular.

If $p^{(j)}(x_i) = 0$, $(i, j) \in e$, then $p(x)$ is said to be annihilated by (E, X) . If E is the Turan's matrix $E_{(0,2)}$ of order $n \times 2n$ with rows $(10100\dots 0)$ and X is the set of knots

$$-1 = x_n < x_{n-1} < \dots < x_2 < x_1 = 1$$

which are zeros of $(1-x^2)P'_{n-1}(x)$ ($P_n(x)$ being the n^{th} Legendre polynomial with normalization $P_n(1) = 1$), then the pair (E, X) is regular if n is even and singular if n is odd, see [4].

It was observed by R.B. Saxena in 1964 and recently proved by Prasad [2] that if E is the interpolation matrix $E_{(0,1,3)}$ of $(0,1,3)$ interpolation i.e., E is of order $(n+2) \times 3(n+2)$ with rows $(110100\dots 0)$ and X is the set X_1 of the zeros of $(1-x^2)P_n(x)$, then the pair (E, X_1) is singular. Since he was interested only in the regular pair, he modified the matrix $E_{(0,1,3)}$ at the extreme knots of second column and considered the matrix

$$E_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & \cdot & \cdot & \cdot \\ 1 & 1 & 0 & 1 & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot \\ 1 & 1 & 0 & 1 & 0 & \cdot & \cdot & \cdot \\ 1 & 0 & 0 & 1 & 0 & \cdot & \cdot & \cdot \end{bmatrix}$$

of order $(n+2) \times 3(n+1)$ and proved [3] that the pair (E_1, X_1) is regular if n is even and singular if n is odd. This idea was extended by A.K. Varma [5] to the matrix $E_{(0,1,2,4)}$ of $(0,1,2,4)$ interpolation which is of order $(n+2) \times 4(n+2)$

with rows $(1110100\dots0)$. He modified $E_{(0,1,2,4)}$ at the extreme knots of 3rd and 5th columns and considered the matrix

$$E_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot \\ 1 & 1 & 1 & 0 & 1 & 0 & \cdot & \cdot & \cdot \\ \cdot & \cdot \\ 1 & 1 & 1 & 0 & 1 & 0 & \cdot & \cdot & \cdot \\ 1 & 1 & 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot \end{bmatrix}$$

of order $(n+2) \times 4(n+1)$ and proved that (E_2, X_1) is regular if n is even and singular if n is odd.

It is then natural to ask how the pair (E, X_1) will behave if E is the matrix $E_{(0,1,2,4)}$ modified at the extreme knots of the 5th column only or if E is the matrix $E_{(0,1,2,4)}$ itself. It will follow that in both cases the pair (E, X_1) is regular if n is even and singular if n is odd.

Our main aim here is to consider the regularity and singularity of the pair (E, X) , where E is a matrix with identical rows and X is the set of zeros of $(1-x^2)^m P_n(x)$. We shall prove the following.

Theorem. If E is the matrix of order $(n+2) \times (n+2)(m+1)$, $m \geq 2$, with rows $(11\dots10100\dots0)^m$ and X is the set of zeros of $(1-x^2)^m P_n(x)$, then

- (i) if m is even, the pair (E, X) is singular, and *
- (ii) if m is odd, the pair (E, X) is regular, if n is even and singular if n is odd.

The theorem says that the problem of $(0, 1, 2, \dots, 2r-1, 2r+1)$, $r \geq 1$, on the zero's of $(1-x^2) P_n(x)$ is not uniquely solvable whereas the problem of $(0, 1, 2, \dots, 2r, 2r+2)$, $r \geq 1$, is uniquely solvable only when n is even.

In the proof of our theorem the following lemmas will play an essential role.

L e m m a 1. If

$$K_r(x) = [(1-x^2) P_n^2(x)]^r, \quad r = 1, 2, \dots,$$

then

$$(i) \quad K_r^i(x_v) = 0, \quad i = 0, 1, \dots, 2r-1,$$

$$(ii) \quad K_r^{2r+1}(x_v) = 0, \quad v = 1, 2, \dots, n.$$

P r o o f. (i) is obvious. We prove (ii) using induction on r . To start the induction we first see that

$$(2) \quad K_1'''(x_v) = 0, \quad v = 1, \dots, n.$$

This follows from the equation

$$\begin{aligned} & \left[(1-x^2) P_n(x)^2 \right]'''_{x=x_v} = \\ & = 6 P_n'(x_v) \left[(1-x_v^2) P_n(x_v) - 2x_v P_n'(x_v) \right] \end{aligned}$$

