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THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS 
OF THE SINGULAR INTEGRO-DIFFERENTIAL EQUATION 

1. Introduction and basio notions 
This paper deals with the ezistenoe and asymptotio be-

haviour of solut ions of the i n t e g r o - d i f f e r e n t i a l equation 

where g , 1*1(4)» v i ( 4 ) a r e funct ions ; 11^2 i s the natu-
r a l number, i 1 , i 2 , i ^ , are natural numbers inoluding zero, 
i ( 4 ) = ( i 1 f i 2 , i 3 , i 4 ) , 1(4) = i., + i g + i 3 + i 4 . The existenoe 
of so lut ion of (1) i s proved by use of Schauder's f ixed point 
theorem. Then there i s applied the impl ic i t function theorem 
and Wazewski's topological method in the forms known for or-
dinary d i f f e r e n t i a l equations. The spec ia l oases of ordinary 
s ingular d i f f e r e n t i a l equations were s imi lar ly studied by 
Diblik [1]. Some equations of the form (1) occur in the theory 
of e l e c t r i c a l systems, in the mechanios of f l u i d s and, in the 
l a s t time, in biology too (see [4 ] ) . Asymptotio methods are 
basic tools for the inves t iga t ion of (1) in view of the f ac t 
that th i s equation has the complicated form. Unfortunately, 

( 1 ) 

• ( y ' U ) ) i 3 ' ( y ' ( t ) ) i 4 dt , 

- 293 -



2 Z. ¿marda 

the d isadvantage of these methods are the complicated assump-
t i o n s ( e . g . [ 1 ] , [ 5 ] , [7]) being necessary to acqu i re the 
bas ic p r o p e r t i e s of a s o l u t i o n of such an e q u a t i o n . 

N o t a t i o n s : 
( i ) f ( x ) - 0 (g (x ) ) f o r x — x * denotes t h a t t h e r e e x i s t s 

K > 0 such t h a t | g [ * | o n s o m e r i g h t - h a n d ne ighbour -
hood of the point x Q ; 

( i i ) f ( x ) =o(g(x)) f o r x — x+ denotes t h a t l im ^ f f f - 0» 

'O 
( i i i ) f ( x ) ~ g(x) f o r X — d e n o t e s t h a t lim f f f f = 1j 

n 0 
( i v ) f ( x ) a f o r x — - x * denotes t h a t ^ j , + 1 ( x ) 

i=1 
= 0 { ^ (x) ) f o r x —^Xp, i «= 1 , . . . , n - 1 , and 

,n 
f ( x ) - 1 2 a 4 « ^ ( x ) 

i=1 1 x o(5Pn + 1(x)) f o r x — Xj 

(v) i ( n ) = i 1 , i n , i k 6 NU{o} , 1 ^ k ^ n , n e N , and 

i j ( n ) = ( i 1 , . . . , i n , 3 1 , . . . , d n ) , I ( n ) = i 1 + . . . + i n , 

I J ( n ) = (i-j+j. ,) + . . . + ( i n + j n ) . 

D é f i n i t i o n s : 
1) Bvery f u n c t i o n <j> e C1 ( ü , x 0 ) ] , x Q > 0 , s a t i s f y i n g (1) f o r 

each x e ( 0 , x Q ] w i l l be c a l l e d a s o l u t i o n of the equa t ion 
( 1 ) . 

2) A f u n c t i o n g e C 1 ( 0 , x f t ] such t h a t g(x) > 0 , l im g(x) = 0 . 
Ai wi th g' (x) 1 ( x ) f o r x — - 0 + , ¿ . , > 0 , 

l im u / 1 (x )*g r (x ) = 0 f o r each r > 0 , w i l l be c a l l e d a s i n -
x—0+ 1 

g u l a r f u n c t i o n wi th r e s p e c t to the equa t ion ( 1 ) . The point 
( 0 + , Ü) w i l l be c a l l e d a s i n g u l a r point of the equa t i on (1) 
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Asymptotic behaviour of solutions 

2. The construction of a formal s e r i e s s a t i s fy ing the 
equation (1) 

We sha l l seek the solution of (1) in the form of a one-
-parametric ser ie s 

oo 
(2) y(x,C) = Y L f h U ) * [ 9 > U , C ) ] h , 

h=1 

where <p[x,C) = Oexp ^f C ^ 0, i s the general solution 
x o 

of the equation g (x )»y ' = y j the functions f ^ ( x ) , h > 2 , are 
unknown and f^(x) = 1 . 

