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Zdenek §marda

THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE SINGULAR INTEGRO-DIFFERENTIAL EQUATION

1. Introduction and basio hotions
This paper deals with the existence and asymptotic be~-
haviour of solutions of the integro-differential equation

(1) a(x)ey'(x) =
y ‘d: : 1 i,
= y(x) + ui(“(x)'vi(“(ﬂ‘? (x)ey (%),
o+ LI(4)=2

i i
(3°(x)) 3o (3’ (1)) 4}dt,

where g, Usrg)s vi(4) are given functions; M>2 is the natu-
ral number, 11, 12, 13, 14 are natural numbers inoluding zero,
1(4) = (15,45,15,4,), I(4) = 14 + 4, + 13 + 1,. The existence
of solution of (1) is proved by use of Schauder’s fixed point
theorem. Then there is applied the implicit function theorsm
and Wazewski®s topologioal method in the forms known for or-
dinary differential equations. The special cases of ordinary
singular differential equations were similarly studied by
Diblik [1]. Some equations of the form (1) occur in the theory
of electrical systems, in the mechaniocs of fluids and, in the
last time, in biology too (see [4]). Asymptotic methods are
besic tools for the investigation of (1) in view of the fact
that this equation has the complicated form. Unfortunatsly,
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2 z. Smarda

the disadvantage of these methods are the complicated assump=
tions (e.g. [1], [5], [7]) being necessary to acquire the
basic properties of a solution of such an equation.
Notations:
(i) f(x) = 0{(g(x)) for x — x* denotes that there exists
K>0 such that IL{_&HSK on some right-~hand neighbour-

hood of the point x

o’
(ii) f(x) =o(g({x)) for x—-—x denotes that lim ig;‘-: 03
x—x* 8
0
(iii) f(x)~g{x) for x ——x+ denotes that lim 5%: 1;

x--xo

(iv)  f£(x) "‘iZ; agep; {x) for x —»x denotes that <pl+1(x) =
1
= of{¢;(x)) for x ——x37, 1=1,...,n~1, and

n
[f(x) - E aiosai(x)} = o(gpn+1(x)) for x ——x;;

{v) i(n) = i1,...,i i, € NU{O}, 1<k<n, neN, and
1j(n)

Id(n)

n’
(11,.oo’in’j1,..o,jn)’ I(n) = i1 + eee + in,

(i1+j1) + eee + (1n+jn).

Definitions:

1) Bvery function ¢eC1(0,x°)], x,> 0, satisfying (1) for
sach x e(O,x°] will be called a solution of the equation
(1).

2) 4 function ge ¢! (O,xoj such that g(x) >0, 1131+ g(x) =

g (x)~ ~Y, (x)eg 1(x) for x — 0%, Aq>0, with
lim+ q/1(x)°g (x) = 0 for each T>0, will be called a sin~-
x-0

gular function with respect to the equation (1). The point
(0%, 0) will ve called a singular point of the equation (1)
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Asymptotic behaviour of soclutions 3

2. The construction of a formael series satisfying the
eguation (1)

We shall seek the solution of (1) in the form of a onhe-
-parsmetric series

(2) y(x,C) = Z £, (x)* [p(x,c)]",
h=1

where ¢(x,C} = Ceexp [J' :] C # 0, is the general solution

of the equation g(x)+y’ = y; the functions fj(x), h>2, are
unknown and f1(x) =1,
Denote

hef, (x)

n
yn(x,c) = hZ;‘ fh(x)[go(x,c)]h, Fh(x) = fh(x) +—E(;)—— h>1,

(3) Kh(x,t) = f('h[f1(x),..._,fh_1(x),F1(X),...,Fh_1(X),f1(t).o-o
ceerfy(8), Fy(8),00n By o (8)]=

