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ASYMPTOTIC EQUIVALENCE OF DIFFERENTIAL EQUATION
IN BANACH SPACE

1. The purpose of this papser is the study of the asympto=
tlic equivalence between the solutions of the differential
equations

(1) x = A(t)x + £(%,x,T(x)) and (II) x' = a(t)x

in Banach space B. Here x, f are the elements of E, A(t) is
a linear operator oh E. More precisely, we give some condi-
tions which guarantee that for each bounded solution y:d —B
(J =<0,00), E~Banach space with norm |i+]|) of (II) there
exists a bounded solution x: J—=E of (I) such that

(%) 1;lim ]|x(t) - y(t)“ =0

and conversely. We prove the existence of a homeomorphism
between bounded solutions of (1) and (II),.

In this peper we use some notations, definitions and re-
sults from [4]-[6].

Let B denote the space of continuous linear mappings
E—~E, C = C(J,E) the space of bounded continuous functions
u:J —=E with the norm ||uHc = sup {“u(t) :teJ}, 1t = 1(s,3)
the space of Bochner integrable functions u:J —E with nora

©o

lully = f Jute)as,

0
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2 Je. Morchato

and let L = L(J,EB) represent the space of strongly measurable

functions u:sJ——E, Bochher integrable in every finite sub-

interval J' of J with the topology of the convergence in the

mean on every such J', i.e. convergence in 11(3’,B) of the

restrictions to J'. The symbol B(J,R) denotes a Banach funo-

tion space such that: ,

1° B(J,R)<L(J,R) and B(J,R) is stronger than L(J,R),

2° B(J,R) is not stronger than L'(J,R),

3° B(J,R) contains all essentially bounded funotions with
compact support,

4° if ueB(J,R) and v 1is a real-valued measurable function
on J such that |v|<|u|, then veB(J,R) and ||v|g < |lul;.

By B = B(J,E) we represent the Banach space of all strong-
1y measurable functions usJ — B such that ||u(t)|| € B(J,R) and
with [lufy = ||lla(¢)]|| g ot A€L(3,E). Lot U be the fundamen-
tal solution for (II)yi.e. U is the continuously differentiab-
le funotion from J to ¥ such that U(t ) = I and U’ = A(t)U
whenever te J, Let 31 be the subspace of E to whioh x be-
longs if and only if the function from J to Eydesocribed by
t —U(t)x, is bounded. Let E, be closed and have closed oom-
plement E, such that E = K, @ By. Let P, and P, be supplemen-
tary projections of E onfe E1 and 32, respectively.

Assume that for every be B there exists at least one
bounded solution of the differential equation

(I1I1) x’ = A(t)x + B(t),

Then, by Theorem 51.B of [5], thers exists a constant K>0
such that for every be B the equation (III) has a unique
bounded solution x with x(0)e 12, and this solution satisfies
|x]lg=<K[b|lze Por every be B denote by F(b) the bounded solu-
tion of (III) such that x(0)e B,., Then F is a mapping of B
into C and

1° li?(e)ll < K|vlig,

]
2 17‘(1:1131 + k2b2) = k1l"(b1) + kzF(bz) for b1,bzeB and k1,k26R.
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Asymptotie equivalence of equation 3

Moreover, by [5] (Theorem 52.J),

t oo
(1) F(b)(t) =fu(t)p1u'1(e)b(s)ds -fU(t)PZU'1(B)b(a)ds,
0 %

ted,
for every beB with compaot support.

2, Consider the equation (I) in which (t,x,y) — £(t,x,5)
is a funotion from J xE xE into B, continuous in x,y for any
fixed te J, and strongly measurable in t for any fixed x,ye¢ B,
and T3C(J,B) —C(J,E) is continuous operator with T(0) = O,
the space C(J,B) oontains all continuous functions y:J—=E,

Theoremnm 1. It

19 ronxJ —=J i8 continuous function such that
(1) sup ro(z1,z2) = r{u,v), a>0, aeR,
l<5159
as22ﬁl

(11) anp{%x(—?—%% t a< u,vsb}<1 for eaoh a,b, 0 <a<b,

2° there exist a funotion fe B(J,R) and a gonstant L,> 0 such
that Kl[h|y<1, 0 <L <1 and

ll£(t,x,u) - £(%,3,v)|[<h(t) = (x - 3], [0 - v|)

for any x,y€B, u,ve DcE, teJ,and the operator T sa~
tisfies the condition

IT(x) - 2(3)llg <L lix ~ 3l for sny x,yeC(J,B),
3° £(+,0,0)eB,

then for any pe B, there exists a unigque bounded solution
x(,p) of (I) with P,x(*,p) = p and