whose right hand side vanishes owing to the differential equation

$$(3) \quad (1-x^2) P_n'''(x) - 2x P_n'(x) + n(n+1) P_n(x) = 0.$$

Now we assume that

$$(4) \quad K_{r-1}^{(2r-1)}(x_v) = 0$$

and prove that

$$(5) \quad K_r^{(2r+1)}(x_v) = 0.$$

By Leibnitz formula we have

$$\begin{aligned}
 K_r^{(2r+1)}(x) &= [K_{r-1}(x) K_1(x)]^{(2r+1)} = \\
 &= K_{r-1}^{(2r+1)}(x) K_1(x) + \binom{2r+1}{1} K_{r-1}^{(2r)}(x) K_1'(x) + \\
 &+ \binom{2r+1}{2} K_{r-1}^{(2r-1)}(x) K_1''(x) + \binom{2r+1}{3} K_{r-1}^{(2r-2)}(x) K_1'''(x) + \\
 &+ \sum_{i=4}^{2r+1} \binom{2r+1}{i} K_{r-1}^{(2r-i+1)}(x) K_1^{(i)}(x).
 \end{aligned}$$

Now using (i) and the assumption (4) we immediately obtain (5).

Lemma 2. Let $Q(x) = [(1-x^2)P_n(x)]^m q(x)$ be a polynomial of degree $\leq (n+2)(m+1)-1$, where $q(x)$ is a polynomial of degree $\leq n+1$ and let

$$Q^{m+1}(x_v) = 0, \quad v = 0, 1, \dots, n+1.$$

Then $q(x)$ satisfies the conditions

- (i) $(1-x_v^2) q'(x_v) - m x_v q(x_v) = 0, \quad v = 1, \dots, n,$
- (ii) $2q'(1) + m(n^2+n+1)q(1) = 0,$
- (iii) $2q'(-1) - m(n^2+n+1)q(-1) = 0.$

P r o o f. First we assume that $m = 2r$. Then

$$\begin{aligned} Q(x) &= [(1-x^2)P_n(x)^2]^r [(1-x^2)^r q(x)] = \\ &= K_r(x) [(1-x^2)^r q(x)]. \end{aligned}$$

By Leibnitz formula and Lemma 1, we have for $v = 1, \dots, n$,

$$\begin{aligned} (6) \quad Q^{2r+1}(x_v) &= (2r+1) (1-x_v^2)^{r-1} K_r^{(2r)}(x_v) \cdot \\ &\quad \cdot [(1-x_v^2)q'(x_v) - 2r x_v q(x_v)]. \end{aligned}$$

To compute $Q^{2r+1}(\pm 1)$, we write

$$Q(x) = \varphi_{2r}(x) [P_n(x)^{2r} q(x)],$$

where

$$\varphi_{2r}(x) = (x^2 - 1)^{2r}.$$

Then

$$\begin{aligned} Q^{2r+1}(1) &= \varphi_{2r}^{(2r+1)}(1) P_n(1)^{2r} q(1) + (2r+1) \varphi_{2r}^{(2r)}(1) \cdot \\ &\quad \cdot [P_n(1)^{2r} q'(1) + 2r P_n(1)^{2r-1} P'_n(1) q(1)] \end{aligned}$$

and

$$\begin{aligned} Q^{2r+1}(-1) &= \varphi_{2r}^{(2r+1)}(-1) P_n(-1)^{2r} q(-1) + (2r+1) \varphi_{2r}^{(2r)}(-1) \cdot \\ &\quad \cdot [P_n(-1)^{2r} q'(-1) + 2r P_n^{2r-1}(-1) \cdot P'_n(-1) q(-1)]. \end{aligned}$$

Now we using the facts that

$$(7) \quad \left\{ \begin{array}{l} P_n(1) = 1 = (-1)^n P_n(-1) \\ P'_n(1) = \frac{n(n+1)}{2} = (-1)^{n-1} P'_n(-1) \end{array} \right.$$

and

$$(8) \quad \left\{ \begin{array}{l} \varphi_{2r}^{(2r)}(1) = 2^{2r}(2r)! = \varphi_{2r}^{(2r)}(-1) \\ \varphi_{2r}^{(2r+1)}(1) = 2^{2r}(2r+1)! \quad r = -\varphi_{2r}^{2r+1}(-1) \end{array} \right.$$

we obtain

$$(9) \quad Q^{(2r+1)}(1) = 2^{2r}(2r+1)! [q'(1) + r(n^2+n+1)q(1)]$$

and

$$(10) \quad Q^{(2r+1)}(-1) = 2^{2r}(2r+1)! [q'(-1) - r(n^2+n+1)q(-1)].$$

Thus the conditions

$$Q^{2r+1}(x_v) = 0, \quad v = 0, 1, \dots, n+1$$

imply (i), (ii) and (iii) of Lemma 2 for $m = 2r$.

