

Jaroslaw Mrochko

ASYMPTOTIC EQUIVALENCE OF DIFFERENTIAL EQUATION
IN BANACH SPACE

1. The purpose of this paper is the study of the asymptotic equivalence between the solutions of the differential equations

$$(I) \quad x' = A(t)x + f(t, x, T(x)) \quad \text{and} \quad (II) \quad x' = A(t)x$$

in Banach space E . Here x, f are the elements of E , $A(t)$ is a linear operator on E . More precisely, we give some conditions which guarantee that for each bounded solution $y: J \rightarrow E$ ($J = \langle 0, \infty \rangle$, E -Banach space with norm $\|\cdot\|$) of (II) there exists a bounded solution $x: J \rightarrow E$ of (I) such that

$$(*) \quad \lim_{t \rightarrow \infty} \|x(t) - y(t)\| = 0$$

and conversely. We prove the existence of a homeomorphism between bounded solutions of (I) and (II).

In this paper we use some notations, definitions and results from [4]-[6].

Let \tilde{E} denote the space of continuous linear mappings $E \rightarrow E$, $C = C(J, E)$ the space of bounded continuous functions $u: J \rightarrow E$ with the norm $\|u\|_C = \sup \{ \|u(t)\| : t \in J \}$, $L^1 = L^1(J, E)$ the space of Bochner integrable functions $u: J \rightarrow E$ with norm

$$\|u\|_1 = \int_0^\infty \|u(t)\| dt,$$

and let $L = L(J, E)$ represent the space of strongly measurable functions $u: J \rightarrow E$, Bochner integrable in every finite sub-interval J' of J with the topology of the convergence in the mean on every such J' , i.e. convergence in $L^1(J', E)$ of the restrictions to J' . The symbol $B(J, R)$ denotes a Banach function space such that:

- 1° $B(J, R) \subset L(J, R)$ and $B(J, R)$ is stronger than $L(J, R)$,
- 2° $B(J, R)$ is not stronger than $L^1(J, R)$,
- 3° $B(J, R)$ contains all essentially bounded functions with compact support,
- 4° if $u \in B(J, R)$ and v is a real-valued measurable function on J such that $|v| \leq |u|$, then $v \in B(J, R)$ and $\|v\|_B \leq \|u\|_B$.

By $B = B(J, E)$ we represent the Banach space of all strongly measurable functions $u: J \rightarrow E$ such that $\|u(t)\| \in B(J, R)$ and with $\|u\|_B = \|\|u(t)\|\|_B$. Let $A \in L(J, \widetilde{E})$. Let U be the fundamental solution for (II), i.e. U is the continuously differentiable function from J to \widetilde{E} such that $U(t_0) = I$ and $U' = A(t)U$ whenever $t \in J$. Let E_1 be the subspace of E to which x belongs if and only if the function from J to E , described by $t \rightarrow U(t)x$, is bounded. Let E_1 be closed and have closed complement E_2 such that $E = E_1 \oplus E_2$. Let P_1 and P_2 be supplementary projections of E onto E_1 and E_2 , respectively.

Assume that for every $b \in B$ there exists at least one bounded solution of the differential equation

$$(III) \quad x' = A(t)x + b(t).$$

Then, by Theorem 51.2 of [5], there exists a constant $K > 0$ such that for every $b \in B$ the equation (III) has a unique bounded solution x with $x(0) \in E_2$, and this solution satisfies $\|x\|_C \leq K\|b\|_B$. For every $b \in B$ denote by $F(b)$ the bounded solution of (III) such that $x(0) \in E_2$. Then F is a mapping of B into C and

- 1° $\|F(b)\|_C \leq K\|b\|_B$,
- 2° $F(k_1 b_1 + k_2 b_2) = k_1 F(b_1) + k_2 F(b_2)$ for $b_1, b_2 \in B$ and $k_1, k_2 \in R$.

Moreover, by [5] (Theorem 52.J),

$$(1) \quad F(b)(t) = \int_0^t U(t)P_1U^{-1}(s)b(s)ds - \int_t^\infty U(t)P_2U^{-1}(s)b(s)ds,$$

$t \in J,$

for every $b \in B$ with compact support.

