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EIN PROBLEM DER ELEKTROCHEMISCHEN BEARBEITUNG
MIT GEKRUMMTER KATODE

1. Einleitung

Die élektrochemische Bearbeitung (ECM = Electrochemical
Machining) ist eine moderne Technologie zur Metallbearbeitung
mittels Elektrolyse. Dabei bewegt sich die Katode, die das
Werkzeug bildet, in Richtung der Anode, dem Werkstiick, von
dem Metall erodiert. Im Spalt zwischen den Elektroden sorgt
ein Elektrolyt fiir den Abtramsport der Erosionsprodukte, Die
mathematische Modellierung erfolgt in der Regel fiir die
Schnittfldchen und fihrt auf freie Randwertprobleme., Man
unterscheidet zwei Typen stationdrer ECM-Probleme: das di-
rekte Problem -~ nach vorgegebener Form der Katode ist die
stationire Form des Anodenrandes zu bestimmen - und das in-
verse Problem — nach der Anodenform ist das Profil des Kato-
den~Instrumentes zu bestimmen. Zu beiden zweldimensionalen
Problem erschienen insbesondere seit Ende der sechziger Jahre
zahlreiche Arbeiten, z. B. zum direkten Problem von W.W. Klo=-
kow [5] oder R.C. Hewson-Browne [4] und zum inversen Problem
von A.L. Krylow [6].

Einen gewissen Uberblick vermittelt der Ubersichtsartikel
von I, Bannard [1], eine eusfiihrliche Bibliographie findet
man auch in [5].

Beil den direkten Problemen wurde die Kato bisher mit
linearem (siehe z.B. [2], [5]) hzw. stiickweise linearem Pro-
fil [4] angenommen, In der vorliegenden Arbeit verallgemeinern
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2 D, Oestreich

wir des von D,E. Collett, R.C. Hewson~-Browne und D.W. Windle
[2] aufgestellte Modell fiir eine Katode mit isolierter Hal-
terung der Katode, das sie mit einem Reihenansatz behandeln,
auf gekriimmte Profile. Dem entspricht ein nichtlineares
Riemann-Hilbert-Problem, das in dhnlicher Welse bei gewissen
hydrodynamischen Aufgaben [11] auftritt. Mittels konformer
Abbildung iberfiihren wir dieses Problem in eine nichtlineare
singulédre Integralgleichung vom Cauchy-Typ. Auf der Grundlage
des Schauderschen Fixpunktsatzes wird nach dem Vorbild der
Arbeiten [14-] und [11] die Existenz einer Lésung bewiesen.

Die Gleichungen des frelen Randes (Anode) und die Spalt-
breite (total overcut) konnen explizit angegeben werden.

Danksagung: Ich danke aufrichtig Herrn Prof,
L. v. Wolfersdorf, der mich auf das Thema auferksam machte,
Literatur zur Verfiigung stellte und durch kritische Diskussion
das Entstehen der Arbeit fdrderte,

2. Problemstellung

Wir betrachten ein zweidimensionales, bezilglich der x-Achse
symmetrisches Modell mit folgender Konfiguration (vgl. [2]
sowie [4]):
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Problem der elektrochemischen Bearbeitung 3

Die Katode OC habe die Gleichung
y = £(x), O<x<c, mit £(0) = O.

Die isolierte Halterung CDB, bestehe aus zwei Abschnitten:
der Abschnitt CD habe die Gleichung y = g(x), c< x<d, und
der Abschnitt DB, laufe ins Unendliche beziiglich x, wobel

y = 1 = const gelte. Weiterhin sei f(¢) = g(e¢) und g(d) = 1.
Die Funktionen £ und g werden als streng monoton wachsend
angenommen,

Das Jerkzeug (Katode) bewegt sich mit konstanter Geschwin-
digkeit @ in Richtung des Werkstlicks (Anode), Die Leitféhig-
keit des Elektrolyten wird als zeitinvariant angenommen (Ver-
nachlassigung von Warmeeffekten, Verédnderungen des hydrauli-
schen Drucks u.d.). Nach Erreichen des stationiren Zustandes
kann das Problem auf ein zeitunabhiéngiges Problem reduziert
werden, indem man das Koordinatensystem Oxy (vgl. Abb. 1)
mit dem Werkzeug und Werkstiick bewegt. Sei u = u(x,y) das
elektrische Potential. Dann geniigt die Funktion u im Gebiet
<2 zwischen den Elektroden der Laplace-Gleichung (vgl. [2])

ax dy

Auf den Elektroden ist das elektrische Potential u konstant,
und wir nehmen an, es sel gegeben

(2a) u=20 auf der Katode OC,
(2b) u = u°C>O) auf dem unbekannten Rand S des
Werkstiicks,

