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SOME REGULAR AND SINGULAR PAIRS 

OF BIRKHOFF INTERPOLATION 

Let E be the Interpolation matrix of order (n+2)x(m+l)(n+2) 
with rows (11. . . 10100. • .0) and let X be the set of knots 

m 
which are the zeros of (1-x') P (x), where P (x) is the n o n 
Legendre'a polynomial. It has been proved that if m is odd, 
the pair (E,X) is regular if n is even and singular if n 
is odd. But if m is even, the pair (E,X) is singular 
regardless of n. This generalizes some of known results and 
offers a result of negative character in the theory of 
lacunary interpolation. 

Let E = [ej j] be an interpolation matrix of order m x 
(n+1) of l's and 0's with exactly N+l l's and let X = 
{ x ^ ™ ^ be the interpolation knots. The pair (E, X) 
describes the Birkhoff interpolation problem of finding a 
polynomial p(x) of degree s N such that 

(1) PCJ)(x ) = c , (i,j) € e 
' M J 

for arbitrary given reals c^ ^ where e = j\i,j) | et = 1 J-. 

The pair (E,X) is said to be regular if the problem (1) 
has a unique solution for arbitrary reals c , otherwise 
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it is said to be singular. 
If p<J)(x ) = 0, (i,J) € e, then p(x) is said to be 

annihilated by (E,X). If E is the Turan's matrix E, , of (0,2) 
order n x 2n with rows (10100...0) and X is the set of knots 

-1 = x < x < n n-1 < X < X 2 1 

which are zeros of (1-x ) P' (x) n-l 
th (P (x) being the n n 

Legendre polynomial with normalization P (1) = 1), then the n 
pair (E,X) is regular if n is even and singular if n is odd, 
see [4]. 

It was observed by R. B. Saxena in 1964 and recently 
proved by Prasad [2] that if E is the interpolation matrix 
E of (0,1,3) interpolation i.e., E is of order (n+2) (Of 1^3) 
X 3(n+2) with rows (110100...0) and X is the set X of the 
zeros of (1-x )P (x), then the pair (E,X ) is singular. n 1 
Since he was interested only in the regular pair, he 
modified the matrix E at the extreme knots of second (0,1,3) 
column and considered the matrix 

E = l 

0 
1 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

of order (n+2) x 3(n+l) and proved [3] that the pair (E »X ) 
is regular if n is even and singular if n is odd. This idea 
was extended by A. K. Varma [5] to the matrix E of * (0,1,2,4) 
(0,1,2,4) interpolation which is of order (n+2) x 4(n+2) 
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with rows (1110100.. .0). He modified E, % at the 
rd th (0,1,2,4) 

extreme knots of 3 and 5 columns and considered the 

matrix 

1 1 0 0 0 0 . 

1 1 1 0 1 0 . 

1 1 1 0 1 0 . 

1 1 0 0 0 0 . 

of order (n+2) x 4(n+l) and proved that (E , X ) is regular 

if n is even and singular if n is odd. 

It is then natural to ask how the pair (E.X^ will 

behave if E is the matrix E modified at the extreme 

(0,1,2,4) 

knots of the 5 t h column only or if E is the matrix 

E, itself. It will follow that in both cases the 

(0,1,2,4) 

pair (E, is regular if n is even and singular if n is 

odd. 

Our main aim here is to consider the regularity and 

singularity of the pair (E,X), where E is a matrix with 

identical rows and X is the set of zeros of (1-x ) P (x). We n 

shall prove the following. 

T h e o r e m . If E is the matrix of order (n+2) x 

(n+2) (m+1), m a 2, with rows (11. . . 10100. . .0) and X is the 
m 

2 
set of zeros of (1-x ) P (x), then 

n 

(i) if m is even, the pair (E,X) is singular, and * 

(ii) if m is odd, the pair (E,X) is regular, if n is even 

and singular if n is odd. 
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The theorem says that the problem of (0,1,2 2r-l, 
2 2r+l), r a 1, on the zero's of (1-x ) P (x) is not uniquely n 

solvable whereas the problem of (0,1,2,...,2r,2r+2), r £ 1, 
is uniquely solvable only when n is even. 

In the proof of our theorem the following lemmas will 
play an essential role. 

L e m m a 1. If 
K (x) = [ (1-x2) P2(x) ]r , r = 1,2 r n 

then 

(1) K1 (x ) = 0, i = 0,1 2r-l , r V 

(ii) K2r+1 (x ) = 0 , v = 1,2 n . r V 
P r o o f . (i) is obvious. We prove (ii) using 

induction on r. To start the induction we first see that 

(2) K^" (xy) = 0 , v = 1 n. 