2. Consider the equation (I) in which $(t, x, y) \mapsto f(t, x, y)$ is a function from $J \times E \times E$ into E , continuous in x, y for any fixed $t \in J$, and strongly measurable in t for any fixed $x, y \in E$, and $T: \bar{C}(J, E) \rightarrow \bar{C}(J, E)$ is continuous operator with $T(0) = 0$, the space $\bar{C}(J, E)$ contains all continuous functions $y: J \rightarrow E$.

Theorem 1. If

1° $r_0: J \times J \rightarrow J$ is continuous function such that

$$(i) \quad \sup_{\substack{a \leq z_1 \leq u \\ a \leq z_2 \leq v}} r_0(z_1, z_2) = r(u, v), \quad a > 0, \quad a \in R,$$

$$(ii) \quad \sup \left\{ \frac{r(u, v)}{\max(u, v)} : a \leq u, v \leq b \right\} < 1 \text{ for each } a, b, \quad 0 < a \leq b,$$

2° there exist a function $h \in B(J, R)$ and a constant $L_0 > 0$ such that $K\|h\|_B \leq 1$, $0 < L_0 \leq 1$ and

$$\|f(t, x, u) - f(t, y, v)\| \leq h(t) r_0(\|x - y\|, \|u - v\|)$$

for any $x, y \in E$, $u, v \in D \subset E$, $t \in J$, and the operator T satisfies the condition

$$\|T(x) - T(y)\|_{\bar{C}} \leq L_0 \|x - y\|_{\bar{C}} \quad \text{for any } x, y \in \bar{C}(J, E),$$

3° $f(\cdot, 0, 0) \in B$,

then for any $p \in E$, there exists a unique bounded solution $x(\cdot, p)$ of (I) with $P_1x(\cdot, p) = p$ and

$$(2) \quad x = U(\cdot)P_1x(0) + F(f(\cdot, x, T(x))).$$

The method of the proof is the same as that of Theorem 1 from [6].

Consider now the integral equation

$$(3) \quad x(t) = U(t)p + \int_0^t U(t)P_1U^{-1}(s)f(s, x(s), T(x)(s))ds - \\ - \int_t^\infty U(t)P_2U^{-1}(s)f(s, x(s), T(x)(s))ds.$$

Clearly, (3) defines a mapping which can be written symbolically in the form

$$(4) \quad G_p x = U(\cdot)p + F(f(\cdot, x, T(x))).$$

Lemma 1. Let $f(\cdot, 0, 0) = 0$ and $m = \sup_{t \in J} \|U(t)P_1\|$.

If the assumptions of Theorem 1 hold, then for each $r_0 > 0$ and $p \in S(r_1)$, where

$$S(r_1) := \left\{ p : p \in E_1, \|p\| \leq r_1 = m^{-1}(r_0 - r(r_0, r_0)K\|h\|_B) \right\},$$

G_p is a mapping of $\sum(r_0) := \{x : x \in C, \|x\| \leq r_0\}$ into $\sum(r_0)$ and is a contraction on $\sum(r_0)$.

Proof. For any $x \in \sum(r_0)$ from (4) we have

$$\begin{aligned} \|G_p x\|_C &\leq \|U(\cdot)p\|_C + \|F(f(\cdot, x, T(x)))\|_C \leq m\|p\| + K\|f(\cdot, x, T(x))\|_B \leq \\ &\leq m\|p\| + K\|h\|_B r(r_0, r_0) \leq r_0. \end{aligned}$$

From this it follows that $G_p \sum(r_0) \subset \sum(r_0)$.

Now we verify that the operator G_p is a contraction map. Let $x_1, x_2 \in \sum(r_0)$, then

$$\begin{aligned} \|G_p x_1 - G_p x_2\|_C &\leq K\|f(\cdot, x_1, T(x_1)) - f(\cdot, x_2, T(x_2))\|_B \leq \\ &\leq K\|h\|_B r(\|x_1 - x_2\|_C, \|x_1 - x_2\|_C). \end{aligned}$$

Applying Krasnoselskii's Theorem [6] we deduce that there exists $x \in \sum(r_0)$ such that $x = G_p x$. This completes the proof of Lemma.