Now let $m = 2r+1$. Then

$$\begin{aligned} Q(x) &= [(1-x^2) P(x)]^{2r+1} q(x) = \\ &= K_r(x) [(1-x^2)^{r+1} P_n(x) q(x)]. \end{aligned}$$

By Leibnitz formula and Lemma 1 we have for $v = 1, 2, \dots, n$,

$$(11) \quad Q^{(2r+2)}(x_v) = (2r+2)(2r+1)(1-x_v^2)^r K_r^{(2r)}(x_v) P_n^{(2r+1)}(x_v) \cdot \\ \cdot [(1-x_v^2)q'(x_v) - (2r+1)x_v q(x_v)].$$

To compute $Q^{(2r+2)}(\pm 1)$, we write

$$Q(x) = \varphi_{2r}(x) [(1-x^2)P_n(x)^{2r+1}q(x)],$$

and use Leibnitz formula

$$Q^{(2r+2)}(1) = -2(2r+2) \varphi_{2r}^{(2r+1)}(1) P_n(1)^{2r+1}q(1) + \\ + (2r+2)(2r+1) \varphi_{2r}^{(2r)}(1) \left[P_n^{2r+1}(1) q(1) - \right. \\ \left. - 2 \left\{ P_n^{2r+1}(1) q'(1) + (2r+1) P_n(1)^{2r} P_n'(1) q(1) \right\} \right],$$

$$Q^{(2r+2)}(-1) = -2(2r+2) \varphi_{2r}^{(2r+1)}(-1) P_n(-1)^{2r+1}q(-1) + \\ + (2r+2)(2r+1) \varphi_{2r}^{(2r)}(-1) \left[-P_n^{2r+1}(-1) q(-1) + \right. \\ \left. + 2 \left\{ P_n^{2r+1}(-1) q'(-1) + (2r+1) P_n(-1)^{2r} P_n'(-1) q(-1) \right\} \right].$$

Now using (7) and (8) we get

$$(12) \quad Q^{(2r+2)}(1) = -2^{2r} (2r+2)! [2q'(1) + (2r+1)(n^2+n+1)q(1)],$$

$$(13) \quad Q^{(2r+2)}(-1) = (-1)^n 2^{2r} (2r+2)! [2q'(-1) - (2r+1)(n^2+n+1)q(-1)].$$

The conditions $Q^{(2r+2)}(x_v) = 0$, $v = 0, 1, \dots, n+1$, owing to (11), (12), (13), prove the lemma for odd m .

Lemma 3. Let $q(x)$ be a polynomial of degree $\leq n+1$ which satisfies the following $n+2$ conditions :

- (i) $(1-x_v^2)q'(x_v) - mx_v q(x_v) = 0$, $v = 1, 2, \dots, n$,
- (ii) $2q'(1) + m(n^2 + n + 1) q(1) = 0$,
- (iii) $2q'(-1) - m(n^2 + n + 1) q(-1) = 0$.

Then $q(x)$ satisfies the relation

$$(1-x^2)q'(x) - mx q(x) = a \left[x^2 - \frac{(m+3)(n^2+n+1)+1}{(m+3)(n^2+n+1)-3} \right] P_n(x)$$

with arbitrary constant a .