Auf der isolierten Halterung verschwindet die Normalableitung
des elektrischen Potentials u. Wenn wir mit v = v(x,y) die
bis auf eine additive Konstante festgelegte konjugierte har-
monische Funktion zu u(x,y) bezeichnen, ist also
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4 D. Oestreich

(2¢) v = vo(>0) auf der isolierten Halterung CDB,
mit der noch unbekannten Konstanten v o*

Im stationdren Zustand bewegt sich der Rand S des Werkstiicks
mit der Geschwindigkeit ¢. Die Normalkomponente der Erosions-
geschwindigkeit, die proportional der elektrischen Stromstirke
6(du/dn) ist, ist somit gleich ¢cos , wobei G die elekbtri-
sche Leitfdhigkeit und 7 den Winkel zwischen der Normalen n
auf S und der x-Achse bezeichnen., Demnach gilt auf S

(+) g-;";-: Acos ¥

mit einer wohlbestimmten Konstanten A>0, Falls s die Bogen-
linge auf S, gemessen in Richtung wachsender y, bezeichnet,
gilt

Q

du _dv
9n "~ 9s °

cosy = %% und
Nach Integration erhdlt man somit aus (+)
(Zd) vV = )y alJf s.

SchlieBlich ist nach (2d) v = O im Punkt A und wegen der Sym-
metrie beziiglich der x-Achse

(2e) v=20 auf OA.

Die Gleichungen u = u(x,y), v = v(x,y) definieren eine
konforme Abbildung von $2 auf das Rechteck R der uv-Ebene mit
den Eckpunkten 0°(0,0), A'(uo,O), B'(uo,vo) und c’(o,vo)
(siehe AbbL.2).

v ,
v c' ?(O:Vo) 8’
o L
R
o’ A
U, v
Abb,2
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Problem der elektrochemischen Bearbeitung 5

Der Punkt D(d,l) geht in den Punkt D'(G,vo) iber, dessen
Lage auf dem Abschnitt B'C’ durch das Potential in D:u(d,l) = 6
(0<:9::uo) eindeutig bestimmt wird.

Wir erhalten somit folgendes nichtlineare Riemann-Hilbert-—
-Problem mit unstetigen Koeffizientent
Gesucht ist im Rechteck R der uv-Ebene die holomorphe Funktion
z(u,v) = x(u,v) + iy(u,v), die in R stetig ist, die Randbedin-
gungen

¥(u,0) = 0 auf O'A’,
3 y(ugv) ="v/) auf A'B’,
y(uyv,) = gy(x(uyv,)) auf B'C,
y(0,v) = £(x(0,v)) auf C'0’
mit
g(x(u,v,) auf B'D’,
(x(uyv ) = )
MR auf D'C
sowie die Zusatzbedingungen
(4) x(0,0) = O, x(O,vo) = c; x(G,vo) =d
erfiillt.

Wir suchen Lésungen, die in allen Ecken von R mit Ausnahme
von B stetig sind und zeigen, daB die beiden konjugierten har-
monischen Funktionen x(u,0) und y(u,v) sowie der Parameter v
eindeutig bestimmt werden konnen.

(o]

3. Bxistenz und Eindeutigkeit der LOsung des nichtlinearen
Riemann-Hilbert-Problemsg

Wir iberfiihren das Problem (3), (4) im Rechteck R in ein
Riemann~Hilbert-Problem in der komplexen Halbebene, das wie-
derum einer eindimensionalen Integralgleichung dquivalent ist.
Analog wie in [11] (vgl. auch [12], $37 und [3], §46 , [10],
§16) erhalten wir folgende &dquivalente nichtlineare singulé-
re Integralgleichung vom Cauchy-Typ
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6 D, Oestreich
t

- 1
(5) x(t) = f ds + 1 f g(x(8)) 4, +717_J’ 1 g

-1/k t,

1/k

+ 3 f ds + D im Intervell -1/k<t <t
”

1

nit
2K u

(6) t, = 81 [3;- (8-——29—); k:l, (-1<t°<1)

und einer beliebigen reellen Konstanten D sowie

u
N r(kyt) = /A | v, - ﬁ?‘f '
1 Vs2=1) (1-k2s2)
wobel
(8a) K = K(k) = F(k,1),
y
CORE T | ¥, os<se1,

(1-52) (1-x252)

das vollstandige elliptische Integral 1.Gattung bzw, das
elliptische Integral 1. Gattung bezelchnen.
Vermittels der Beziehung