We define a mapping V as follows $Vp = x$ for $p \in S(r_1)$, where x is a unique solution of the equation $x = G_p x$ in $\sum(r_0) \subset E$. Let $VS(r_1) = A$.

Lemma 2. If $V: S(r_1) \rightarrow \sum(r_0)$, then V is a homeomorphism of $S(r_1)$ onto $\sum(r_0)$, and V, V^{-1} satisfy Lipschitz's condition.

Proof. For any $p_1, p_2 \in S(r_1)$ we have

$$\|U(t)(p_1 - p_2)\|_C \leq m \|p_1 - p_2\|.$$

Let $x_1, x_2 \in A$ and $Vp_1 = x_1$, $Vp_2 = x_2$. From the definition of the operator V we obtain

$$x_1 = U(\cdot)p_1 + F(f(\cdot, x_1, T(x_1))), \quad x_2 = U(\cdot)p_2 + F(f(\cdot, x_2, T(x_2)))$$

and

$$\begin{aligned} \|x_1 - x_2\|_C &\leq m \|p_1 - p_2\| + K \|h\|_B r(\|x_1 - x_2\|_C, \|x_1 - x_2\|_C) \leq \\ &\leq m \|p_1 - p_2\| + K \|h\|_B \|x_1 - x_2\|_C. \end{aligned}$$

Hence, V satisfies the Lipschitz condition

$$(5) \quad \|x_1 - x_2\|_C \leq m(1 - K \|h\|_B)^{-1} \|p_1 - p_2\|.$$

Conversely, for any $x_1, x_2 \in \sum(r_0)$, we have

$$(6) \quad \|p_1 - p_2\| \leq \|x_1 - x_2\|_C + K \|h\|_B \|x_1 - x_2\|_C = (1 + K \|h\|_B) \|x_1 - x_2\|_C,$$

so V^{-1} exists.

Theorem 2. Let the hypotheses of Theorem 1 and condition $K \|h\|_B m(1 - K \|h\|_B)^{-1} < 1$ hold. Then the set $S(r_1) \subset E$ is homeomorphic with some set $H \subset E$ and

(a) for every point $x(0) \in H$ there exists a continuable to infinity solution of (I),

(b) on the basis of a homeomorphism, the solutions y and x of (II) and (I) passing through the points $p \in S(r_1)$ and $x(\cdot) = Zp \in H$, respectively, satisfy the inequality

$$\|x(t) - y(t)\| \leq mK\|h\|_B (1 - K\|h\|_B)^{-1} \|p\|,$$

(c) the mappings $Zp = x(0)$ and $Z^{-1}x(0) = p$ satisfy Lipschitz's condition, and furthermore

$$Zp = p + w_1(p), \quad Z^{-1}x(0) = x(0) + w_2(x(0)),$$

where w_1 and w_2 are such that

$$\|w_1(p_1) - w_1(p_2)\| \leq mK\|h\|_B (1 - K\|h\|_B)^{-1} \|p_1 - p_2\|,$$

$$\|w_2(x_1(0)) - w_2(x_2(0))\| \leq mK\|h\|_B (1 - K\|h\|_B (1 + m))^{-1} \|x_1(0) - x_2(0)\|.$$

Proof. Let $H = \{x(0) : x(t) \in A\}$. Let $Z : S(r_1) \rightarrow H$, where $Zp = Vp|_{t=0} = x(0)$. Then Z has inverse Z^{-1} defined by $Z^{-1}x(0) = V^{-1}x(0) = p$. For every $p_1, p_2 \in S(r_1)$ and $x_1(0) = Zp_1$, $x_2(0) = Zp_2$, we have

$$\begin{aligned} \|x_1(0) - x_2(0)\| &\leq \|p_1 - p_2\| + \|F(f(t, x_1(t)), T(x_1(t))) - \\ &\quad - F(f(t, x_2(t)), T(x_2(t)))\|_{t=0} \leq \|p_1 - p_2\| + K\|h\|_B \|x_1 - x_2\|_C. \end{aligned}$$

This implies, by (5), that

$$(7) \quad \|x_1(0) - x_2(0)\| \leq (1 + mK\|h\|_B (1 - K\|h\|_B)^{-1}) \|p_1 - p_2\|.$$