(2) X = U(’)P1X(0) + F(f("x’T(x)))o

The method of the proof is the same as that of Theorem 1
from [6].
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4 Je. Morchato

Consider now the integral equation
t

(3) x(6) = v(e)p + f L(4)B,u7 ()28, x(s),2(x) () )ds -
¢]

-el’U(t)PZU'1(s)f(s,x(S).T(X)(S))dS.
t

Clearly, (3) defines a mapping which can be written symboli=~
cally in the form

(4) Gox = U(e)p + F(£(*,x,T(x))).

Lemma 1, Let £f(+,0,0) = 0 and m = sup I|U(t)P1[|.
ted

If the assumptions of Theorem 1 hold, then for each r°>0
and pe S(r1), where

S(r1) = {p:peE1,||p]|sr1 = m"’(ro - r(ro,ro)KHh”B)},

G, is a mapping of 2 (ry) &= {x:x eC,I]xlIsro} into Z(I‘o)
and is a contraction on Z.(ro).
Proof. For any x eZ(ro) from (4) we have

lepxllg <llute)pll + IP(£Ce,x,2(x) )M g <mlpll+ Kll£Ce,x,T(x))]| 5 =<

<alpll + Klalr(ey,z )<z,

From this 1t follows that G| Z(ro)CZ(ro).
Now we verify that the operator Gp is a contraction map.
Lot x4,X, eZ(ro), then

”pr1-pr2||c£K||f(°,x1,T(x1)) - f('oxng(xz))“B$
= K”h”B r(”x1'xgncs”x1'x2”C)°
Applying Krasnosielskii s Theorem [6J we deduce that there

exists x € Z.(ro) such that x = pr. This completes thse proof
of Lemma,
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isymptotlc equivalence of equation 5

We define a mapping V as follows Vp = x for pe S(r1),
where x is a unique solution of the equation x = pr in
3 (r,)c B. Let VS(r,) = A.

Lemma 2. IfVS(r)—"Z.(r),thenVisaho—
meomorphism of S(r ) onto 2::(r ),and V, V‘1 satisfy Lip-
schitz ‘s condltlon.

Proof. For any p1,p2€S(1‘1) we have

”U(t)(P1 - p2)”c$m“p1 - p2”’

Let Xq9Xp € A and Vp1 = Xq sz = Xge From the definition
of the operator V we obtain

Xy = U(e)py + F(£(+,xq,T(x))), x5 = U(*)pp+ F(£(*,x,,T(x,)))
and
%4 = Xollc<m|lpq - P+ Klallgrllix; - xpllgsllxq = x5llg) <
<ualp, -, ll+ Klblgllx, = x5/l
Hence,V satisfies the Lipschitz condition
(5) x4 = xpllg<m(1 - K"h”};r!”% - pplls

Conversely, for amy x4,X, e}:(R), we have

(6) pq- ppll<llxy - xpllg + Kl lxy = xpllg = 01+ &lalig)lizy - xpllgs

so V™1 exists.

Theorsmn e Let the hypotheses of Theorem 1 and
condition Kjkj,~{1 - Kjnfi;)™1 <1 hold. Then the set S(r,)CE
is homeomorphic witk scme et HCE and

‘a) for every point x(0) € H there exists a continuable
to infirits aseluaviou of (I),

‘v’ ex ne basis of a homeomorphism,the solutions y and x
sf {77V aud (I) passing through the points pes(r1) and

A

£+.' = Zpe H, respectively,satisfy the inequality
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6 J. Morchao

lx(¢) - 3(s)|<mklnlig(1 - &lalg)=Vpl,

(¢) the mappings Zp = x(0) and z'1x(0) = p satisfy
Lipschits “s condition, and furthermore

Zp =p + wi(p),  27'x(0) = x(0) + wy(x(0)),
where v, and v, are such that

llwy(py) = wy(p,)ll< mK|ia5(1 = KJaig)~" |Ipy = by,

fiwa(x,(0)) = w,(x,(0))]| < mK [lall5 (1-Kllallg (1+m) )~V lxy (0) x5 (0) .