2“1(4)""’1(5)“" 2 mligog) -
I(4)=2 a(2)+A(2)=h

. A2(12’Q2)'A3(139ﬁ1 )'A4(i49ﬁ2)
with

4 p w
S ﬂ fw (x)eep s(x,C) for pe N,
s

w1+o . .Wp‘q1 s=1

44(pyaq) =9 0 for p=0, x,#0, I(4)<h,

1 for p=0, in the other cases,
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Ve
F, (x)+p “(x,C) for peN,
— _ s
w1+...+wp-0(2 s=1

hr(pyaxy) =4 0 for p=0, 0,#0, I(4)<h,

1 for p=0, in the other cases,

P v
) [T £, (81 T(s,0) for peN,
v1+...+vp= 1 r=1 r

b3(p,py) =90 for p=0, B,#0, I(4)<h,

1 for p=0, in the other cases,
\

P v
ﬂ F, (t)*@T(t,C) for peN ,
- _ r
v.|+...+vp-,6’2 r=1

44(psBy) =40 for p=0, By#0, I(4)<h,

1 for p=0, in the other cases,

where o, >1,, 8,21 ,, k = 1,2,anda(2) = o, +a,, B(2) =
k k k k+2 1 2

= B, + By xy,P € NU {0}, i=1, 2, h»2; the functions

f , £ are coefficients of (2).

s Vp

Put Zh(x) = gp'h(x,c)-f K,(x,t)dt, h>2, 22(1)-:'1‘2(::),
0+

X
(3,) Tu(x) = 55 .qa-h(x,c)of ﬁh[f1(x),Tz(x),...,Th_1(x),
0+

F1(t),é—(gﬂ*1‘2(t),...,~(ﬁ_—g)'—]?(ﬂ- Th_.](t)Jdt, h>3.

In the sequel we shall use the following Lemma (ses [1]).
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- Agymptotié behaviouwr of solutions 5

Lemma 2.1, Let g(x) be a singular funotion with
respeat to the equation

(4) g(x)ey’ = qey + p(x),

Suppose that pe C°(0,x°]. p(x) = bo(x)-g)(x)w |__b1(x)°s7‘+£(x)],
£>0, lim bi(x)-gr(x) =0,1=0,1, bec'(0,x,], b, (x}40,

X A2 T
b, (x) ~.1y2(x)°a 4(x) for x — o, 7\2+1 >0, x].ién+ yol(x)g (x) = 0,

11n g%(x)e[b (x)]~ = 0, <0, Then the equation (4) has
x-0t 0

a particular solution y (x) unique in (0,x,] satisfying the
relations

Yolx) = =3+ v (x)g?x) + 0[g"(x)], 34(x) = 0[a" " (x)]

for xe (O,xo], Ve()\,)+min{7\1,7\2+1,s}).

We formelly differentiate the series (2) and substitute
into (1), Comparing the coefficients of squal powers of
¢(x,C), we obtain for unknown functions f,(x) the system of
the recurrende differential equations

X
(5,) &lx)ef,(x) = (1-h)-fh(x)+<p‘h(x,c)~f K (x,t)dt, h>2,
ot

Consider the following assumptions:
(B,) e 0°(0,x,]s By(x) = by,(x)+g B(x)+0]o ()-)h”h()]
1! *n 1Xods TpiX) = Dop X/t {X)4OPq izt AX]]
Ep> o,xm(z):+ by (x)eg®(x) = 0, 1 =0, 1, b, (x) # 0,

A
'2h(x)

!
bohe C1(O,x°], boh(x)NWZh(x)'gv for x ——0+,

T -1 _
e gf(x)e[og(x)]™ = 0, n22.

(B,) There exist constants v, e(?\h,%h+min{7\1,)\2h+1,8h -

»* *
-Ah_1}), where Ah-1 = max{A1,...,Ah_1}, As

5 = 23- + €£; = vj,
3 = 2,.oo,h-1; A1 = O, h22.

