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ON SOME GENERALIZATIONS OF THE POISSON DISTRIBUTION 

1 . I n t r o d u c t i o n 
T h i s p a p e r d e a l s w i t h two e x t e n s i o n s of t h e P o i s s o n d i -

s t r i b u t i o n . The? a r e g e n e r a l i z e d P o i s s o n (GP) d i s t r i b u t i o n 
and t h e l i n e a r f u n c t i o n P o i s s o n (LPF) d i s t r i b u t i o n * These two 
d i s t r i b u t i o n s h a v e r e o e i v e d some a t t e n t i o n r e o e n t l y . F o r exam-
p l e , C o n s u l and J a i n ( 1 9 7 3 ) o b t a i n GP f r o m t h e L a g r a n g e d i -
s t r i b u t i o n and d e a l w i t h moments and o t h e r p r o p e r t i e s * 
L i n g a p p a i a h (1977) t a k e s up i n f l a t i o n i n GP. J a i n (1975) works 
w i t h LPF, and r e l a t e s v a r i a b l e s t o w a i t i n g t i m e s i n r e o u r r e n t 
e v e n t s . L i n g a p p a i a h ( 1 9 8 6 ) shows t h a t some c o n s t a n t s of LPF 
and GP c a n be o b t a i n e d f r o m a n a l y z i n g any one of t h e s e two 
d i s t r i b u t i o n s and a s e p a r a t e a n a l y s i s f o r e a o h i s n o t n e e d e d . 
C o n s u l ( 1 9 8 6 ) g i v e s t h e d i s t r i b u t i o n o f t h e d i f f e r e n c e of 
two GP v a r i a b l e s and a l s o g i v e s o u m u l a n t s . J a n a r d a n (1937) 
c a l l s t h e LPF a s t h e w e i g h t e d d i s t r i b u t i o n of GP and a g a i n 
o b t a i n s b o t h v i a L a g r a n g e d i s t r i b u t i o n . C o n s u l and S h o u k r i 
( 1986 ) d e a l w i t h t h e i n v e r s e moments of GP. What i s b e i n g done 
i n t h i s p a p e r i s t o d e a l w i t h t h e sum of two LPF and GP v a -
r i a b l e s u n d e r b o t h c o n d i t i o n s , s u c h a s , when t h e s e v a r i a b l e s 
a r e j u s t i n d e p e n d e n t o r t h e y a r e i . i . d . .Under b o t h t h e s e 
c o n d i t i o n s , c e r t a i n r e c u r r e n c e r e l a t i o n s a r e o b t a i n e d f o r t h e 
moments . N e x t , t h e e s t i m a t i o n i s t a k e n up . Bayes e s t i m a t e s 
of t h e p a r a m e t e r s 9 and "X i n LPF a r e pu t i n c l o s e d f o r m s u n d e r 
d i f f e r e n t p r i o r s . F i n a l l y , LPF of o r d e r - k i s d e a l t w i t h . I n 
L i n g a p p a i a h ( 1 9 8 6 ) , p a r a m e t e r 0 i n LPF i s s u c c e s s i v e l y r e -
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placed and after k such replacements, a distr ibution l e ob-
tained. This may be termed as LPF of order-k (Type I ) . Hera, 
instead of 8 , parameter 'X i s replaced successively and the 
result ing distribution af ter k such replacements i s called 
as LPF or order-k (Type II) distr ibution. 

2. Recurrence re lat ions 
Generalized Poisson (GP) distribution i s , 

and the l inear function Poisson (LPP) distribution i s , 

In both (1) and (2) , x = 0 , 1 , 2 , . . . , 9>0, 

2a: Consider two independent LPF variables x and y with 
parameters i = 1,2, respect ively . F i rs t , some r e -
currence re lat ions are given below whioh express <u(9',?/) 
and (̂Q-j + Xj ,8g, V ) in terms of the derivatives, where 9 = 
= (Q.| ,9g) and V = These re lat ions t e l l how by in-
creasing 8^ to i = 1,2, result ing forms can be put in 
terms of derivatives. Derivation of the resu l t s are given in 
Appendix. 