"Proof., LetH -{’x(o):x(t)e A}. Let 2:8(r,) —H,
where Zp = Vp| = x(0). Then Z has inverse z~! defined by

Z'1x(0) = Vh1x(o) = p, Por every p1,pze=S(r1) and x1(0) = 2Dy,
12(0) = Zp,, We have

[x4(0) ~ x5(0)|<]lpy = p,ll + B2t x,(8),2(x) (%)) =
- F(;xt,xz(t),r(xz)(t)))Mlt_os;"p1 - byl + Kfnjg)x, - X5 e
This implies, by (5}, that

(1) llx4(0) = x,(0)l< (1 + mKlnlig(1 - xhulig)=")lp, = byl
Analogioally
ey = poll<lizq(0) = x5(0)l + luliglx, - x,llg <
<|xy(0) - x,(0)]| + oK|n]5(1 - K}n]5) "] py-ps|-
Hence
(8) llpy = ppll<(1 - wk]nllg1 - Kn]z)~") " Yx,(0) = x,(0)],

80 Z and 2”1 satisfy Lipschitz s condition (7) and (8), res-
pectively. Let
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W1(P) = ZP -p= x(o) - p = F(f(t’x(t)’T(x)(t)))ltsO'
wo(x(0)) = 271x(0) - x(0) = p - x(0) = ~F(£(t,x(t) ,D(xNe))|, -
Then
(9) ' Hw1(p1) -wlplfi<

< sup | F(2(t,xy(¢),D(x ) (t))) = P{L(t,x,(t),T(x,) (£))) ]| <

€
< aklal5(1 - Klalg)Mley - pl
and, since wz(x(o)) = -w1(p), by (9), (8), we have

[[Wo(x4(0)) = wolxy(0))]| = [|wy(pq)) = wylpy)ll<

< ukllag /i1 - Kllg)~Yp, - p,ll<

< uklhllg(1 - Klalz(14m)) = x4 (0) - x,t0)]]

whioh proves the thesis (o)., Using (5) and (8) we obtair the
inequality

1%y = xpllg= ml1-K|fz(1+m))"||xy (0] - xp(0)].
Thus,for xc A,we geot
(10) [l x|l < m{1=K|}a] 5 1+m) V| x( 0}

which proves the thesis (a).
Let y = U(*)p be a bounded solution of {II). Then, for
every bounded solution x of (I) with x(0) = Zp, we have

| x(t) - (e} = [ E(£(t,x(¢),2(x)(t)))] <
<K|h|lplixllg<  Kpli5(1 - Klalz) "] p].
The proof of Theorem 2 is completa.
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8 Je MorchaZo

Theoren 3. If
1° the assumptions of Theorem 1 hold,
o
2 dJ;i_: llxﬁ,m)blla = 0 for every be B(J,R},

3° lim [Ju(t)p,]| = 0,
t-—~oo

4° £(+,0,0) = 0,
then (») holds.

Proof,. Let x be a bounded solution of (I). For any
T€J put

up = Pl o 20003, T(x))),  vp = F(X g o) 2(,%,T{(x)))s

Beoause
||x<T’w,(t)f(t.x(t).T(x)(tnll SXer, o (11R(E)T (] x| f1xll )
for t €J, so we have

vl g <KX g oy 2loax T Nlg <K . h()] grllxlicallzlc)

Ty 00}

0
By assumption 2°, g._i.lgo | 7(<,L_'W)t_1(.)||B = 0, and therefore for
any € >0 we can choose 7 >0 such that | v,[”cs—% . Moreover,
by 3°, tlim I]U(t)P1 || = 0. Hence,there exists a t, > T such that

.
lactedll<luer Il f v (s)els,x(e),2(x) (s))asll< 5
0

for t <t. Let y = U(e)p be a bounded solution of (II), Then
for every fixed bounded solution of (I) with x(0) = Zp we
have

Ix(6) - yte)l<llugledl + lvele)< e

for t>1%,, which implies (*) (& being arbitrary).
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Asymptotio equivalence of squation 9

Remark 1. Theorem 3 i8 a generalization of an
analogous result of [2] for B =« R®, B = LP, p = 1 and
r(u,v) = qu, g <1, and of [3] for 8 = R®, B= 1P, p = 1,

Let B’ denote the space associated to B, Aacording to
Theorem 22.M [5], if ueB(J,R) and ve B (J,R), then
|uv| e L1(J,R) and "HSlder s inequality"

(11) S 1 atervis)las < Jully v,
J

holds. Denote by G a funotion from Jx J to E such that

U(t)P,U"(e) 1if O<s<t,
G(t,s) =
-U(t)P0"(s) 1 e>t>0.