J
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6 Ze émarda

(33) By (4)° Vi(4) eCo(O,xo], xlig"’ U1(4)(X)0¢(I,C) = 0,

X0
1i | v ' t)]dt <oop I = 2,000 9Me
X"g"'({‘ l 1(4)( )I () (4) ’ »
Theorem 2,1, If assumptions (B1), (B2) hold
and g(x) is the singnlar function with respect to (5,), then
the coefficients f,(x) of the series (2) are.univooally de~
fined on (0,x°] as particular solutions of the system (5,)

and the relation
X t b -h t _
(6,) 2,(x) =f [expf?'(%)- da:lo Lg%ﬂf K, (t,n)du (d$
o+ X o+

hold. Moreover, fh(x) and fﬁ(x) possess thes asymptotio form

2 v ) v, =1
(T,)  2,(x) = byy(x)+g Bx) + o[ B(x)], (x) = olg B (x)]

for xe (O,xoj, h>2,

Proof. The relation (6h) oan be obtained by the
method of variation of constants. The equation (52) is, by
(B1), of the form

, A Ayt
g(x) £5(x) = ~fp(x) + b ,(x)eg 2(x) + 0[b12_(x)s 2 2(:)].

since T, = 2:2. Lemma 2,1 gives (72). Substituting f2 instead
of T, into (33), we get

2 AqtEqmiy
T,(x) = byylx)eg 3x) + 0[635(x)ee > 3 2(x)],

where the function b$3 has the same properties as b13, because
f2 and T2 possess the same asymptotic form. This substitution
can lead to a deteriotation of the asymptotic form of T3,
see Az, because A, <V, <A,+ér. Now the equation (53) has the
form

g(x)°f§(x) = -2'f3(x) + 2-T3(x).
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Asymptotic behaviour of solutions 7

The assumptions of Lemma 2.1 are fulfilled. Hence there exists

the unique solution f,(x) of (5;) and (7,) holds on (0,x ol
Gensrally, substituting £, instead of T, into (Bh).

k= 2,000,h=1, we obtaln

2 A+ €y =An
glx)f,(x) = (1-h)ef, (x) + b p(x)g h(x)+-0[§$h(x)-h BT g,

where b?h(x) has the same properties as b,,(x) and A;_1
possesses the same meaning as above. Lemma 2.1 gives the
assertion (7).

The proof of Theorem 2.1 is complete,

3. The existence and asymptotio behaviour of solutions
of the equation (1)

The technique used for prooving the axistence and asympto~
tic behaviour of solutions of (1) ie based on well-known
Schander?’s fixed point theorem and Wazewski'’s topological
method,

Schauder?s theorem, Let E be a Banach space and S its
nonempty convex and closed subset, If P is & continuous mapping
of S into itself and PS is relatively compact, then the mapping
P has at least one fixed point,

Theorem 3.1. If the assumptions (B by (32 (B )
hold and g{x) is the singular function with respect to (1),
then for each valus of a parameter C ¥ O there exists a solu~-
tion y(x,C) of the equation (1) such that

(e) |3'%)(x,0) - yf,f%(x.w’s&’(rn<x)~so“(x.cn‘“. 1=0,1,
for x e(0,x ], where & >1 is a constant, x  depends on §, C,
n and £ (x) is the solution (6 ) of the equation (5 )e

P r oof, 1°) Let the Banach space E be the set
C1(0,x°] of all functions h continuously differentiable on
the interval [ 0,x ] with the norm
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8 Ze émarda

la(x)]] = max {h(x)] + max |h' ()]

xe[0,x, xe|0,x,

and S the set of all functions he C'[0,x,] satisfying the
insqualities

|b(x) = 3, ,(x,0)|<6¢|2,(x)e0"(x,0)

(9)

(£,(x)eP(x,0))

8" (x) - 35 4(x,0)|< 6. .
The set S is obviously nonempty and, as it is easy to sse,
convex and closed.

2°) Construct the mapping P of S into itself. Let hyes
be an arbitrary function., Substituting ho(t), h;(t) instead
of y(t), 3'(t) into (1) we obtain the differential equation

(10) g(x)ey’(x) =

xXr M

i i
= 3(x) + [ [2 0y () (X)+74 (47 ()7 T(x)en 2(t)
o+(I(4)=2

i i
« (3’ (x)) B+ (n) (%)) 4] at.