This follows from the equation 

[(1-x2) P (x)2l'" = 
L n J X = Xy 

= 6 P'(x ) f(l-x2)P (x ) - 2x P'(x )1 n V [ V n V l> n V J 

whose right hand side vanishes owing to the differential 
equation 

(3) (l-x2)P"(x) - 2xP'(x) + n(n+l)P (x) = 0. n n n 

Now we assume that 

(4) K<2r_1>(x ) = 0 r-l V 
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and prove that 

(5) K(2r+1)(x ) = 0. r V 

By Leibnitz formula we have 

„(2r+l), . r t \ v I \ i(2r+l) K (x) = [K (x) K (x)j r I—1 1 

= K(2r+1)(x) K (x) + (2r+1) K(2r)(x) K '(x) + r-l 1 1 r-1 1 

+ (2r+1) K ( 2 r" n(x) K " ( x ) + (2r+1) K(2r"2) K'"(x) + 2 r-l 1 3 r-l 1 

2r + 1 

+ > ( 2 r + 1) K(2r"1+1,(x) KU,(x). r-l 1 I'T 
1=4 

Now using (i) and the assumption (4) we immediately obtain 
(5). 

L e m m a 2. Let Q(x) = [(l-x2)P (x)]m q(x) be a n 
polynomial of degree s (n+2)(m+l)-l, where q(x) is a 
polynomial of degree s n+1 and let 

Qm+1(xy) = 0 , v  = 0,1 n+1. 

Then q(x) satisfies the conditions 

(i) (1 - x y
2) q'(xy) - m xy q(xy) = 0 , v - l,...,n , 

(ii) 2q'(1) + m(n2+n+l)q(l) = 0, 

(iii) 2q'(-1) - m(n2+n+l)q(-l) = 0. 
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P r o o f . First we assume that m = 2r. Then 

Q(x) = [(l-x8)P (x)2]r [(l-x2)rq(x)] = 
n 

= K (x) [(l-x2)rq(x)]. 
r 

By Leibnitz formula and Lemma 1, we have for v = 1 n, 

(6) Q2r+1(x ) = (2r+l) (l-x2)r_1 K<2r)(x ) • 

V V r V 

• [(l-xu2)q'(xu) - 2r xy qix^)]. 

2r+ l To compute Q (±1), we write 
Q(x) = ® (x)[P (x)2r q(x) ], 

2r n 

where 

• (x) = (x2-l)2r. 2r 

Then 

Q2r+1(l) = ^ 2 r + 1 ,(l) P (l)2rq(l) + (2r+l)^2r,(l) • 
2r n 2r 

• [P (1 )2rq' (1) + 2r P (l)2r"1P'(l)q(l)] 
n n n 

and 

Q2r+1(-1) = /2r+1)(-l) P (-1 )2rq(-l) + (2r+l)^2r)(-D • 
2r n 2r 

• [P (-l)2rq'(-l) + 2r P2r_1(-1)-P'(-l)q(-l)]. 
n n n 

Now we using the facts that 
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(7) 

P (1) = 1 = (-1)" P (-1) n n 

P'd) = = (_1}n-l p, (_ 1 } n d n 

and 

(8) 

© (1) = 2 (2r) ! = <p (-1) 2r 2r 

P„ (1) = 2 (2r+l ) ! r = -<p (-1) , 2r 2r 

we obtain 

(9) Q(2r+1)(l) = 22r(2r+l)! [q* ( 1 )+r(n2+n+l)q( 1 ) ] 

and 

(10) Q(2r+1)(-i) = 2Zr(2r+l)! [q* (-1 )-r(n2+n+l )q(-l) ]. 

Thus the conditions 

„2r+l, * „ Q (Xy) = 0 , v = 0,1 n+1 

imply (i), (ii) and (iii) of Lemma 2 for m = 2r. 
Now let m = 2r+l. Then 

Q(x) = [(1-x2) P (x)]2r+1 q(x) = 

= K (x) [(l-x2)r+1P (x) q(x)]. r n 

By Leibnitz formula and Lemma 1 we have for v = 1,2 n, 
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(11) Q(2r+2)(x ) = (2r+2)(2r+1)(1 -x2)r K(2r)(x )P'(x ) • 
V V r V n V 

• [(l-x2)q'(xy)-(2r+l)x^q(x^)]. 