Denote 

ST1 r nh / 
7 n U , C ) = f h ( 3 C , f r ( * . c > ] • V * * B f h ( x ) + g(a) > 

h-1 

(3) K h (x , t ) = K h [ f 1 ( x ) , . . . , f h _ 1 ( x ) , P 1 ( x ) P ^ i x J . f ^ t ) , . . . 

V ^ \ — — 
s 2 u ± ( 4 ) ( x ) * v ± ( 5 ) ( t ) * 2 , V W • 

I (4)=2 a(2)+/3(2)=h 

A 2 ( i 2 , o t 2 ) .A 3 ( i 3 ,A | ) .A 4 ( i 4 , y3 2 ) 

with 

. ,+Wp"Of1 8=1 
^ p ] f w (x)*<p 8 (x ,C) for p e N , 

0 for p=0, oi^O, 1(4) < h , 

1 for p=0, in the other cases , 
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A2(P,<*2) = < 

I 
w,,+...+w=0(o s=1 1 p 2 

-i T^T w 
| | F w U)'<p (x,C) for p 6 N , 

0 for p=0, a 2^0, I(4)<h, 

1 for p=0, in the other cases, 

¡1 
a3(p»A|) 

^ P I fv (t).^ r(t,C) for p e N , 
V.J+...+V =A| r=1 

0 for p=0, p ^ O , 1(4) < h , 

1 for p=0, in the other cases, 

f v 

) ]~T py P e N 

v ^ . ^ + v r = 1 P 

0 for p=0, y32^0, 1(4) < h , 

1 for p=0, in the other oases, 

where cx k>i k, y 3 k > i k + 2 , k = 1,2,and c* (2) = o^ +a 2,fi[2) 

= + " i ^ i £ N U {o}, i = 1, 2, h > 2 { the functions 

f , f y are coefficients of (2). 
s r 

Put L h ( x ) =<p-h(x,C)*f Kh(xft)dt, h > 2, Z 1 2 U ) "
 t

2
( x ) » 

0 + 

x 

(3h) \ ( x ) = 1 ^ T . ^ -
h ( x , C ) . J K h f1(x),T2(x),...,Th_1(x), 

(h-2):l(X)- v ^ i . ^ t t i ^ t t ) , . . . , ^ ^ ) , 

(hi)] g(t) -
T h - i ^ ) ] d t > h > 3 . 

In the sequel we shall use the following Lemma (see [jlj). 
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Aey aptotic behaviour of solutions 5 

L e m m a 2.1« Let g(x) be a singular function with 
respeat to the equation 

(4) gU)* j ' • q»y + pU). 

Suppose that peC°(0,xo ] , p(x) - b0(x)'g*(x)+0 [b1 (x)'g* + £(x)], 

t >0, lim b , (x ) .g r (x ) - 0, i = 0, 1, b eC 1 (0 ,x o ] t b (x}/0, J o o o 

for * — 0 + , ;\2+1 >0, lim+ y 2 (x )g r (x ) » 0, 

lim g r(x)* [b fx)] "1 « 0, q<0» Then the equation (4) has 

a partioular solution 70 (x) unique in (0,xQJ sat isfying thd 
relat ions 

7 0 (x) - - J - b0(x)-g^(x) + 0 [ g ' ( x ) ] , y ; ( x ) = 0[g v - 1 (x ) ] 

for x e ( 0 , x 0 ] , V e C ^ + m i n ^ ,*2+1, t}). 
We formally differentiate the series (2) and substitute 

into (1) . Comparing the coefficients of equal powers of 
9?(x,C), we obtain for unknown functions f^(x) the system of 
the reourrenoe d i f ferent ia l equations 

x 
(5h) g(x) .f^(x) = ( l - h ) . f h ( x )+^ h ( x ,C ) « J ' Kh(x,t)dt, h>2. 