Analogically

$$\begin{aligned} \|p_1 - p_2\| &\leq \|x_1(0) - x_2(0)\| + K\|h\|_B \|x_1 - x_2\|_C \leq \\ &\leq \|x_1(0) - x_2(0)\| + mK\|h\|_B (1 - K\|h\|_B)^{-1} \|p_1 - p_2\|. \end{aligned}$$

Hence

$$(8) \quad \|p_1 - p_2\| \leq (1 - mK\|h\|_B (1 - K\|h\|_B)^{-1})^{-1} \|x_1(0) - x_2(0)\|,$$

so Z and Z^{-1} satisfy Lipschitz's condition (7) and (8), respectively. Let

$$w_1(p) = Zp - p = x(0) - p = F(f(t, x(t), T(x)(t)))|_{t=0},$$

$$w_2(x(0)) = Z^{-1}x(0) - x(0) = p - x(0) = -F(f(t, x(t), T(x)(t)))|_{t=0}.$$

Then

$$(9) \quad \begin{aligned} \|w_1(p_1) - w_1(p_2)\| &\leq \\ &\leq \sup_{t \in J} \|F(f(t, x_1(t), T(x_1)(t))) - F(f(t, x_2(t), T(x_2)(t)))\| \leq \\ &\leq mK\|h\|_B(1 - K\|h\|_B)^{-1}\|p_1 - p_2\| \end{aligned}$$

and, since $w_2(x(0)) = -w_1(p)$, by (9), (8), we have

$$\begin{aligned} \|w_2(x_1(0)) - w_2(x_2(0))\| &= \|w_1(p_1) - w_1(p_2)\| \leq \\ &\leq mK\|h\|_B(1 - K\|h\|_B)^{-1}\|p_1 - p_2\| \leq \\ &\leq mK\|h\|_B(1 - K\|h\|_B(1+m))^{-1}\|x_1(0) - x_2(0)\| \end{aligned}$$

which proves the thesis (c). Using (5) and (8) we obtain the inequality

$$\|x_1 - x_2\|_C \leq m(1 - K\|h\|_B(1+m))^{-1}\|x_1(0) - x_2(0)\|.$$

Thus, for $x \in A$, we get

$$(10) \quad \|x\|_C \leq m(1 - K\|h\|_B(1+m))^{-1}\|x(0)\|$$

which proves the thesis (a).

Let $y = U(\cdot)p$ be a bounded solution of (II). Then, for every bounded solution x of (I) with $x(0) = Zp$, we have

$$\begin{aligned} \|x(t) - y(t)\| &= \|F(f(t, x(t), T(x)(t)))\| \leq \\ &\leq K\|h\|_B\|x\|_C \leq mK\|h\|_B(1 - K\|h\|_B)^{-1}\|p\|. \end{aligned}$$

The proof of Theorem 2 is complete.

Theorem 3. If

- 1º the assumptions of Theorem 1 hold,
- 2º $\lim_{d \rightarrow \infty} \|\chi_{[d, \infty)} b\|_B = 0$ for every $b \in B(J, R)$,
- 3º $\lim_{t \rightarrow \infty} \|U(t)P_1\| = 0$,
- 4º $f(\cdot, 0, 0) = 0$,

then $(*)$ holds.

Proof. Let x be a bounded solution of (I). For any $\tau \in J$ put

$$u_\tau = F(\chi_{[0, \tau]} f(\cdot, x, T(x))), \quad v_\tau = F(\chi_{[\tau, \infty)} f(\cdot, x, T(x))).$$

Because

$$\|\chi_{[\tau, \infty)}(t)f(t, x(t), T(x)(t))\| \leq \chi_{[\tau, \infty)}(t)h(t)r(\|x\|_C, \|x\|_C)$$

for $t \in J$, so we have

$$\|v_\tau\|_C \leq K \|\chi_{[\tau, \infty)} f(\cdot, x, T(x))\|_B \leq K \|\chi_{[\tau, \infty)} h(\cdot)\|_B r(\|x\|_C, \|x\|_C).$$

