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ON VARIETIES OF ALGEBRAS 

DEFINED BY FIRST REGULAR IDENTITIES 

O. Let K be a variety of algebras of type x, 
x : T > N u {0}. We denote by E(K) the set of all 
identities of type x satisfied in K. 
In the s^t E(K) one can distinguish subsets of identities 
of some special form e.g. regular identities (see [5]), 
non-trivializing identities or defined below first regular 
identities. 

All these sets of identities are closed under 
consequences and it is interesting to study the equational 
classes of algebras defined by these sets. 

In this paper we show that the equational class K^ 
defined by all first regular identities satisfied in K is 
the smallest class containing K and the class F defined by 
all first regular identities of type T. 

We also show here how to construct an equational base of 
K when we are given the equational base of K and we 
construct the equational base of K when K is the variety of 
groups, distributive lattices or Boolean algebras. 

If ^ is a term of type x, then variables and miliary 
fundamental polynomial symbols occuring in <p will be called 
the arguments of 
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Following J.Plonka an Identity ^ = 0 will be called 
f i r s t regular I f f the f i r s t argument In ^ and ip Is the saune 
variable or the f i r s t argument In 0 and $ Is a miliary 
fundamental polynomial symbol (these symbols need not be the 
same). 

For example Identity x + x°y = x Is f i r s t regular 
whereas Identities x«y + y = y and xoy = yox are not 
f i r s t regular. 

An Identity which Is not f i r s t regular will be called 
f i r s t nonregular. 
(1) An identity # = i/i is f i r s t nonregular if one of the 

two cases holds : 

(1) the f i r s t argument of 0 is a variable x^ and the f i r s t 
argument of 0 is another variable x , 

(2) the f i r s t argument of ^ is a variable and the f i r s t 
argument of 0 is a miliary fundamental polynomial 
symbol, or conversely. 

Let K be an arbitrary variety of type t. We denote by 
F(K) the set of al l f i r s t regular Identities in K. Obviously 
the set F(K) is closed under consequences. So K̂ , is the 
variety of algebras of type t defined by F(K). 

Let F be the variety of type T defined by al l identities 
of the form, 

(a) f t (xt x T ( t ) ) = X i if x ( t ) * 0 , 

(b) f = f if r ( t ) = x(t ) = 0. t t 1 2 1 2 

Note that the class F is the left zero-band when 

considering it as a class of type <2> with 
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f ( x x , .) = x • ... • x , . 
t 1 T(t) 1 T(t) 

for each t e T. 

(11) The class F Is not trivial. 

In fact for any n >1 there exists an algebra A In F, 

such that |A| = n. 

Indeed, let A = (a a ) , 
1 n 

f = a for r(t) = 0 
t n 

and 

f (a a ) = a for r(t) * 0. 

1 k 1 

Then A belongs to F and |A| = n. 

L e m m a 1. Every Identity of the form <p = q, where 4> 

Is a term of type t and q Is the first argument of <f> Is 

satisfied In F. 

The proof Is by standard Induction of the complexity of 

L e m m a 2. If an algebra A from F satisfies a first 

nonregular identity <f> ~ 0 then |A| = 1. 

P r o o f . At first consider the case (1) from (1). By 

Lemma 1 it follows that the identities d> - x and 0 = x , l J 
are satisfied in A. Thus x = x holds in A, for some i * j. 

l j d 

If the case (2) from (i) holds then by Lemma 1 we have 

<f> - x and 0 = f . 
l r t 

Hence x = f and x = x holds in A. 
i t i j 

L e m m a 3. The set E(F) consists exactly of all 

first regular identities of type t. 

P r o o f . If <f> = 0 is first regular and xi is the 
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first argument in 0 and \p, then by Lemma 1 the identities 
^ = and i/i ~ x^ are satisfied in F, whence ^ = ip holds 
in F as well. 

If f is the first argument in 0 and f is the first 
1 2 

argument in where T(tj) = T(tz) = 0, then by (b) and 
Lemma 1 

<t> = f » f = 0 . t t * 1 2 
If <p - 0 is first nonregular, then by Lemma 2 and (ii) 

it does not belong to E(F). 
C o r o l l a r y . The variety F is equationally 

complete.The proof follows from (ii), Lemma 3 and Lemma 2. 
T h e o r e m 1. For an arbitrary variety K of type t 

we have 

K = K u F. 
F 

P r o o f . We have 
e e E(K u F) <=> e e E(K) r» E(F) 
e € E(K) A e e E(F) <=> e e E(K ) . F 

Thus K u F = K . F 
For two varieties K , K of type t we denote by K x K , 1 2 J 1 2 

the class of all products A^ A , where 

A e K , A e K . 1 1 2 2 

T h e o r e m 2. If K is a variety of type t, <p(x,y) 

is a term of type t of two variables such that x is the 
first argument in <f> and the identity 