’ 2V .
(9) By =u & = Vi)

besteht eine eineindeutige Zuordnung zwischen den Parametern

v, und k. Die Losung der Integralgleichung (5) muB den Zusatz-

bedingungen

(10a) x(-1/k) = 0, x(~1) =
sowie der Bedingung

(10b) x(to) =
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Problem der elektrochemischen Bearbeitung 7

zur Festlegung des Perameters k geniigen. Wenn die Ldsung x(t)
sowie die Konstante D in (5) bekannt sind, ldB8t sich die ILo-
sung des Problems (3), (&) mittels der Formel

1) 2(5) = f 2x(8)) g5 +
-1/k
%, 1 1/k
+J1—r X ds+-117j' s—i—sds +11rf r(k,s) ds + D
-1 t, 1

bestimmen, wobei
(12) =sn[ (w--—+ iv);k], w=u+ iv

und die Funktion sn den elliptischen sinus bezeichnet.

Wir zeigen jetzt die eindeutige Losbarkeit der Integral-
gleichung (%) fiir beliebig fixiertes ke (0,1). Dazu sei ange-
nommen, daB die Ableitungen der Funktionen f(x) und g(x) die
Abschatzungen

O<m1$f'(x)sm1<+°°, x € [0,¢]
(13)
O<m,<g’ (X)<MU,<+, x e [c,d]

mit den Konstanten m; und My (i = 1,2) erfiillen.

Die Eindeutigkeit der Lésung von (5) wird fiir die beiden
Falle £ (x(-1)) <g’'(x(=1)) und £’ (x(-1)) >g’'(x(-1)) analog
wie in [14] gezeigt,

Wir suchen Lésungen x(t), te[-1/k,t] der Integralgleichung
(5), die eine Ableitung x'(t) e L(-'I/k,to) mit gewissem p >1
besitzen sowie den Zusatzbedingungen (10a) geniligen. Analog
wie in [11] und [’Il-l-] differenzieren wir die Integralgleichung
(5) (vgl. auch [7], Kap. II, §6) und integrieren die allgemei-
ne Losung der erhaltenen (formal) linearen singuléren Integral-
gleichung (vgl.[10], §98). Wir erhalten dann im Fall I:
£ (x(=1))< g’ (x(=1)) die Fixpunktgleichung
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8 . D, Oestrelch

(14) x(t) = (Px)(%), te [-1/k, t].

Der Operator P wird definiert durch

t
(15) (Px)(t) = Co + ] L(s,x)ds + 01 f -Z—%gj
-1/k -1/k

mit dem Kern

(16) L(t,x) = (R() + ?—_%)/mﬁ(t)) +
* 26y S [ZA(RIH:/;-B)) Jw,
ey - o 1/x .

o "o °[ (21 (12e2) (amt)
(18) heo= Vo/A = 1,

£'(x(%)) fir te[-1/k, -]
(19) a(t) =

g’ (x(t)) fir te(-1, 5],
(20) 2(8) = V1 + 42(t) exp {-s K10} (b6
(1) § () = arctan ACt), -m/2<u(t)<m/2,

wobei S den singuldren Operator vom Cauchy-Typ

(22) [55]¢6) = f 28 4
-1/k

und Cg, C1 beliebige reelle Konstanten bezeichnen., Diese Kon-
stanten lassen sich aus den Zusatzbedingungen (10a) bestimmen
und zwar gilt
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Problem der elektrochemischen Bearbeitung 9

(23a) CO = 0,
-1
(23b) C1 = <% - zf L(s,x)d%)/l
-1/k
mit
-1
(24) I= f Z‘(ig) .
-1/k

Analog wie in [11] wird auf der Grundlage des Schauderschen
Fixpunktsatzes die Existenz einer Lisung der Gleichung (14)
im Raum C[-1/k, t,] der stetigen Funktionen auf [-1/k, %]
gezeigt.

Der Fall II: £'(x(~1))>g'(x(-1)) 1l&dt sich vermittels
der Substitution t = -t in (5) auf den Fall I zuriickfiihren,

4, Bestimmung des Parameters k und SchluBfolgerungen
Aus der zweiten Bedingung (10a) und der Zusatzbedingung
(10b) ergibt sich folgende Besimmungsgleichung fir k e (0,1):

-1
(2) 1w = f L8 g5 f £xe)) gq 4

~1/k ° -1/k
1 1
g4(x(s)) g,(x(s))
* f—l—-ﬁ ds - f ST ds ¢
1/k 1/k
+ e[:_(}—f’?z—)ds- !%@%ds:n(d—c).