P r o o f. Owing to (i), we can write

$$(14) \quad (1-x^2) q'(x) - mx q(x) = (ax^2 + bx + c) P_n(x),$$

where a, b, c are constants. From (14), we have

$$-m q(1) = (a + b + c) P_n(1)$$

and

$$m q(-1) = (a - b + c) P_n(-1).$$

Differentiating (14), we get

$$(15) \quad (1-x^2) q''(x) - (m+2)x q'(x) - m q(x) = \\ = (ax^2 + bx + c) P'_n(x) + (2ax+b) P_n(x).$$

From (15), we have

$$-(m+2) q'(1) - m q(1) = (a+b+c) P'_n(1) + (2a+b) P_n(1)$$

and

$$(m+2) q'(-1) - m q(-1) = (a-b+c) P'_n(-1) + (-2a+b) P_n(-1).$$

Now using the fact that

$$(16) \quad \begin{cases} P_n(1) = 1 = (-1)^n P_n(-1) , \\ P'_n(1) = \frac{n(n+1)}{2} = (-1)^{n-1} P'_n(-1) , \end{cases}$$

we obtain

$$-mq(1) = (a + b + c) ,$$

$$mq(-1) = (a - b + c) (-1)^{n-1} \frac{n(n+1)}{2} ,$$

$$-(m+2) q'(1) = (a - c) + (a + b + c) \frac{n(n+1)}{2} ,$$

$$(m+2) q'(-1) = (-1)^{n-1} [(a-c) + (a-b+c) \frac{n(n+1)}{2}] .$$

Substituting $q(1)$, $q'(1)$, $q(-1)$, $q'(-1)$ in (ii) and (iii), we get

$$(a-b-3c) + (a+b+c)(n^2+n+1)(m+3) = 0$$

and

$$(a+b-3c) + (a-b+c)(n^2+n+1)(m+3) = 0.$$

From these equations we have $b = 0$ and

$$(a-3c) + (a+c)(n^2+n+1)(m+3) = 0$$

i.e.,

Regular and singular pairs

$$C = \frac{(m+3)(n^2+n+1)+1}{(m+3)(n^2+n+1)-3} a.$$

This proves the lemma.

Proof of the theorem. Let E be the interpolation matrix of order $(n+2) \times (n+2)(m+1)$, $m > 2$ with rows $(11\dots110100\dots0)$ and X_1 be the set of zeros of $(1-x^2)P_n^m(x)$. Let $Q(x)$ be a polynomial of degree $\leq (n+2)(m+1)-1$ annihilated by (E, X) . We have to verify if $Q(x)$ is identically zero.

Since $Q(x_\nu) = Q'(x_\nu) = \dots = Q^{m-1}(x_\nu) = 0$, $\nu = 0, 1, \dots, n+1$, we can write

$$Q(x) = [(1-x^2)P_n(x)]^m q(x),$$

where $q(x)$ is a polynomial of degree $\leq n+1$. We apply the conditions

$$Q^{m+1}(x_\nu) = 0, \quad \nu = 0, 1, \dots, n+1.$$

According to Lemma 3, the polynomial q satisfies the relation

$$(17) \quad (1-x^2)q'(x) - m \times q(x) = a \left[x^2 \frac{(m+3)(n^2+n+1)+1}{(m+3)(n^2+n+1)-3} \right] P_n(x)$$

with constant a . The question is whether $q(x) \equiv 0$.

Since P_k are linearly independent, for some constants a_k we have

$$(18) \quad q(x) = \sum_{k=0}^{n+1} a_k P_k(x).$$

Thus the left hand side of (17) takes the form

$$(19) \quad \sum_{k=1}^{n+1} [(1-x^2)P'_k(x) - m \times P_k(x)] a_k = m \times P_0(x) a_0.$$

Using the recurrence relations

$$(20) \quad \left\{ \begin{array}{l} (n+1) P_{n+1} = (n+1) \times P_n - n P_{n-1} , \\ (1-x^2) P_n = n P_{n-1} - n \times P_n , \end{array} \right.$$

we get

$$\begin{aligned} (1-x^2) P'_k(x) - m \times P_k(x) &= \\ &= \frac{1}{2k+1} \left[k(k+1-m) P_{k-1}(x) - (k+1)(k+m) P_k(x) \right] \end{aligned}$$

and

$$\begin{aligned} x^2 P_n(x) &= \frac{n(n-1)}{4n^2-1} P_{n-2}(x) + \left[\frac{(n+1)^2}{(2n+1)(2n+3)} + \frac{n^2}{4n^2-1} \right] P_n(x) + \\ &+ \frac{(n+1)(n+2)}{(2n+1)(2n+3)} P_{n+2}(x). \end{aligned}$$