Set
(11,) y(x) =3, 4(x,C) + ¢"'1(x,c)-Yo(x),
(115) 3 (x) = ¥ 4(%,0) +ts @muxmo Y, (x),

where the new functions Yo Y1 satisfy the differential equa~-
tion

(12) 8(x) Y (x) = (1-n)+Y (x) + Y (x).
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Asymptotic behavieuwr af solutions

Pron (9) it follows that

h(x) =y, 4(x,0) +]H°(2)L lHo(x)lé(Solfn(x)-¢n(x,c)|,
(13)
hlo(x) = 73_1(ch) + H1(x)’ IB1(x) ls 6. I(fn(x)' n(!.C))’lb

Substituting (11,), (11,), (13) into (10), by (5,), we get
(14) Y1(x) = Y,(x) + ¢(x,0) Z:n +

X
gp"n(x,c)-f Qp(x, 8Ty (x), 7, (k) H (%) ,H, () )at,

where Q = E J 2)(3)‘Y (X)‘Y.‘ (X) Rk(z)(t)'ﬂ (t)'H1 (t)’
JK(2)=0

Pj(2)(x) is the polynomlal with respect to arguments u1(4)(x),
£a(x), Fp(x), ©(x,C) and By(2 (t) is the polynomial with re-
spect to arguments vi(4)(t), £,(t), F(t), p(t,C), msl,ee,n~1,
I(4) = 2,444,Ms Denote ¢n(x.c) = ¢(x,0)°2:n,

X
Rez)(x) = ¢ "x,0) + ((]; Ry (2)(t)*H, (t)°H “2(4)at,

ij(z)(x) = Pj(z)(x)-Rg(z)(x), JK(2) = 2,000,Ms

Then the equation (14) has the form

M
ZE:::: J J
Y1(I) - Yo(x) - SDn(X,C) - JK( ) = vjk(z)(X)'Y°1(X)°Y12(X) = 0.
2)=
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10 z. Smarda

Let Dos{(x,IO,Y1)30<x‘x°,|10|<5b,|!ﬁ|<61;66,&1areconstants}.
Consider the function

(15) W(X) = i(vjk(Z)’¢h.YO'Y1) =

M
: J J
= Y1(x) - Yo(x) - ¢n(xtc) - JK(2) = vjk(z)(x)ofo1(x)oy12(x).

If x, is sufficiently small,then there exists a constant
52 =6 ,(x,,C,n) such that

| Vyk(2) (X< s 19p(xsC) < 6y TK(2) = 0,000,

Now we can apply to (15) the implicit function theorsm
(see [2]) at the point G = (Vir(z) = O» ¥ = 0y ¥, = 0,

Y = 0).
1
It 15 obvious that, after a suitable sxtension of W for
x =0, ¥ec?(D ) and W(G) = W (6) = 0, 3, + 3, # 0,

! ~/ vdk(z)
JK(2) = Oyeee,M, W, (G) = W (6) = Wy (G) = =Wy, (G) = =1
PR e Vik(2) ¥, T '
Iy=3=0, K(2) = Oyeee,Ms Hence the equation W(x) = 0 uni-
vooally defines the implioit function Y, = W1‘V;1k(2)v‘7’n"‘o)
in a region D, = (x,Yo): O<sx<x4, ]Y°|< doos 6o}for suffi-
olently small X

Desnote vok(2)(x) e ij(z)(x) for 31 = 32 = 0, The first
approximation of the function W, has the form

(16) Wi(Vyp(2)1PnsYo) = To(x)+@ (2, €4V o 0) (X) 4R (Vyp (50T )

R2 being a continuous funetion of the second ordsr with res-
peot to arguments Io, ij(zz.

Substituting (16) into (12) we obtain the differential
eguation
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Asyaptotic behaviour of solutions L n

(17)  a(x)+Tlx) = (2=n)e¥ (x) + P (x,C) + V 00y (x) +
+ R2(ij(2), YO).

The equation (17) satisfies in the region Dy = Iy - {0} ths
conditions of existence and unigueness of the solu:ions, It
follows from condition (B3) and definitions of the functiois
@, ij(z), vok(2)’ In view of (111), (112), it is ouvious
that the solution of (17) determines the solution of (10j.

