DEMONSTRATIO MATHEMATICA
Vol XXI No2 1909

G.S. Lingappaiah

ON SOME GENERALIZATIONS OF THE POISSON DISTRIBUTION

1. Introduoction

This paper deals with two extensions of the Poisson di-
stribution. They are generalized Polsson (GP) distribution
and the linear function Poisson (LPF) dietribution, These two
distributions have received some attention recently. For exam-
ple, Consul and Jain (1973) obtain GP from the Lagrange di-
stribution and deal with moments and other properties.
Lingappaiah (1977) takes up inflation in GP. Jain (1975) works
with LPF, and relates variables to waiting times in recurrent
events, Lingappaiah (1986) shows that some constants of LPF
and GP can be obtained from analyzing any one of these two
distributlions and a separate analysis for sach is not needed.
Consul (1986) gives the distribution of the difference of
two GP variables and also gives cumulants., Janardan (1987)
calls the LPF as the weighted distribution of GP and again
obtains both via Lagrange distribution. Consul and Shoukri
(1986) deal with the inverse moments of GP, What is being dons
in this paper is to deal with the sum of two LPF and GP va=-
riables under both conditions, such as, when these varilablas
are Jjust independent or they are i.i.d. Under both these
conditions, certain recurrsnce relations are obtainsd for the
moments, Next, the estimation is taken up. Bayes estimates
of the parameters 8 and A in LPF are put in closed forms under
different priors., Finally, LPF of order-k is dealt with. In
Lingappalah (1986), parameter & in LPF is successively re-
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2 G.S. Lingappaiah

placed and after k such replacements, a distribution is ob-
tained, This may be termed as LPF of order-k (Type I). Here,
instead of 8, parameter A is replaced sucocessively and the
resulting distribution after k suoch replacements is called
as LPF or order-k (Type II) distribution.

2. Recurrence relations
Generalized Poisson (GP) distribution is,

(1) £,(x,8,7) =0 670 +A%) (g 402) %=1 /xy
and the linear function Poisson (LPF) distribution is,

(2) £1(x,8,7) = (1-2)e"® %) (g.13x)%/x1

In both (1) and (2), X = 0,1,2,..., 08>0, | A| <1,

2a: Consider two independent LPF variables x and y with
parame ters Si, %i, i=1,2, respectively, First, some re~-
currence relations are given below which express u(8’,\')
and #(B8,+7,6,,A") in terms of the derivatives, whers 6'=
= (81, 2) and A o= (k A2). These relations tell how by in-
creasing ei to Si+%i, i=1,2, resulting forms can be put in
terms of derivatives., Derivation of the results are given in
Appendix,.

a,url(e 7\)

(3) "

1 q

= (_1)5 ﬂ;l( 8, 7\’) + Z( ) "")J ,—l Z <t-1>ﬂ1 1(8 +JA e 2'>‘)

i= =1 1t"°

where io = r’ 61 + J?\1 >0' J = 0,1,....5.
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Generalizations of the Poisson distribution 3

32}1'21( 9',?«') ]
TH

(4)

= [¢210 8" X)-2u5) (814244820 X )ty (84224,65, ) -

- 4y (8,43q 850 N )44 (84224,685, 1) 42].

Similar to (4') in Appendix, by differentiating w.r.t. 6,,
(5) follows

a‘u.';.‘l(el’}‘,, ’ ’ ! S I‘) ;s '
(5) ——3g,— = #r1l872) + D (D)eiale4.85425,2).

Prom (4') and (5), one gets

aZ‘Ui‘l( e” 7") , ’ ' S r\ . '
(6) 381392 =,ur1(8 p?\ ) + Z (i)#il(e1+>\1’62+7\297\ ) -
i=0

T
- iza(i‘){yh(e1+;\1.ez,x J4111(84,8p+ 29y A )}.