(2r+2) To compute Q (±1), we write 

Q(x) = © (x) [(l-x2)P (x)2r+1q(x) ], 2r n 

and use Leibnitz formula 

Q(2rt2)(l) = -2(2r+2) V(2r+1)(l) P ( D ^ q i l ) + 2r n 

+ (2r+2) (2r+l) ̂ 2r)(l) fp2r+1(l) q(l) -2r In 

- 2 |p2r+1(l)q' (l) + (2r+l)Pn(l)2rP^(l)q(l)Jj, 

Q(2r+2)(_n = _ 2 ( 2 r + 2 ) ^ ' ( - l ) p (_1)2r+l + 
2r n 

+ (2r+2) (2r+l) ̂ 2 r ) (-1) [-P2r+1(-1) q(-l) + 2r I n 

+ 2 |p2r+1(-l)q'(-l) + (2r+l)Pn(-l)2V (-l)q(-l)|] 

Now using (7) and (8) we get 

(12) Q(2r+2)(1) = -22r(2r+2)! [2q' (1 ) + (2r+l) (n2+n+l )q( 1) ], 

(13) Q(2r+2)(-l) = (-l)n 22r(2r+2)! [2q' (-l)-(2r+l) (n2+n+l)q(-l) ] 
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The conditions Q(2r+2)(xy) = 0, v = 0,1,...,n+1, owing to 

(11), (12), (13), prove the lemma for odd m. 
L e m m a 3. Let q(x) be a polynomial of degree s n+1 

which satisfies the following n+2 conditions : 

(i) (l-x2)q'(xy) - mxyq(xy) =0, v = 1,2 n, 

(11) 2q'(1) + m(n2 + n + 1) q(l) = 0, 

(ill) 2q'(-l) - m(n2 + n + 1) q(-l) = 0. 

Then q(x) satisfies the relation 

with arbitrary constant a. 
P r o o f . Owing to (i), we can write 

(14) (1-x2) q'(x) - m x q(x) = (ax2 + bx + c)P (x), n 

where a, b, c are constants. From (14), we have 

2 I 2 (1-x )q'(x) - m x q(x) = a x ( m+3)( n2+n+1 ) +1 
(m+3)(n2+n+l)-3 

]pn(x) 

- m q(l) = (a + b + c)P (1) 
and 

m q(-l) = (a - b + c)P (-1). 

Differentiating (14), we get 

(15) (1-x2) q"(x) - (m+2) x q'(x) - m q(x) = 

= (ax2 + bx + c)P'(x) + (2ax+b)P (x). n n 

From (15), we have 
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-(m+2) q ' ( 1 ) - m q ( l ) = (a+b+c)P ' ( l ) + (2a+b)P (1) 

and 

(m+2) q ' ( - l ) - m q ( - l ) = (a -b+c)P ' ( -1 ) + (-2a+b)P ( -1) . 

Now u s i n g the f a c t tha t 

(16) 

P (1) = 1 = ( - 1 ) " P ( -1) , 
n n 

P ' d ) = E l g i l l = ( - 1 ) " - 1 p . ( - i ) , 
n <i n 

we o b t a i n 

-mq( l ) = (a + b + c) , 

mq(- l ) = (a - b + c ) ( - l ) " " 1 B ^ l l 

-(m+2) q ' ( 1 ) = (a - c ) + (a + b + c) 
n(n+l) 

(m+2) q ' ( - l ) = ( - l ) n _ 1 [ ( a - c ) + (a-b+c) n ( " + 1 ) ]. 

S u b s t i t u t i n g q (1) , q ' ( 1 ) , q ( - l ) , q ' ( - 1 ) i n ( i i ) and ( i i i ) , 

we get 

(a-b-3c) + (a+b+c)(n2+n+1)(m+3) = 0 

and 

(a+b-3c) + (a-b+c)(n2+n+l)(m+3) = 0. 

From these equa t i ons we have b = 0 and 

(a-3c) + (a+c)(n +n+l)(m+3) = 0 

i . e . , 
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(m+3)(n2+n+l)+l C = a . 
(m+3)(n2+n+l)-3 

This proves the lemma. 
P r o o f o f the theorem. Let E be the interpolation 

matrix of order (n+2) x (n+2)(m+l), m > 2 with rows 
(11. • . . 110100. . .0) and be the set of zeros of 

m 2 (1-x )P (x). Let Q(x) be a polynomial of degree s n 
(n+2)(m+1)-1 annihilated by (E,X). We have to verify if Q(x) 
is identically zero. 

Since Q(xy) = Q'' =. ..= Q ^ i x ) = 0, v = 0,1,..., n+1, 

we c a n write 

Q(x) = [ (l-x2)P (x)]B q(x), 
n 

where q(x) is a polynomial of degree s n+1. We apply the 
c o n d i t i o n s 

Qm+1(x ^ 0, v = 0,1 n+1. 

According to Lemma 3, the polynomial q satisfies the relation 

. _ 2 (17) ( 1 - X )q'(x)-m x q ( x ) = 
= a[x2 (">+3)(n+n+l)+l j p ( x ) 

L ( m+3 ) ( n2+n+1 ) -3 -I n 

with constant a. The question is whether q(x) = 0. 