Dabei ist jedem k € (0,1) genau eine Funktion x(t), t e [-1/k,1]
zugeordnet, Die Funktion L(k) ist offenbar stetig im Intervall
(0,1). Wie in [11] wird bewiesen, daB I2<0, d.h. L(k) ist
streng monoton fallend beziiglich k ¢ (0,1). Weiterhin gilt

(26) lim L(k) = +ce, 1lim IL(k) = O.
k—~0 K—1
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10 D, QOestreich

Nach dem Zwischenwertsatz folgt daher die Existenz einer ein-
deutig bestimmtem Zahl k*e (0,1) mit

(27) L(k*) =7(d - ¢)>0
Fir h,, ergibt sich aus (16) und (8) folglich

u K(k*")
(28) hyo = —— =1,
22K(k*)

Auf Grund der obigen Ergebnisse und der Schlichtheit der kon-
formen Abbildung R — 2 (vgl. [11] sowie [8]; [9], Kap. II,
§3) formulieren wir folgenden

Sataz 1: Unter der Voraussetzung, daB die Funktionen
¥y = £f(x), O<x<c und y = g(x), ¢c<x<d Holder-stetige Ablei-
tungen besitzen (d.h, OC und CD Ljapunow-Kurven sind), wobei
diese die Ungleichungen (13) erfiillen, hat das betrachtete
ECM-Problem (1), (2) eine eindeutige Losung u(x,y). Die Spalt-
breite h., wird definiert durch die Bezishung (28).

Aus (11) folgt

Satz 2. Der freie Rand S (Anode) hat die Parame-—
terdarstellung

-1 1 _
X g4(x(s))
e [xw s} [ HED ey fEED
-1/k -1
1/k
‘ + 1 [ EEs) 45 4 p,
1
y(t) = r(k,8), 1<t<1/k,

wobel X(s) die Lisung der Integralgleichung (5), (10) mit dem
Parameter k aus (25) und der Konstanten D aus der zweliten Zu-~
satzbedingung (10a), d.h,
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Problem der elektrochemischen Bearbeitung 11

-1 1 (X(S))
(30) D=c¢ = %_— f ﬁ_fgf(s)) ds - ;l'r { ds -
-1/k

darstellt.
Folgerung . Aus der Parameterdarstellung (29)
ergibt sich die Analytizitdt des freien Randes S,

LITERATUR

[1]I. Bannard: Electrochemical Machining (review),
J. Appl. Electrochem., 7 (1977), 1=-29.

[2]D.E. Collett, RC. Hewson-Frowne
and AW, Windle: A Complex Variable Approach
to Electrochemical Machining Problems, J. Engin., Math,

4 (1970), 29-37.

[3] B«@. T ax 0B : Kpaesde 3agaud. Hayka, Mocxsa 1977.

[4]R.C. Hewson-~Browne?: Further Applications
of Complex Variable Methods to Electrochemical Machining
Problems, J. Engin. Math., 5 (1971), 233-240,

[5] BeBe Ka 0 K OB ¢ Juexrpoxumayeckoe $opMOOCGpa30BAHHE.
Hazar-crBo KasaKckoro YHmBepCHTeTa 1984 .

[6] Aele K PHZ OB : 3alava Komm zaa ypaBHeHHA Jamiaca
8 TEODHE OXEKTPOXUMHYECKOH 00paCorTk¥ Merania, JOKA.

AH CCCP 178, HO 2 (1968), 321-323.

[7]S6Ge Michlin, S8 Préssdorf: Singu-
ldre Integraloperatoren, Akademie~Verlag, Berlin 1980,

[8]C. Mirandaz: Suun problema di frontiera libera.

Istituto Nazionale di Alta Matematica, Symposia Matematica,

Vol. II (1968), 71-83,

- 411 -



12 D. Oestreich

[9]BH. MOoH axoB t KpaesHe 3afaud CO CBOCOXHHMA rpa-
HALGMM IiAA SAIUOTHYECKHX CHCTeM ypaBHenuft. 3zar-crBO
Hayka, HoBocuOGupck 1977.

[10]N.I. Muschelischwildi: Singuldre Inte-
gralgleichungen, Akademie-Verlag, Berlin 1965,

[1M]D. Oestreich: Zum Staudammproblem mit Drai-
nage. (ZAMM in Druck).

[12]W.I. Smirnows: Lehrgang der hoheren Mathematik,
Teil III, 2. Dt. Verlag der Wissenschaften, Berlin 1955.

[13]Lwvs, Wolfersdorf: A Class of Nonlinear
Riemann-~Hilbert Problems for Holomorphic Functions. Math,
Nachr, 116 (1984) 89-107,

[M4]Lwv. Wolfersdorf: On the Theory of Nonli-
near Singular Integral Equations of Cauchy-Type. Math,
Meth, Appl. Sci. 7 (1985), 493-517.

BERGAKADEMIE FREIBERG, SEKTION MATHEMATIK, FREIBERG, 9200, DDR
Received June 26, 1987.

- 412 -