By assumption 2º, $\lim_{\tau \rightarrow \infty} \|\chi_{[\tau, \infty)} h(\cdot)\|_B = 0$, and therefore for any $\varepsilon > 0$ we can choose $\tau > 0$ such that $\|v_\tau\|_C \leq \frac{\varepsilon}{2}$. Moreover, by 3º, $\lim_{t \rightarrow \infty} \|U(t)P_1\| = 0$. Hence, there exists a $t_0 > \tau$ such that

$$\|u_\tau(t)\| \leq \|U(t)P_1\| \left\| \int_0^\tau U^{-1}(s)f(s, x(s), T(x)(s))ds \right\| \leq \frac{\varepsilon}{2}$$

for $t_0 \leq t$. Let $y = U(\cdot)p$ be a bounded solution of (II). Then for every fixed bounded solution of (I) with $x(0) = Zp$ we have

$$\|x(t) - y(t)\| \leq \|u_\tau(t)\| + \|v_\tau(t)\| \leq \varepsilon$$

for $t \geq t_0$, which implies $(*)$ (ε being arbitrary).

Remark 1. Theorem 3 is a generalization of an analogous result of [2] for $E = \mathbb{R}^n$, $B = L^p$, $p = 1$ and $r(u, v) = qu$, $q < 1$, and of [3] for $E = \mathbb{R}^n$, $B = L^p$, $p = 1$.

Let B' denote the space associated to B . According to Theorem 22.M [5], if $u \in B(J, \mathbb{R})$ and $v \in B'(J, \mathbb{R})$, then $|uv| \in L^1(J, \mathbb{R})$ and "Hölder's inequality"

$$(11) \quad \int_J |u(s)v(s)| ds \leq \|u\|_B \|v\|_{B'},$$

holds. Denote by G a function from $J \times J$ to \tilde{E} such that

$$G(t, s) = \begin{cases} U(t)P_1U^{-1}(s) & \text{if } 0 \leq s \leq t, \\ -U(t)P_2U^{-1}(s) & \text{if } s > t \geq 0. \end{cases}$$

Theorem 4. If

1° the assumptions of Theorem 3 hold,
 2° $G(t, \cdot) \in B'$, $\|G(t, \cdot)\|_{B'} \leq K$ for all $t \in J$,

then the equations (I) and (II) are asymptotically equivalent.

Proof. Let x be a bounded solution of (I). It will now be shown that $\lim_{t \rightarrow \infty} \|w(t)\| = 0$, where

$$\begin{aligned} w(t) &= \int_0^t U(t)P_1U^{-1}(s)f(s, x(s), T(x)(s))ds - \\ &\quad - \int_t^\infty U(t)P_2U^{-1}(s)f(s, x(s), T(x)(s))ds = \\ &= \int_0^\infty G(t, s)f(s, x(s), T(x)(s))ds. \end{aligned}$$

Since

$$\|x_{<\tau, \infty}(t)f(t, x(t), T(x)(t))\| \leq x_{<\tau, \infty}(t)h(t)r(\|x\|_C, \|x\|_C)$$

for $t, \tau \in J$, we can write

$$\|\chi_{[\tau, \infty)} f(\cdot, x, T(x))\|_B \leq \|\chi_{[\tau, \infty)} h(\cdot)\|_B r(\|x\|_C, \|x\|_C).$$

By assumption 2^0 of Theorem 3, for any $\varepsilon > 0$ we can choose $\tau > 0$ such that

$$(12) \quad \|\chi_{[0, \infty)} h(\cdot)\|_B r(\|x\|_C, \|x\|_C) \leq \frac{\varepsilon}{2K}.$$

On the other hand, from $\lim_{t \rightarrow \infty} \|U(t)P_1\| = 0$ it follows that there exists $t_0 \geq \tau$ such that

$$(13) \quad \|U(t)P_1\| \left\| \int_0^{\tau} U^{-1}(s) f(s, x(s), T(x)(s)) ds \right\| \leq \frac{\varepsilon}{2}$$

for $t \geq t_0$. Therefore, for $t \geq \tau$ we have

$$\begin{aligned} x(t) - y(t) &= U(t)P_1 \int_0^{\tau} U^{-1}(s) f(s, x(s), T(x)(s)) ds + \\ &+ \int_{\tau}^{\infty} G(t, s) f(s, x(s), T(x)(s)) ds, \end{aligned}$$

where y is a solution of (II).