( 1 ) ta(x,Q,*) =9e""(0+*x,(9+;\x)x-1/xt g 

(2) ^ ( x . 8 , ^ ) = (l-*)e" ( 0+*x ,(9+;\x)x/x! 

(3) 

= ( - D ^ e ' . y ) + l ( a s ) ( - i ) j n I L 
j=1 t=1 UsO * 3 

s 

j 

where iQ = r , 91 + j = 0,1, . . . , s . 
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G e n e r a l i z a t i o n s o f the P o i s s o n d i s t r i b u t i o n 3 

(4) g 
36 1 

" W 0 1 + * 1 » 0 2» ) + V l { 0 1 + 2 X , , e 2 , A ' ) + 2 ] . 

S i m i l a r t o ( 4 ' ) i n Appendix, by d i f f e r e n t i a t i n g w . r . t . Q 2 , 
( 5 ) f o l l o w s 

{ 5 ) W « ' * ' . . + £ g V ^ i e ^ e ^ . V ) . 
* i » 0 

From ( 4 ) and ( 5 ) « one g e t s 

a 2 a / ' t ( e ' , ?,') ^ / T , \ 
( 6 ) a ^ a s g ^ ' n * 9 ' ^ ' + I L ( ï k i i V V V V ^ -

i = 0 

r 

i = 0 

2b 1 Now oons ider two i . i . d . LPP v a r i a b l e s x and y , each with 
parameters 9 and a . Define (with z = x+y) 

DO Z 

( 7 ) y ( r f s , t , e t A ) = a 2 ^ z \ ( z ) H , [ A X B ( z - x , / X ! ( z - x ) ! A s B t ] , 
z=0 x=0 

where h o ( z ) = e " { 2 e + ) k Z , , A - ( 6 + B = 6 + A ( z - x ) , 
a = 1 - A . And a l s o 

w £ 

( 8 ) 0 ( r , s , t , 6 , ^ ) = 8 2 2 ^ z r h 0 ( z ) ^ [ A X - 1 B Z - x - 1 / x ! ( z - x ) ! A B B t ] 
z=0 x=0 
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Below, oe r t a in r e l a t i o n s are given involving y ( r , s , t , 8 , a ) and 
<f>(r,s , t ,6,a), Their der iva t ions are given in Appendix. 

(9) < | / ( r , s , t , e f ^) . a 2 ^ ( r , s , t , e , ^ ) + ( a 2 V 0 ) ^ ( r + 1 , s t t , 8 , ^ ) + 

r 

i=0 

(10) <u'rl(e,A) - a2tx'rg(B,1) + ( A / e ^ r + D g i 0 » * ) + 

+ I I © ^ " V i i « " * * . * ) . 
1=0 

3 / 4 , ( 6 , 1 ) „ 
38 - - 2 ^ ( 6 , * ) + ( • 2 / e ) < a ' ( r + 1 ) g ( e f A ) +• 

+ 2 > 2 a 2 £ a r h 0 ( z ) ^ A x - 1 B z - x - 1 / ( x - 1 ) l ( z - x - 1 ) l . 
z x 

3. Bayas est imates (LPP) 
In t h i s m o t i o n , we give the Ba^es estimate of 0 and 

Bayes es t imates are e a s i e r to obtain than maximum l ikel ihood 
es t imates , whloh have to be got ten through i t e r a t i o n procedu-
re* Simple pr iors are taken f o r 8 and A as exponential and 
uniform. Estimates involve repeated summations, vhioh oan be 
handled on computers. 

3ai From (2 ) , we get the likelihiood funot ion f o r the LP? case 
as 

(12) L(*,S,>) -

( 1 _a ) n - - (ne + nAx) p f 
1-1 

¿ ( ^ e V - V ^ / x , , 
J . - o 1 
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where x = ( x . j , . . . f x Q ) , x = x^ + . . . + x Q t + 
Now ( 1 2 ) can be put a s , 

oo oo 

( 1 3 ) K S . 9 . M = £ £ ( r ^ - 1 ^ 8 - ^ F f [ H ( 3 1 ) . - B 9 A 0 e i ] . 
r = 0 s=0 i=1 

