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Wiestawa Chromik

ON VARIETIES OF ALGEBRAS
DEFINED BY FIRST REGULAR IDENTITIES

0. Let K be a variety of algebras of type T,
T : T ——> N v {0}. We denote by E(K) the set of all
identities of type <t satisfied in K. '

In the sét E(K) one can distinguish subsets of identities
of some special form e.g. regular identities (see [51]),
non-trivializing identities or defined below first regular
identities.

All these sets of identities are <closed under
consequences and it is interesting to study the equational
classes of algebras defined by these sets.

In this paper we show that the equational class K
defined by all first regular identities satisfied in K is
the smallest class containing K and the class F defined by
all first regular identities of type <t.

We also show here how to construct an equational base of
K when we are given the equational base of KF and we

construct the equational base of KF when K is the variety of

groups, distributive lattices or Boolean algebras.

1. If ¢ is a term of type T, then variables and nullary

fundamental polynomial symbols occuring in ¢ will be called

the arguments of ¢.
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Following J.Plonka an identity ¢ = ¢ will be called
first regular iff the first argument in ¢ and ¥ is the same
variable or the first argument in ¢ and ¥ is a nullary
fundamental polynomial symbol (these symbols need not be the
same).

For example identity x + xey = x 1s first regular
whereas identities xey + y =y and xoy = yox are not
first regular.

An identity which is not first regular will be called
first nonregular.

(i) An identity ¢ = ¢ 1is first nonregular if one of the
two cases holds :

(1) the first argument of ¢ is a variable X, and the first
argument of ¢y is another variable xj,

(2) the first argument of ¢ is a variable and the first
argument of ¥ 1is a nullary fundamental polynomial
symbol, or conversely.

Let K be an arbitrary variety of type t. We denote by
F(K) the set of all first regular identities in K. Obviously
the set F(K) is closed under consequences. So KF is the
variety of algebras of type v defined by F(K).

Let F be the variety of type t defined by all identities
of the fornm,

(a) ft (xi,...,xt(t)) =X, if =T(t) =0,

(b) £

ft if t(ti) = T(ta) = 0.
1 2

Note that the class F is the left zero-band when

considering it as a class of type <2> with
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ft(xi,...,x ) =X e ...

for each t € T.

(i1) The class F is not trivial.
In fact for any n >1 there exists an algebra A in F,
such that |A| = n.

Indeed, let A= (a,...,a ) ,
1 n

f =a for T(t) =0
t n

and

ft(a1 reeeaB ) = a, for <(t) = 0.
1 k 1

Then A belongs to F and |A| = n.

Lemma 1. Every identity of the form ¢ = q, where ¢
is a term of type T and q is the first argument of ¢ is
satisfied in F.

The proof is by standard induction of the complexity of ¢.

Lemma 2. If an algebra A from F satisfies a first
nonregular identity ¢ =y then |A| = 1.

Pr oo f. At first consider the case (1) from (i). By
Lemma 1 it follows that the identities ¢ = x1 and ¢ = xj,
are satisfied in A. Thus X = xJ holds in A, for some i # Jj.

If the case (2) from (i) holds then by Lemma 1 we have
¢ =x and =1

Hence x = ft and x = xJ holds in A.
Lemma 3. The set E(F) consists exactly of all
first regular identities of type t.

Proof. If ¢ = ¢y is first regular and X, is the
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first argument in ¢ and ¢, then by Lemma 1 the identities
¢ = x1 and ¢y = x, are satisfied in F, whence ¢ =y holds
in F as well.

If ft is the first argument in ¢ and ft is the first
1 2
argument in Y where r(tl) = t(tz) = 0, then by (b) and

Lemma 1.

If ¢ = ¢y is first nonregular, then by Lemma 2 and (ii)
it does not belong to E(F).
Corollary. The varlety F is equationally
complete. The proof follows from (ii), Lemma 3 and Lemma 2.
Theorem 1. For an arbitrary variety K of type T
we have
K =KvuF.
F
Proof. We have
e e E(KVF) @ e € E(K) n E(F) «
<= e € E(K) Ae e E(F) e € E(Kr)'
Thus KuvF-= KF .
For two varieties K1’ K2 of type Tt we denote by le Ka’

the class of all products A1x A2 , Where
A €K , A € K .
1 1 2 2
Theorem 2. If K is a variety of type T, ¢(x,y)
is a term of type Tt of two variables such that x is the

first argument in ¢ and the identity
¢(x,y) =y € E(K)
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then

K = Fx K.
F

Proof. It was proved in (2] that :
If K1 and K2 are two varieties of type T, there exists a

term ¢(x,y) of two variables such that the identity
o(x,y) = x
belongs to E(Kx) and the identity
¢(x,y) =y
belongs to E(Ké), then
K vK =Kx K.
1 2 17 T2
By Lemma 1 the identity ¢(x,y) = x belongs to E(F).
By Theorem 1 we have
KF =FuK=FxK.