Since

$$P_0(x) = 1 \quad \text{and} \quad P_1(x) = x ,$$

the equation (17) takes the form

$$\begin{aligned} \sum_{k=0}^n \frac{(k+1)(k+2-m)}{2k+3} a_{k+1} P_k(x) - \sum_{k=1}^{n+2} \frac{k(k-1+m)}{2k-1} a_{k-1} P_k(x) &= \\ &= A P_{n-2}(x) + B P_n(x) + C P_{n+2}(x) , \end{aligned}$$

where

$$A = \frac{n(n-1)}{4n^2-1} a ,$$

$$B = \left[\frac{(n+1)^2}{(2n+1)(2n+3)} + \frac{n^2}{4n^2-1} - \frac{(m+3)(n^2+n+1)+1}{(m+3)(n^2+n+1)-3} \right] a ,$$

$$C = \frac{(n+1)(n+2)}{(2n+1)(2n+3)} a .$$

Consequently

$$\frac{2-m}{3} a_1 = 0 ,$$

$$\frac{(k+1)(k+2-m)}{2k+3} a_{k+1} - \frac{k(k-1+m)}{2k-1} a_{k-1} = 0 ,$$

$$k = 1, \dots, n-3 ,$$

$$\frac{(n-1)(n-m)}{2n-1} a_{n-1} - \frac{(n-2)(n-3+m)}{2n-5} a_{n-3} = A ,$$

$$\frac{n(n+1-m)}{2n+1} a_m - \frac{(n-1)(n-2+m)}{2n-3} a_{n-2} = 0 ,$$

$$\frac{(n+1)(n+2-m)}{2n+3} a_{n+1} - \frac{n(n-1+m)}{2n-1} a_{n-1} = B ,$$

$$- \frac{(n+1)(n+m)}{2n+1} a_n = 0 ,$$

$$- \frac{(n+2)(n+1+m)}{2n+3} a_{n-1} = C .$$

Let m be an odd number, then we have

(i) if n is odd ,

$$a_1 = a_3 = \dots = a_{n-2} = a_n = 0$$

and

$$a_{m-3} = a_{m-5} = \dots = a_2 = a_0 = 0$$

but $a_{m-1}, a_{m+1}, \dots, a_{n+1}$ are not necessarily zero. Hence $q(x)$ is not identically zero and in this case (E, X) is singular,

(ii) If n is even,

$$a_n = a_{n-2} = \dots = a_2 = a_0 = 0$$

and

$$a_1 = a_3 = \dots = a_{n-3} = 0.$$

For the coefficients a_{n-1} and a_{n+1} , the equations

$$\frac{(n-1)(n-m)}{2n-1} a_{n-1} = A,$$

$$\frac{(n+1)(n+2-m)}{2n+3} a_{n+1} - \frac{n(n-1+m)}{2n-1} a_{n-1} = B,$$

$$- \frac{(n+2)(n+1+m)}{2n+3} a_{n+1} = C.$$

must be satisfied. Putting the values of A , B and C , we see that a must be zero i.e. a_{n-1} and a_{n+1} are also zero. Thus $q(x)$ is identically zero and therefore, in this case (E, X) is regular.

Now let, m be even. We see that :

If n is even, then

$$a_n = a_{n-2} = \dots = a_2 = a_0 = 0$$

and

$$a_{m-3} = a_{m-5} = \dots = a_3 = a_1 = 0$$

but $a_{m-1}, a_{m+1}, \dots, a_{n+1}$ are not zero.

If n is odd, then

$$a_n = a_{n-2} = \dots = a_3 = a_1 = 0,$$

but not all a_0, a_2, \dots, a_{n+1} are not zero. Thus, in both cases (n even or n odd) $q(x)$ is not identically zero and so (E, X) is singular.

REFERENCES

- [1] G. G. Lorenz, K. Jetter, S. D. Riemenschneider: Birkhoff Interpolation, Addison-Wesley Publishing Company (1983)
- [2] J. Prasad, C. H. Andersson: Some remarks on non-existence of interpolation polynomials, Math. Not. 29 (1981/82), 67-71.
- [3] R. B. Saxena: Some interpolatory properties of Legendre polynomials III, Bulgarian Akad. Nauk. Otd. Mat. Fiz. Nauk. Izv. Math. Inst. 8 (1964), 63-94, MR 30 # 4005.
- [4] J. Surányi, P. Turán: Notes of interpolation I, Acta Math. Acad. Sci. Hungar. 6(1955), 66-79.
- [5] A. K. Varma: An analogue of a problem of J. Balázs and P. Turán III Trans. Amer. Math. Soc. 146(1969), 107-120.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY LUCKNOW UNIVERSITY
LUCKNOW 226007, INDIA

Received October 16, 1986.