2b: Now oconsider two 1.i.d. LPF veriables x and y, each with
parameters 6 and A. Define (with z = x+y)

vo z
(7) y(r,s,t,6,1) = a Z zrho(z) Z[AXB(Z'X)/X!(Z-::)!ABBt],
z=0 =0

where.ho(z) = a'(28+)‘z), A={(84+2x), B=6+2(z-x),
a=1~2, And also

oo z
(8) #(x,5,%,8,0) =82 D 2%h (2) D [A 182V x1(z-x) 14%8Y) .
z=0 x=0
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Below, certain relations are given involving y(r,s,t,8,2) and
¢{r,s,%,8,A)s Their derivations are given in Appendix,

(9) V(r.s,t,e,ﬁ) = 32¢(r,s,t,9,2)+(321/e)¢(r+1,s,t,e,l) +

+22 i (i')z"iy(i,a,t,e-p;\,x),
i=0

(10) y':‘,l(e;?\) = azy;.s(e.l) + (az)\/e)/.l'(r_,,”s(e.?\) +

r
+22 ) (D), 84,0,
1=0

du’..(6,1) )
(11) —#lla—g'—— = =2un1(6,2) + (aale)pzr“)g(e.?\) +

+ 22262 Y zrho(z) Z 2182721/ (xe1) 1(z~x-1) 1.
g x

3. Bayes estimates (LPFP)

In this dpotion, we give the Bayes estimate of 6 and A,
Bayes estimates are easier to obtain than maximum likelihood
sstimates, which have to be gotten through iteration procedu-
re, Simple priors are taken for & and A as exponential and
uniform, Estimates involve repeated summations, whioch can be
handled on computers, v

3a: From (2), we get the likelihood funotion for the LPF case
as

(12) L(E’e'}) =
(n6+nA%) ﬁ & (‘1) 3,x=3,. 51753
- (1_))5.- no+nAx 8 ?\x' x /x 1
1=1 .1;5 I : o
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Generalizations of the Poisson distribution 5

where x = (x1,...,xn), X=Xy eee +Xpy d =gt eee + 00
Now (12) ocan be put as,

(13) L(x,8,A) = Z Z (;)( —1)Te (ox)” (nx) [H(j )e~16, oe:i]

r=0 8=0
where ¢ = x+r+s-j, H(Ji) -Jzi, (:ﬂxii-ji/xi!.
Let the priors for A and 6 be,
£(A) = 1, -1<a<1,
(14) 2
g(e) = ¢~8 e>o0.
From (13) and (14), we get
(15) L(x) =ffL(x,6,A)f(7)a(6)drdE =
n
= ()Y 1T mtagmie,e,x,308(0),

r 8 1i=1

where

,, ]
(50 #lo) = B ur,e,m) - (B) [LELETR,

From (13) and (15), we get the Bayes estimate of 8 as,

(16) 8= ffon(z,0,0)2(r)a(0)ard6/L(x) =

H(J; M(r,8,x,3)¢(c) [(3+1)/(n+1)]

n
L TIT H(Ji)l(rosoxoj)‘f’(c)
r 8 1i=1
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6 G.S. Lingappaiah

Similarly, Bayes estimate of 2 is,

(1) A= ff21ix,0,A)2(0)a(8)ara8/L(x) =

Y T H(Ji)u(rostxtj)¢’(0+1)
8

[ oad
-—b

p
r
n
23T H(Ji)M(I‘,B.X.jN’(O)
Tr B8 =1

| o

3b: Sometimes, variation of A in (2) is taken as 0 <) <1,
instead | Al <1, Now, one can have the prior for A as

(18) 2(a) = 2% 1(1-2)2"1/B(a,b),

where B{a,b) the beta funotion. Now we have

oo o x n ,
(19) L(x,8,)) = Z (—'f‘Tl— ]—T 3(31)937\° ¢~08,
s8=0 i=1

where ¢’ = x+8~3j, Now we get from (19)

(19a) Kx) = [[Liz,6,0)02(2)8(8) 4006 =
oo n
= > TT H(3;)u (x,8,3)B(a+c " ben),
g=0 i=1
where ¢’ = x+8~j, M_(x,8,)) = [(-ni)x ! ] and hence we
o 8l (n+1)J¥T

get (16) and (17) as

n
AR H(ji)lo(x.s,J)B(a+c’,b+n)[(j+1)/(n+1ﬂ
(20) é\- 8 i=1

B
pa ;rn H(3; )M (x,8,3)B(a+0’ ,D+n)
8 -
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and
n
,OT17 H(Ji)mo(s,x,J)B(a+c'+1,b+n)
(21) 3-8 1=t

p JEE H(ji)ﬂo(s,x,j)B(a+c’,b+n)

Though (16), (17), (20) and (21) look complex, since n
sums hsve to be evaluated, on ji s, i=1,2,ee.,n, on the
computers, 8 and x can be easily evaluated for different n.