The oren 4, If
1° the assumptions of Theorem 3 hold,
2° &(t,e)eB’, [lo(t,*)lly <K for all ted,

then the equations (I) and (II) are asymptotioally eguivalent,
Proof. Iet x be a bounded solution of (I). It will
now be shown that .lim ”w(t)” = 0, where
f—+oo

t
wit) = [ u(t)2,07"(s)2(s,x(s),2(x) (s) a5 -
0

- JrU(t)PzU'1(s)f(s,x(s),T(x)(s))ds =
t

= JFG(t,s)f(s,x(s),T(x)(s))ds.
0

Since

X< g o (8128, 208D, T(x) (8D KX g ooy (8)0C 82 (|[xlg0 1% )
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10 Je Morochazo

for t,7¢<J, we can write
| x(‘t‘m)f(. X, 2(x) )|]Bs|l7(< z’,oo)h( )iz xligs Ixlig)e

By assamption 2° of Theorem 3, for any ¢ >0 we can choose
>0 such that

(12) 1% g oyl Ml g2l Ixl) < 5«

" the other hand, from lim |U(%)P,]| = 0 1t follows that
t—oco
there e:iil.=ts tOZTsuch that

14
30 Jutore S v (s)2s,x(8),2(x) () Jas|< £
0

for t;to. Therefore, for t > 7 we have

T
x(t) - 3(¢) = u(), [ U (e)2(a,x(s),2(x)(s))as +
0

[

+fG(t,s)f(s,x(s),T(x)(s))ds,

T

where y is a solution of (II).
By (12), (13), 2° and (11), we infer that

T
| x(t) - y(e)][<|lu(s)e,|l ||fU'1(s)f(s,x(s),T(x)(s))ds I+
0

+llatt, Mpl*ep oynlligetixlg, lxlg)<e

for T >t . The proof of Theorem 4 is complete.
Remark 2, The results contained in Theorems 2, 4
ave soms extension of those of [1] for B = R%, B = M,
rin,vy, = qu, g<1, where ¥%_1is the space of measurable func-
tione v:4 — RP with
- 318 =



Asymptotio equivalence of equation 11
1

t+1 p
Pg
sup (f | (=)l s>

t

Remark 3. If x:iJ—=F 1s a bounded solution of
(I), then routine computations show that the funotion y de-
fined by

y(t) = x(¢) -fG(t,s)f(s,x(s),T(x)(s))ds
0

is a solutioen of (II),
Remark 4, By Theorems 1, 4,we can show the asymp-
totio equivalenoe of the equations (I) and

(IVv) x' = A(t)x + g(t,x,T(x))

where (t,x,y) —g(t,x,y) is a funotion from J xE xE
into E, oontinuous in x, y for any fixed te J, and strongly
measurable in t for any fixsd x,y €E.

Theorem 5, Let 2 be an unique solution of
the squation

z’ = Alt)z + £,(%,2,7(2))

defined on J and such that z(t) ——0 as t—= oo, where
(t,i,i)—-—fﬂt,i,i) is a function from JxE xE into E whioch
fulfils the hypotheses of Theorem 1. Then (I) and (IV) are
agymptotically equivalent,

Proof.,. Let z(t) = x(t) - u(t), where x(t) and u(t)
ere solutiona of (I) and (IV), respectively; then, by diffe-
rentiation, we obtain

(14) z’ = A(t)z + f1(t,z,T(z)) for ze%, teJd,
where

f1(t,z,T(z)) = £(t,2+u,T(z+u)) - g(t,u,T(u)).
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12 Je. Morchato

Thue, the previous problem is reduced to finding a solution 2
of (14) such that 1im [|2(t)] = 0. Since 2z 1is the solution
1t —o0

of the equation (14), so x(t) = 2{(t) + u(t) is the solution
of the equation (I), The solutions u and 2 exist and are
bounded for te€dJ, thus x 1s also bounded for ted.

Hence, by 1lim 2z(t) = O, we have (%),
£ —~oo
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