Theorem 3. If K is a variety of type T, ¢(x,y)
is a term of type T of two variables such that x is the
first argument in ¢ and the identity ¢(x,y) = x € E(K), then
for any e € E(K)\F(K) the set F(K) v {e} is an equational
base of K.

Proof. Let K’ be the variety of type T defined by
F(K) U {e}. We shall that K = K. Obviously F(K) u {e} € E(K)
whence K € K. Further F(K) c F(K) u {e} whence K'S Kr .

Let A’ € K'. Then A € Kr . By Theorem 2, A = A1x A2 where
A € F and A, € K. Tt is enough to show that |A | = 1.
Since e € E(K') it follows that e is satisfied in A and A1'

Now by Lemma 2 we get that IAil = 1. It follows that A is
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isomorphic to Az’ whence A € K.

Under assumptions of Theorem 3 we get

Corollary 2. The variety l(F covers K.

T he orem 4. If K is the variety of groups
considered as algebras with fundamental operations ¢ and -1,

then the variety Kr is defined by the following identities

(1) (x oy) oz=x 0 (yoz),
(2) xoyoyl=x,

3 H?to=x,

(1) xo(yoz)t=xoe(zteyh,

(8) (xox'oyl=xloxoy?,

-1

(6) X oXoX=X.

Proof. Let K be a variety defined by (1)-(6).
We shall show that K = K. Obviously K_ < K" since (1)-(6)
are first regular identities of groups.

let A = (A,o,_i,) € l(.. We show that A is isomorphic to
A1x A2 where A1 €e F and Az € K what by Theorem 2 means
that 4 € Kr .

In the set A we define two relations R1 and R2 by
putting

V (a,b € A) [aRlbc-»aoa-lob=b]

vV (a,b € A) [aR2b<=>aoa'1ob=a]
Using (1)-(6) and Theorem 3 p.120 in [1] one proves that each
of Rl, i =1,2 1is congruence and

A = A/R e€F, A = AR _€K.
1 1 2 2
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Theorem 5. If Kis the variety of distributive
lattices, then the variety Kr is defined by the following
identities :

(1) x+x = x, (8) xo(y+z) = xoy+xoz,
(2) xox = x, (9) x+y+z = x+z+y,

(3) X+Xoy = Xoy+X = X, (10) xoyez = Xozoy,

(4) xo(x+y) = x, (11) x+yoz+z = x+z,

(5) x+(y+z) = (x+y)+z, (12) xoyoz+z = Xoz+z,
(6) xo(yoz) = (xoyloz, (13) xoy+xoez = Xoz+Xoy,
(7)  (x+y)oez = xoz+yoz, (14) Xoy+yox = xoy .

Proof. LetK bea varlety defined by (1)-(14). We
shall show that K = K_ . Obviously K_< k' since (1)-(14)
are first regular identities of distributive lattices.

Let A = (A ,o,+) € K'. We show that A is 1somorphid to
Alx Az, where A1E F and Aze K what by Theorem 2 means that
A e K? .

In the set A we define two relations R1 and R.2 by
putting :

V (a,b € A) [a R1 b < acb+b = b ],
VY (a,b € A) [a R2 b ¢ aocb+b = a ]

Using (1)-(14) one proves that each R, 1=1,2 1is a

congruence and

A = A/R €F, A = A/R_e K.
1 1 2 2

- 579 -



W. Chromik

Note that, if K is the variety of distributive lattices,
then all algebras 1in Kr are idempotent ’distributive
semirings. Such semirings were studied e.g. in [3] and [4].
Another equational base of Kr and representation of Kr by
subdirect product were considered in [4].

T he orem B6. If B is the variety of Boolean
algebras, then the variety BF is defined by the following
identitlies :

(1) - (14) and
(15) x+x'+1 = x+x’ ,

(16)  xo1

X,

(17) x+0 =0 ,

(18) x’ox+x = x ,

(19) (xXox’ )40 = xox’ ,

(20) 10 = 0 .
The proof is anologous to the proof of Theorem 5. The

relations R and R1 and 'R.2 are defined in the same way.
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