0(x,y) = y e E(K) 
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then 
K = Fx K. F 

P r o o f . It was proved in [2] that : 
If K and K are two varieties of type x, there exists a 1 2 

term ^(x,y) of two variables such that the identity 

0(x,y) = x 

belongs to EiK^) and the identity 

0(x,y) = y 

belongs to E(K2), then 
K u K = K x K . 1 2 1 2 

By Lemma 1 the Identity 0(x,y) = x belongs to E(F). 
By Theorem 1 we have 

K = F u K = F x K . F 
T h e o r e m 3. If K is a variety of type x, 0(x,y) 

Is a term of type x of two variables such that x is the 
first argument in ^ and the identity 0(x,y) = x 6 E(K), then 
for any e € E(K)\F(K) the set F(K) u {e> is an equational 
base of K. 

P r o o f . Let K be the variety of type x defined by 
F(K) u {e>. We shall that K*= K. Obviously F(K) u {e> S E(K) 
whence K £ K*. Further F(K) c F(K) u {e> whence K*£ K . F 

• • 
Let A e K . Then A e K . By Theorem 2, A = A * A where F 1 2 
A^ € F and Ag € K. It is enough to show that |Aj = 1. 

Since e € E(K*) it follows that e is satisfied in A and A . l 
Now by Lemma 2 we get that |Aj = 1. It follows that A is 
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isomorphic to A, whence A e K. 
Un'der assumptions of Theorem 3 we get 
C o r o l l a r y 2. The variety K^ covers K. 
T h e o r e m 4. If K Is the variety of groups 

considered as algebras with fundamental operations o and 
then the variety K is defined by the following identities 

(1) (x o y) o z = x o (y o z) , 
(2) X O y o y-1 = X , 
(3) (x'V1 = X , 
(4) X O (y o z)"1 = X o (z_1o y-1) , 

t "I -1 -1 (5) (X o x oy) = X o x o y , 
(6) X_1o X o x = X . 

P r o o f . Let K* be a variety defined by (l)-(6). 
We shall show that K* = K . Obviously K £ K* since (1)-(6) F F 
are first regular identities of groups. 

Let A = (A, o, 1,) € K . We show that A is isomorphic to 
A x A where A e F and A e K what by Theorem 2 means 1 2 1 2 * 
that A e K F 

In the set A we define two relations R and R by 1 2 
putting 

V (a,b € A) [a Rt b m a > a"1» b = b ] 

V (a, b e A) [a R b «=» a ° a-1® b = a ] . 
2 

Using (l)-(6) and Theorem 3 p.120 in [1] one proves that each 
of R i =1,2 is congruence and 

A - A/R € F , A = A/R e K . 1 1 2 2 

- 578 -



Varieties of algebras 

T h e o r e m 5. If K is the variety of distributive 

lattices, then the variety K p is defined by the following 

identities : 

( 1 ) X + X = X , (8) x < > ( y + z ) = x « y + x « z , 

(2) X » X = X , (9) x + y + z = x + z + y , 

(3) x + x o y = x » y + x = x , (10) x o y o z = x « z o y , 

(4) x o ( x + y ) = x , (11) x + y o z + z = x + z , 

(5) x + ( y + z ) = ( x + y ) + z , (12) X o y o z + Z = x o z + z , 

(6) x < > ( y o z ) = ( x ° y ) « z , (13) x o y + x < > z = x < > z + x o y , 

(7) ( x + y ) o z = x < > z + y o z , (14) x < > y + y o x = x o y . 

P r o o f . Let K* be a variety defined by (1)-(14). We 

shall show that K* = K . Obviously K S K* since (1)-(14) 
F F 

are first regular identities of distributive lattices. 

Let A = (A, o,+) g k . We show that A is isomorphic to 

A x A , where A e F and A e K what by Theorem 2 means that 1 2 1 2 
A € K . 

F 

In the set A we define two relations R said R by 
1 2 

putting : 

V (a,b € A) [a R^ b <=> a»b+b = b ], 

V (a, b € A) [a R b «=» a»b+b = a ] . 
2 

Using (1) —(14) one proves that each R , i«l,2 is a 

congruence and 

A = A/R e F , A = A/R e K . 
1 1 2 2 
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Note that, if K is the variety of distributive lattices, 

then all algebras in K^ are idempotent distributive 

semirings. Such semirings were studied e.g. in [3] and [4]. 

Another equational base of and representation of K, by 

subdirect product were considered in [4]. 

T h e o r e m 6. If B is the variety of Boolean 

algebras, then the variety B^ is defined by the following 

identities : 

(1) - (14) and 

(15) x+x'+l = x+x' , 

(16) x o l = x , 

(17) x+0 = 0 , 

(18) x'»x+x = x , 

(19) (xox')+0 = xox' , 

(20) loO = 0 . 

The proof is anologous to the proof of Theorem 5. The 

relations R and R and R are defined in the same way. 1 2 
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