4. LPF of order-k (Type II)
Define

(22) v(8,kA) = (1-kA)e~(8HAX) (g nz)%/x1,

Now

(23 y(6,20) = (122)(267%) "6 "0/2[0a"(6/243) g /2122) %/t
where a = 1-A. Now (23) is

(24) (%5>x (}—Eg)w(e 27) = o~%2y(6/2,1).

Similarly, we get

2a\*
(25) <13—> (1 3A)w(e 37) = e'29/3w(e/3 Ao

Continuing this way, one gets,

(k=1)A7%
(26) (22 (1= )wte,in) = om(e-18/ky (g /i ).

Bq. (26) oan also be proved by induction,

Now, replacing 6 in (2) several times by 8 +\x, resulting .
distribution after such k replacements, is obtained in Lin-~
gappaiah (1986}, which can be termed as LPF of order-k (TypeI),
Since 2 is replaced here several times, y(6,k)\) can be termed
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3 GeSe Lingappaiah

uwg LPF of order~k (Typs II) and (25) expresses LPF or order-k
{Type II)-in terms of LPF of order-1 (Type II) which is the
regular LPF, Summing (26), we get

o0

(27) Z aX[(1-0/(1-kA]y(8,k7) = 6 Pk,
x=0
where
(k=1 |
(27a) d=|2p—| , b= (k1)

Eq. (27) can also be proved by induotion, Differentiating
(27) wer.t. 6 and using (27) again, we get, using (1),

(28) oP% L) xa¥(a/6)1,(6 k) = -(b/k)aO/k,
X

and (28) gives
(29) Z xd™f,(6,1) = (6/ka)e~P0/k,
X

Bg. {29) can also be obtained from (26) by writing g+kix =
= k(8 /k+)x} in the ILHS of (26) and summing over, one gets

(30) Z kxa*(a/8)£,(6,k2) = e'be/k(ak/e){ug(e/k,k)
X

and (30) 1s (29).

Appendix
Let z = x+y, then from (2), we get the distribution of z
as

(1) £,(z,6',2) =

~(8'42,52) & =(Aq-Dy)
= 8,850 thet Z e 172 xA?Béz"X)/x!(z-x)!,
x=0
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Generalizations of the FPolsson distribution

where ai = 1-}1’ Ai = ei-i-')\xi, Bi - 91+7\1(z-x), 1= 1,2,
8 = (81,82), A= (k1,32). From (1'), the r-th moment of z
is

o0

(2') U (85N) =Z 2"fy (2,8, \).

2=0

Differentieting (2') w.r.t. 6,, one gets,

’ a#,r(elbkl)

(3 ) T = -/\l;..l(eljml) +
_(} Y )x x-1 p2-x
___J___Z____
z
where h(g) = o . Setting x = 1 = u and writing

g = (3=1+1), (3') reduces to

r

dui1(8",2)

’ rl ’ ¢ ’ / r ’

(4) g = #n(®,2) + iZ%) ()1 (8424485, ).
For r = 0, (4') is obvious since,

(413) ﬂlol(e"?\') = 1,

For r = 1, LHS of (4’) gives 1/a,, noting from Lingeppaiah
(1986),

2
, 8y
(4) Wagl8' N ) =py(6',%) = ) (-1—+i>.
11 1 pr ay ai

RHS of (4') 15 =u7( 8"y A" )+ [141(6,424,6,5,2" )] and egain, it
is easy to check that LHS = RHS in (4') using (4'b). From
(4'), by successive differentiating w.r.t. 8,, we get the
s~-th derivative Dng}l(e”A/) w.r.te 6, as (3). For s = 2,

if r = 0, LHS of (4') is zero from (4'b), RHS of (3) is
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10 __G.S, Lingappaish

(1-1) + (1=-1) = 0, For 8 = 2, if r = 1, 1HS of (4') is again
zero from (4'b) and RHS is

1
(4'¢) +up(852") = 2 Zpil(81+z.,,62,.x’) +
=0

[vs

S

i —0 12=0

——

1\ /4
1 1 ’
Ki)\iz) #1,1(81%20958,27) =

= /Jl( 9” 7\,) - 2[1+/}1(G1+7\1 082’ A }:i + [2"’#1(614'2?\1:82,)\/]

and (4'¢c) 1is zero using (4’ b) again.
For ¢ = 2, v = 2, {3) is,

O%u: ! 2
(4'a) —74-----4—?_——- “U'py (874 A) =2 Z (?Dﬂ‘i.1l(e1+"1’ 802" ) +
i
17
2 -
+ 2.;( > ) ( >F1 1(81+231,8,5,2 )=
1,20 1,=0
(4'e) = wipy (0 N ) -2 (1420 (814244850 A J 4t (8,47,,8,,37 )] +

+ [1+2{14uy(87422,,85, 3 )} +{14207(6,422,,65,2" ) +

+ Wy (81421,8,,1 )] .