V ^ j * ! / * i * • 
J i 

Let t h e p r i o r s f o r a and 8 b e , 

f ( A ) = ^ , - 1 < a < 1 , 

g ( 9 ) = e " 9 , 8 > 0 . 
( 1 4 ) 

From ( 1 3 ) and ( 1 4 ) » we g a t 

( 1 5 ) L(x) = / / L ( x , e , * ) f ( a ) g ( 8 ) d * d e -

n 

• ( J J U L n H ( j i ) M ( r , 8 , x , j ) ^ ( o ) , 
r a ia>i 

where 

From ( 1 3 ) and ( 1 5 ) , we gat the Bayas e s t i m a t e o f 8 a s , 

( 1 6 ) 8 - j y 8 L ( x t 8 t A ) f ( A ) g ( 8 ) d > d 8 / L ( x ) = 

L Z T T H i ^ J l K r . s . x . d J ^ i o ) [(d+1 ) / ( n + 1 ) ] 
r s i - 1 

XL n H t ^ j M i r . s . x . j ^ i o ) 
r s i - 1 x 
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6 G«S. Lingappaiah 

Similarly, Bayes estimate of a is, 

(17) A-//>L(x,9,A)f(A)g(6)dAde/L(;) 

E E II H(;J,)M(r,s,x,;})0(a+1) 
r s i=l 
LE n H(̂jMir.s.x.jĴio) r s i»1 

3bt Sometimes, variation of A in (2) is taken as 0<X<1, 
instead I/M <1. Now, one can have the prior for A as 

(18) f(A) = Aa-1(l-A)b-1/B(a,b), 

where B(a,b) the beta function. Now we have 
°° n 

(19) L(x,8.A) = J! I! Ht̂JQV'e"00, 
8*0 i-1 

where o' - x+s-j* Now we get firom (19) 

(19a) L(x) - ffUx,9t*)ttt)g(Q)dM9 -

oo Q 
- JL TT Ht̂Jll̂fx.sJjBia+o'.b+n), 
s-0 i-1 

where c' « x+s-j, M0(x,s,j) « (""̂"ff̂  7̂+t] and faenoe we 
get (16) and (17) as {n+1) 

E. FT H( jj )M (x,s, j)B(a+o' ,b+n) [(j+1)/(n+1)] 
(20) 8 - ' D 

z: TT H(ji)M0(x,s,d)B(a+o',b+n) 

- 328 -



Generalizations of the Poisson d is t r ibut ion 7 

and 

n 
H T7 )li ( s , x , j ) B ( a + c ' + 1 , b + n ) 

{ 2 1 , 
E, FT H ( j , ) M D ( s , x , j ) B ( a + c ' , b + n ) 
s i - 1 1 0 

Though (16 ) , ( 1 7 ) , (20) and (21) look complex, since n 
sums have to be evaluated, on i = 1 , 2 , . . . , n , on the 

A A * 

computers, S and A can be easi ly evaluated for di f ferent n. 

4. LPF of order-k (Type I I ) 
Define 

(22) tff(6vkA) = ( 1 - k a ) « " i e * k * 3 r , ( 8 + k t o t ) * / * ! . 

Now 

(23) V(Q.2A) = ( } ^ ( 2 e - V e ~ 8 / 2 [ a e - ( 8 / 2 + * * W 2 + * * ) V x ! ] , 

where a = 1-]\. Now (23) i s 

(24) " e ' 0 / V e / 2 . M . 

S imi lar ly , we get 

(25) ( J 4 ^ ) - e" 2 0 /fye/3 , A ) . 

Continuing t h i s way, one ge ts , 

(26) [ * ( k f c 1 > ^ ] " 

Bq. (26) oan also be proved by induction. 
Now, replacing 3 in (2) several t i n e s by6+]\x, resul t ing 

d is t r ibut ion a f t e r such k replacements, i s obtained in Lin-
gappaiah (1966) , which can be termed as LPF of order-k (Type I ) . 
Sinoe % i s replaoed here several t imes, y(8,kX) oan be termed 
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8 G.S. Lingappaiah 

us LPF of order-k (Type II) and (25) axpreseea IFF or order-k 
(Type IIbin terns of LPF of order-1 (Type II) whioh is the 
regular LPF* Summing (26), we get 

oo 
(27) Y u d x [ ( 1 - ^ ) / ( 1-k^)]y{8tk^) « e- b 8 / k, 

z-0 

where 

(27a) 
x 
, b - (k-1). 