In the sequel wse shall use Wazewskl’s topological methed
(sea [3]). Investigate the behaviour of the integral curves
of (17) with respect to the boundary of the set

Q= {(x,Yo) 10<x<x, u (x,Y )<0, uo(X,Y°)=Y§- [5°fn(x) sp(x,C)] 2}

Calculating the derivative ﬁo(x,Yo) along the trajectori:s of
(17) on the set U = {(x,Yo): O<x<x,, u,(x,Y ) = 0}, we obtain

(18)  by(x,T,) = ghay [0 2alx)epPlz,0) X s

£ 82, (x)092(x,0) 1 + Yo (x) Vo () (%) + T (x) By (Vg )0¥o) ] o

The assumptions of Theorem 3.1 and the relation
T

1n 250 . (615 arbitrary real number) imply that the
x-0+ g’ (x)
powers of‘¢(x.C) influence, in decisive way, the convergence
to 2zero of the terms in (18). The first two of them are of
second order with respect to ¢(x,C). The polynomials
Pj(z)(x)'Rg(z)(x) are at least of the second order with res-
peot to ¢(x,C), Hence,the ternms Yo'vok(z)(X)’ RE(Yo'v?k(z))'Yo
are at least of the third order with respect to ¢(x,C). Since

A
fn(x)o Z:n'V(n-1)-b§n(x)-g B(x) for x —0", we have
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1

{19) sgn &o(x,Yo) = sgn(—-fn(x)o Z,m>=

for sufficiently small X, depending on C, §, n. The relation
(19) implies that sach point of the set Uo is a strict ingress
point with respect to the equation (17). Change the orisnta=-
tion of the axis x into opposite. Now each point of the set U°
is a strict egress point with respect to the new system of
coordinates. By Wazewskl'’s topological method,ws state that
there exists at least one integral curve of (17) lying in Q..
It is obvious that this assertion remains true for arbitrary
function hoe Se

Now we shall prove the unigueness of the solution of (17).
Let Yb be also a solution of (17). Putting 2, = Y, - ?0 and
substituting it into (17), we obtain

(20) g(x)e2,(x) = (2~n)+2 (x) +
+ @ TR(x,C) e [Ry (V) (X)s Zo(x) + T (x)) -

- R2(ij(2)(X) ’ ?O(X) )] .

Let

524 ={(X.Zo): O<x<x, u.‘(x,Zo) = Zﬁ -[G'fn(x)‘ - (X'C)]2<o}

with sufficiently small constant « >0, Investigate the beha-
viour of the integral curves of (20) with respect to the boun-
dary of £2,. Using the same method as above,we have

{21) sgn 1'11(1,20) = =1

for suffioiently small Xye It is obvious that 52°C5?1. Let
Z,(x) be any nonzero solution of (20) such that [x1,zo(x1):|e.91
for 0<xy <x,. Let 5¢(0,8) be such a constant that
[xq2,(x4)]e 891(5). If the curve 2, = Z (x) lays in £24(8)

- 304 -



Asymptotic behaviour of solutions 13

for 0 <x<x,, 1t would have to be valid that [x,,2,(x)] is
a strict egress point ofaj?(d). This contradicts the rela-
tion (21). Hence in 2 c, there is only the triviel solution
2,(x)=0 of (20), so0 Tb(x) is unique solution of (17).

From (11,) we obtain

(22) |3,(x)=y,_4(x,0)] = 9" (x,0) T, |<8e|2 (x) 0" (x,0)],

where y (x) is a solution of (10) for xe (0,x ]. Similarly,
from (112), (14) we have

n=1 — Y
(23) |35(x)=3,_4(x,C}| = ﬂ—g{%ﬂ | Y, 18] (£, (x) g (x,0))]

It is obvious (after a sultable extension of yo(x) for x = 0)
that P: ho———-yo maps S 1lnto itself and PSC S,