Since P^ are linearly independent, for some cinst a^ 
we have 

n+1 
(18) q(x) = Y a. P (x). U k k k = 0 

Thus the i; hand side of .17) takes the form 
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n + 1 
( 1 9 ) Y I ( l - x 2 ) P ' ( x ) - m x P ( x ) ] a - m x P ( x ) a . L k k k 0 0 

n + 1 

V 
k = l 

U s i n g t h e r e c u r r e n c e r e l a t i o n s 

(20) 

we g e t 

( n + 1 ) P = ( n + 1 ) x P - n P 
n + l n n - 1 

( 1 - x 2 ) P = n P - n x P , 
n n - 1 n 

( 1 - x 2 ) P ' ( x ) - m x P ( x ) = 
k k 

= ^ — r f k ( k + l - m ) P ( x ) - ( k + 1 ) ( k + m ) P , ( x ) 1 
2 k + l k - l k J 

a n d 

P ( x ) = P ( x ) + r + ^ 1 p ( x ) + 
4 n 2 - l n " 2 L ( 2 n + l ) ( 2 n + 3 ) ^ 2 ^ J n 

( n + 1 ) ( n + 2 ) 
( 2 n + l ) ( 2 n + 3 ) n + 2 1 

S i n c e 

P Q ( x ) = 1 a n d P ^ x ) = x , 

t h e e q u a t i o n ( 1 7 ) t a k e s t h e f o r m 

n n + 2 

V ( k + 1 ) ( k + 2 - m ) _ k ( k - l + m ) _ 
2 k ? 3 a k + i k l X j 2 k - 1 V i V X J " 

k = 0 k = 1 

= A P ( x ) + B P ( x ) + C P ( x ) , 
n - 2 n n+2 

w h e r e 
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. n ( n - l ) 
A = a 

4 n 2 - l 

r = I" ( n + 1 ) 2 n 2 _ (m+3) ( n 2 + n + l ) + l ] 
I ( 2 n + l ) ( 2n+3 ) . 2 . , . _ I 
L 4n - 1 ( m + 3 ) ( n + n + l ) - 3 J 

_ ( n + 1 ) ( n + 2 ) 
" ( 2 n + l ) ( 2 n + 3 ) a 

C o n s e q u e n t l y 

2 -m 
3 a ! = 0 ' 

(k+1 ) ( k + 2 - m ) k ( k - l + n ) 
2k+3 " 2 k - 1 a k - i ' 

k = 1, . . . , n - 3 , 

( n - 1 ) ( n - m ) _ ( n - 2 ) ( n - 3 + m ) . 
2 n - l V i 2 n - 5 a n - 3 = ' 

n ( n + l - m ) ( n - 1 ) ( n - 2 + m ) 
2 n + l am ~ 2 n - 3 a n - 2 

( n + 1 ) ( n + 2 - m ) _ n ( n - H - m ) 
2n+3 a n + i 2 n - l a n - i 

( n + 1 ) ( n + m ) 
a = 0, 

2 n + l n 

( n + 2 ) ( n + l + m ) _ 
2n+3 a n - i ~ 

Le t m be an odd number, t h e n we have 

( i ) i f n i s odd , 

a = a = . . . = a = a = 0 
1 3 n-2 n 

and 
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a = a = . . . = a = a = 0 m-3 m-5 2 0 

but a , a , ...,a are not necessari lly zero. Hence m-l m+1 n+1 
q(x) is not identically zero and in this case (E,X) is 
singular, 

(ii) If n is even, 

and 
a = a = . . = a = a = 0 n n-2 2 0 

a = a = ... = a = 0 . 1 3 n-3 
For the coefficients a and a , the equations n-l n+1 

(n-1)(n-m) _ 
2 ^ an-l " A' 

(n+1)(n+2-m) _ n(n-l+m) 
2n+3 an+i 2n-l an-i 

(n+2)(n+l+m) = 
2n+3 an+i 

must be satisfied. Putting the values of A, B and C, we see 
that a must be zero i.e. a and a are also zero. Thus n-l n+1 
q(x) is identically zero and therefore, in this case (E,X) 
is regular. 

Now let, m be even. We see that : 
If n is even, then 

a = a = . . . = a = a = 0 n n-2 2 o 

and 

a = a = . . . = a = a = 0 m-3 m-5 3 1 

but a , a a are not zero. m-l m+1 n+1 

If n is odd, then 
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a = a » . . . » a = a « 0, n n-2 3 1 

but not a l l a , a a are not zero. Thus, in both o 2 n*l 

cases (n even or n odd) q (x ) Is not Identically zero and so 

(E,X) is singular. 
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