By (12), (13), 2^0 and (11), we infer that

$$\begin{aligned} \|x(t) - y(t)\| &\leq \|U(t)P_1\| \left\| \int_0^{\tau} U^{-1}(s) f(s, x(s), T(x)(s)) ds \right\| + \\ &+ \|G(t, \cdot)\|_B \|\chi_{[\tau, \infty)} h(\cdot)\|_B r(\|x\|_C, \|x\|_C) \leq \varepsilon \end{aligned}$$

for $t \geq t_0$. The proof of Theorem 4 is complete.

Remark 2. The results contained in Theorems 2, 4 are some extension of those of [1] for $E = \mathbb{R}^n$, $B = M_p$, $x(t, s) = qu$, $q < 1$, where M_p is the space of measurable functions $x: J \rightarrow \mathbb{R}^n$ with

$$\sup_{t \geq 0} \left(\int_t^{t+1} \|x(s)\|^p ds \right)^{\frac{1}{p}}$$

Remark 3. If $x: J \rightarrow E$ is a bounded solution of (I), then routine computations show that the function y defined by

$$y(t) = x(t) - \int_0^\infty G(t,s)f(s,x(s),T(x)(s))ds$$

is a solution of (II).

Remark 4. By Theorems 1, 4, we can show the asymptotic equivalence of the equations (I) and

$$(IV) \quad x' = A(t)x + g(t,x,T(x))$$

where $(t,x,y) \rightarrow g(t,x,y)$ is a function from $J \times E \times E$ into E , continuous in x, y for any fixed $t \in J$, and strongly measurable in t for any fixed $x, y \in E$.

Theorem 5. Let z be an unique solution of the equation

$$z' = A(t)z + f_1(t,z,T(z))$$

defined on J and such that $z(t) \rightarrow 0$ as $t \rightarrow \infty$, where $(t, \bar{x}, \bar{y}) \rightarrow f_1(t, \bar{x}, \bar{y})$ is a function from $J \times E \times E$ into E which fulfills the hypotheses of Theorem 1. Then (I) and (IV) are asymptotically equivalent.

Proof. Let $z(t) = x(t) - u(t)$, where $x(t)$ and $u(t)$ are solutions of (I) and (IV), respectively; then, by differentiation, we obtain

$$(14) \quad z' = A(t)z + f_1(t,z,T(z)) \quad \text{for } z \in E, t \in J,$$

where

$$f_1(t,z,T(z)) = f(t, z+u, T(z+u)) - g(t, u, T(u)).$$

Thus, the previous problem is reduced to finding a solution z of (14) such that $\lim_{t \rightarrow \infty} \|z(t)\| = 0$. Since z is the solution of the equation (14), so $x(t) = z(t) + u(t)$ is the solution of the equation (I). The solutions u and z exist and are bounded for $t \in J$, thus x is also bounded for $t \in J$.

Hence, by $\lim_{t \rightarrow \infty} z(t) = 0$, we have (*).

REFERENCES

- [1] M. Boudourides, D. Georgiou : Asymptotic equivalence of differential equations with Stepanoff-bounded functional perturbation, Czech. Math. J., 32(167) (1982) 633-639.
- [2] F. Brauer : Nonlinear differential equations with forcing terms, Proc. Amer. Math. Soc. 15 (1964) 758-765.
- [3] F. Brauer, J. Wong : On the asymptotic relationships between solutions of two systems of ordinary differential equations, J. Diff. Equat. 6 (1969) 527-543.
- [4] T.G. Hallam, N. Onuchic : Asymptotic relationships between solutions of ordinary differential equations, Pac. J. Math. 45 (1973) 187-199.
- [5] J.I. Masser, J.J. Schaffer : Linear differential equations and function spaces, Academic Press, New York and London 1966.
- [6] S. Szufla : On the boundedness of solutions of non-linear differential equations in Banach spaces, Comment. Math. 21 (1979) 381-387.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF POZNAŃ,
60-965 POZNAŃ, POLAND

Received May 18, 1987.