3°) We shall prove that PS is relatively éompact and P 1s
a continuous mapping. It is easy to see, by (22), (23), that
PS is the set of uniformly bounded and equicontinuous func~-
tions for x ¢ [0,x ]. By Asooli’s theorem (see [6]), PS is
relatively compact, Let {h (x)}1 be an arbitrary sequence
in S such that

|bp(x) = hy(x)] = €y 1im g, = 0, h e S,

00
Denote
x k k
vy, (%) = Pyn)(x)eg ™(x,0) f Ry(2)(t)*Heg () -H 3(t)at,
Jk(2) o °

where Hro(t), 1(t), r>1, have the same properties as H (t),
H, (t)e It 1is obvious that the solution Y (x) of the equation

(24) g-Y; = (2-m)Y, + ¢, + rVOk(z) + Rééfvjk(z)' Yo>
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14 Z. §nar¢a

corresponds to the function h,(x) and Y,e Q.. Similarly, the
solution Tb(x) of (17) corresponds to the function h (x). We
shall show that | T(x) - Y (x)| —— 0 uniformly on [0,x,].
Consider the region

Qor = {(x,!o): O<x<X yuonlx,¥,) =

= (YO-TO)2 - [Srfn(x)go1'ﬁ(x.0):|2<0;r>1}

with sufficiently small constant B >0, Evidently $2,C 2yp Tor

any r >1 and sufficiently small Xoe Investigate the behaviour
of integral curves of (24) with respeet to the boundary of

2 . Using the same method as above we obtain for trajectory

or
derivatives

sgn &or(x,Yo) = -1

for suffidiently small x, and T >1. By Wazewski’s topological
method we state that there exists at least one integral ocurve

of (24) 1ying ir S ... Therefore

|?r(X) - TO(X)|<51. |£,(x) ¢1'ﬁ(x,c)| < Let,,

L>0 15 a constant depending on n, x
wa obtain

o and hence, by (111),

|32(x) = 3,02 < ¢ x, 00| Tplx) - Y (x)|<

n=1._ .
S €&, Leg (x,C)<Eom,

m>0 being a constant depsnding on n, x,, L; x e[p,xo]. This
estimate implies that F is continuous.

We have thus proved that the mapping P sztisfies the
agsumptions of Schawnder’s fixed point theorem and hence there
2xists a function he & with h(x) = P(h(x)). The proof is oom-
plete.
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Asymptotle behaviour of solutions 15

Theorem 3.2, If the assumptions (B,), (B,),
(B,) are fulfilled and g(x) is the singular funotion with
respect to (1), then the solution y(x,C) of (1) and its deri-
vative have the following asymptotic expansions
Ne1
y11x,0) ”Z (fk(x)'_ lt(x,t’:))(“ for x —=—0%, 10,1, n>2,
k=1

where fk(x) are the functions (Gk).
Prootf. By Theorems 2,1, 3.1, it 1s sufficient to

show that

1im (fh(x)-goh(x,C))(i) 0 for 4=0,1; h=2
x=-0* (fh-1(x)° h'1(x.0))(i) ) or 1=0,1; B=2,s..,0~1.

But it follows from (7h) and from the relation
x]ig_'_ <p(x,c)-g°'(x) = 0 for any GeR,
Example, Consider the equation
R x
x%e3’ (x) = 3(x) +J' [tey(x)ey’ (t) + [3'(t)]2:|dt.
O+
The recurrence equations (5,) for b = 2, 3 are, respectively,

x2°fé(x) =

. ¢2(t,c)]dt,

X
= ~f,(x) +9>"2(x.0)~f [%¢(X.C)-q:(t.0) + :4
o+

X
xZ£3(x) = -2 £5(x) +¢‘3(x.0)f [1— “£,(x)+¢%(x,C)e9(t,C) +
ot

, 2f,(t) 2£,(t) 4f,(¢
+<tf2(t)+ g >¢2(t,c)-<,0(x,0)+< 12;2 + fi )>-¢3(t,C)Jdt.
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16 Z. Smarda

By Theorem 2.1 and Lemma 2.1, we obtain

2v,-1
o(x 2 ), vee(n, -%),

|
[}

2y ,
f5(x) = —1§—+ 0 (x 23. fz(x)

2x
2y , 2v4~-1
£5(x) = ;;T* 0 (x 3>, £(x) = 0 (x 3 >, vy € (—2, -%—)
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