Bq. (27) oan also be proved by induction. Differentiating 
(27) w.r.t. 9 and using (27) again, we get, using (1), 

(28) 8*b6/k + £ xdx{a/e)fg(e>*A) - -(b/k)e~b8/k, 
z 

and (28) gives 

(29) Y , *d3Cfgie»^i "= (8/ka)e-b0/k. 
x 

Bq. (29) can also be obtained from (26) by writing 6+k^x = 
a k(6/k+>x) in the UIS of (26) and summing over, one gets 

(30) kxd*(a/e)fg(e,kA) - e-b0/k(ak/8)^g(0/k,^) 
x 

and (30) is (29). 

Appendix Let z a x+y, then ffom (2), we get the distribution of z 
as 
d ' ) f^z.e', V) -

-(e'+x2z) ^ - ( V V X x (z-x) / , • a1a2e L 6 A^B^"*'/x!(z-x)!, 
x=0 
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Generalizations of the Poiseon distribution 9 

where a± - A± - Gj+te^ B± - G j + ^ U - x ) , i - 1,2, 

8' « (8.,,82 ) t V - O ^ A g ) . Prom (1 'J, the r-th moment of z 
i s 

( 2 ' ) ^ ( e ' . V ) = 
z«0 

Differentiating ( 2 ' ) w . r . t . one gets, 

A1 2 

( 4 ' ) r l a ' • + £ G y i i < V V e 2 . * >• 

( x -1 ) ! ( z - x ) ! 
x 

- { e ' + ^ z ) 
where h(e) » e . Setting x = 1 = u and writing 
b - (z-1+1), ( 3 ' ) reduoes to 

, n ' /«' i'I r rr _// _ I R A 1 j. 
1 i=0 

For r = 0, ( 4 ' ) is obvious since, 

(4 'a ) / i ' o l ( e ' , V ) - 1. 

For r = 1, LHS of ( 4 ' ) gives 1/a.,, noting from Lingeppaiah 
(1986), 

2 '6, 
( 4 ' ) < « ' u ( e ' . * ' ) - ^ ( e ' , * ' ) = £ U 7 + + • 

i=1 v 1 a i 7 

RHS of ( 4 ' ) is 8', A')+ [l+/ix( 6 ^ ^ , 0 2 , )] and again, i t 
is easy to check that LHS = RHS in ( 4 ' ) using (4 'b ) . From 
( 4 ' ) , by successive di f ferent iat ing w. r . t . we get the 
s-th derivative D® <u'r>;L( 9', A') w . r . t . 61 as (3 ) . For e = 2, 

i f r = 0, LHS of ( 4 ' ) i s zero from (4 'b ) . RHS of (3) i s 
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(1-1) + (1-1) = 0 . For s = 2, i f r = 1, LHS of ( 4 ' ) 1b again 
zero from ( 4 b ) and RHS ie 

1 

( 4 ' c ) +/ i 1 ( e ' , V ) - 2 XL • e2» A ' J + 

i=0 

1 i 1 

i 1 = 0 i2=0 1 d d 

- ¿tj( e', a ' ) - 2[ i+ ( t i l (e1+^1 ,e2 ,A ' S] + [2+ (u l (e1+2:\1 ,82 ,y ] 

and ( 4 ' c ) i s zero using (4 'b ) again. 
For „ - r 2, (3) i s , 

+ [1+2{Hju1 (81+2^1 ,82 .V ) }+ { l+2/i l (Q1+2A1 ,82 ,y ) + 

+ (u' 2 l (8 1+2A 1 , e 2 ,/ ) } ] . 

( 4 ' e ) gives (4 ) . 