(4'e) gives (4).
Si.ce 62(z) = 62(x) + 62(3), we have

(4lf) (Ulzl(zgeloxl) =

= (“"21(}(, 8'.?\' )+(u'21(y,6', 7\’)1’2#1(}(. 8, A\ )p(y, @I, 2.
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Generalizations of the Polsson distribution 1

From (4'b) it is clear that LHS of (3) is 2/a . Now using
(4'v) andgigl(x) from Lingappaish (1986}, along with (4'2),

it is seen from (4) that RHS of (4'd) is also 2/a$. FPor r = 0,
using (4'a) and (4'b) gives,

0= 141 = (1+1),

If v = 1, LHS of (6) is zero from (4'b). RHS-of (6) is also
zero which can be seen using (4'b) to each term.
From (7) and (8), it follows,

(5') v(r,s,t,0,0) = (a2/62)¢(r,s-1,t-1,6,1),
(5'a) v(0,0,0,8,2) = (82/62)$(0,-1,=1,8,2).
Noting

(5'0) 4B = (e4ax)[0+A(z=x)] = (8°%+erz) + A%x(z~x)

we get RHS of (7) as,

(5'c) a%¢(r,s,t,8,)) + (aZA/G)¢(r+1,s,t,O,A) +

Azzz h (z)ezz[ el J .

(x-1)!(z-x-1)!A BY

Setting x-1 = u and z = (z-2)+2 in (5'c), ons gets (9).
From (7) and (8), it follows

(6’.8) W(0,0,o,e’%) =¢(0,0,0’8.>\) = 1’

(6'b) $(ry0,0,8,1) = up (6,)),
y(r,0,0,8,2) =(U'rl(9,7\),

where‘u;g(e,k),ﬂél(e,k) are the r-th moment of GP and LPF
respectively when x,y in z are i.,i.d.
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12 G.S. Lingappaiah

Now from (9}, it follows
(6'c) v(0,0,0,8,%) = a2$(0,0,0,6,%) + (a®A/8)¢(1,0,0,8,A) +

+ A 29(0,0,0,847,2).

Now with ‘u'1g(8,7\) =(ug(8,7\), from (6'a) and (6'b) one sees
that both sides of (6'c) are equal to 1 since (6'c) now is

1= a%+(a%2/8)uy(6,0) 422,
Now, from Lingappaiah (1986),

20 48°

! - 26 ' -
(6 6) (us(e’)\) ="a * #28(6,%) ——a3-+ 82 .
For s =t = 0, (9) can be put as (10).
For r = 0, we gat (6'd). Forr = 1, (10) is

(T'a) uy(842) = az,us(e.%) + (327\/8)‘41’23(9,7\) +7\2[2+pl(8+7\,7\)]
which is

(7'b) @1(6,7) =22, (841,1) = a%us(e,m + (a%/em’zs(e,mz;?.

Using (6'e) and (4'b) with 8, = 6, =0, A\, = A, =2, it 1s
easy to check that (7'a) is true. Now,

(8") Wpy(8,2) = a2 Z ho(z)zrz Asz_x/x!(z-x)l.
z x
Differentiating (8') w.r.t.8 , one gets
dun(6,1)
li r

(8 a) —a—e—-—=

= =2u3,1(8,A) +Z azzrho(z)z A*=152"X=1pxsa(z-x]] .

z x

But
{(8'v) Bx + A(z=~x) = 22x(z-x) +8z.
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From (8'b), {8') reduces to

3 1(6,1)
' rl'?

+ 27\2322 zrho(z) Z Ax"1Bz"x'1/(x-1)l(z-x-1)!.
Z X

= ~2u1(8,0) + (a2/8)gp,q), 1000 +

Setting x-1 = u and 2z = (2-2)+2, we get (8'c) as (11).

For r = 0, LHS of (11) is zero from (4’'a). RHS is
-2+(82/6)p (6,A)+22 which is zero using (6'e). For r = 1,
LHS of (11] is 2/a from (6'e) and RHS is -2u;(B,A) +
+ (az/e)pég(e.x) + 2A[2+u, (8+A,7\)] which is also 2/a what
can be seen using (6'e) and (4'b) again.
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