Si. ce G2(Z) = 6 2 (X) + 62(y), we have 

( 4 ' f ) ¿/'21(z, 8 ' , A ' ) -

= p'21(x,B' ,7( )+/i'21(y, d', A' )+2/J1(X, 8 ' , A )u{y, Q' ,?• ' } . 
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Generalizations of the Foisson distribution 11 

Prom (4'b) it is clear that LHS of (3) is 2/o2. Now using 
(4'b) and fi'21(x) from Lingappaiah (1986), along with (4'f), 
it is seen from (4) that RHS of (4'd) is also 2/a2. For r = 0, 
using (4'a) and (4'b) gives, 

0 = 1 + 1 - (1+1). 
If r = 1, LHS of (6) is zero from (4'b). HHS-of (6) is also 
zero which can be seen using (4b) to each term. 

Prom (7) and (8), it follows, 

(5') y(r,s,t,0,A) = (a2/Q2)tf>(r,s-1,t-1,8,A), 

(5'a) ¥(0,0,0,9,*) = (a2/82)4>(0,-1,-1,6,70. 

Noting 

(5'b) AB = (6+^x)[e+A(z-x)] = (82+8^z ) + %2x[z-x) 

we get RHS of (7) as, 

(5'c) a20(r,s,t,6,A) + (a2A/8)tf>(r+1 ,s,t,8,A) + 

( x - 1 ) ! ( Z - X - 1 ) 1 A V 

Setting x-1 = u and z = (z-2)+2 in (5'c), one gets (9). 
Prom (7) and (8), it follows 

(6'a) y(0,0,0,6,*) = 0(0,0,0,9,>) = 1, 

(6'b) 0(r,O,O,8,A) = ̂ g(6,A), 

if/ (r,0,0,8,A) = ̂ ( 8 , * ) , 

where ̂ ^(O.A) .//^(e are the r-th moment of GP and LPF 
respectively when in z are i.i.d. 
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Now from (9), it follows 

(6'c) y(0,0,0,8,>) = a2tf>(0,0,0,8,A) + {a2A/9)0( 1,0,0,9, A) + 

+ A2i|/(0,0,0,8+*,;\). 

Now with =^tg(8,?k), ftom (6'a) and (6'b) one sees 

that both sides of (6'c) are equal to 1 since (6'c) now is 

1 « a2+(a2^/8)<ug(8,?i)+A
2. 

Now, from Lingappaiah (1986), 

,2 
(6 e) <ug(8,M (8,*) 

& & 

For s = t = 0, (9) can be put as (10). 
POT r = 0, we get (6'd). For r = 1, (10) is 

(7'a) <a1(8,A) = a
2^g(8,>) + (a

2 A/8 ̂ ( 8 , A) + A 2 [2+^ (8+>,>)] 

whioh is 

(7'b) /i 1(8,A)-A^O+A,*) = a2^g(9,^) + (ah/Q)/2g(Q,l)+2^
2. 

Using (6'e) and (4'b) with 91 = 9 2 = 9, = = A , it is 
easy to check that (7'a) is true. Now, 

(8') <"'rl(9,A) = a
2 £ h 0 ( z ) z

r ^ AxBz_x/x!(z-x)l. 
x 

Differentiating (8') w.r.t.8 , one gets 

(8'a) 
39 

= -2fi'rl(e,A) + £ a 2 z \ l z ) J ^ Ax-1Bz-x-1[Bx+A(z-x)]. 
Z X 

But 

(8'b) Bx + A(z-x) = 2Ax(z-x) +8z. 
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Prom (8 'b ) , ( 8 ' ) reduces to 
(6,1) 9 

( 8 ' c ) —^ "G = - ^ l i 0 » ^ + ( a / 0 ^ ( r + 1 J g ( 0 » A } + 

+ 2 * 2 a 2 ^ A x " 1 B z " x - 1 / (x -1 ) l ( z -x -1 ) ! . 
Z X 

Setting x-1 = u and z = (z-2)+2, wa get (8 'c ) as (11). 
For r = 0, LHS of (11) i s zero from (4 ' a ) . RHS is 

-2+(a2/9)(u (8 which is zero using ( 6 ' e ) . Por r = 1, 
LHS of (11) i s 2/a from (6 ' e ) and RHS i s -2/^(6,A) + 
+ (aZ/d)p'2 ( 9 , + 2 * [ 2 + ^ ( 8 w h i c h is also 2/a what 
can be seen using (6 ' e ) and ( 4 b ) again. 
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