0+ 

Consider the following assumptions: 

(B^ TheC°(0,xo ] , Th(x) - b^(x)-g*h(x)+o[b to{*).gh+Nx)] , 

6h>0, lim b ^ i x j . g ^ x ) - 0, i - 0, 1, boh(x) 4 0, 

b o h eC 1 (0 ,x o ] , b'oh(x)~V2h(x).g 2 h (x) for x ^ 0 + , 

lim gT (x) . [boh(x)]"1 = 0, h^.2. 

(B2) There exist constants e (^»A^min , f -

- A h - i } } ' w h 9 r e Ah-i - max{Ai Ah-i}» = + - V 
3 = 2 , . . . ,h-1; A1 = 0, h 2. 
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(B3 ) tti(4), v i ( 4 ) e C ° ( 0 , x o ] , l i n + u^ 4 ) ( x ) *<p[x,C) - 0, 

/ ( t )|dt 1(4) - 2 , . . . ,M . 

T h e o r e m 2.1. I f assumptions ( B ^ , (Bg) hold 
and g (x ) i s the singular function with respect to (5^ ) , then 
the coe f f i c i en ts of the ser ies (2 ) are. univooally de-
f ined on ( 0 , x Q ] as particular solutions of the system (5^) 
and the re la t ion 

0 + 

( 6 J fu ( x ) = exp /iS s i ds 

0+ 

dt 

hold. Uoreover, f ^ ( x ) and f j^(x) possess the asymptotio form 

(7h ) f h U ) = b o h ( x ) « g * h ( x ) + o [ g V h ( x ) ] , f ^ ( x ) - o [ g V h " 1 ( x ) ] 

f o r x e ( 0 , x Q ] , h > 2 . 
P r o o f . The re la t i on (6^) oan be obtained by the 

method of var iat ion of constants. The equation (^2) i s » 
(B 1 ) , of the form 

g ( x ) » f ^ i x ) = - f 2 ( x ) + b o 2 ( x ) . g ^ 2 ( x ) + o [ b 1 2 ( x ) g A 2 + £ 2 ( x ) ] , 

since T2 •= Z<2. Lemma 2.1 gives ( 7 2 ) . Substituting f 2 instead 

of T2 into ( 3 3 ) , we get 

T 3 ( X ) = b o 3 ( x ) . g 3 ( x ) + o [ b ® 3 ( X ) . g 3 + 3 " 2 ( x ) ] , 

where the function b°3 has the same properties as because 
f 2 and T2 possess the same asymptotio form. This substitution 
oan lead to a deter iotat ion of the asymptotic form of T^, 

if 
see A 2 , because ^ 2 < ^ 2 < ^ 2 + £ 2 * e ( 3 u a t i o n (5^) has the 
form 

g ( x ) • f 3 ( x ) = - 2 ' f 3 ( x ) + 2 -T 3 ( x ) . 
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Asymptotic behaviour of e o l a t i o n s 7 

The assumptions of Lenma 2.1 are f u l f i l l e d . Henoe t h e r e e x i s t s 
the unique s o l u t i o n f j ( x ) of (5y) and (7-j) holds on ( 0 , z Q ] . 

Genera l ly , s u b s t i t u t i n g f k i n s t ead of Tk i n t o (3^ ) , 
k - 2 , . . . , h - 1 , we ob ta in 

g U J . f ^ x ) - ( l - h ) . f h ( x ) + b o h ( x ) g \ x ) + o [ b J h ( x ) . h A h + e h " 4 h - 1 { x ) l , 

where b®^(x) has the same p r o p e r t i e s as b ^ x ) and 
possesses the same meaning as above. Lemma 2.1 g ives the 
a s s e r t i o n (7^ ) . 

The proof of Theorem 2.1 i s oomplete. 

3. The ex i s tence and asymptotlo hehavlour of s o l u t i o n s 
of the equat ion (1) 

The technique used f o r prooving the ex i s t ence and asympto-
t i c behaviour of s o l u t i o n s of (1) iB based on well-known 
Schauder ' s f ixed point theorem and Wa&ewski's t o p o l o g i c a l 
method. 

Schauder*s theorem. Let B be a Banach space and S i t s 
nonempty aonvex and closed s u b s e t . I f P i s a continuous mapping 
of S i n t o i t s e l f and PS i s r e l a t i v e l y oompact, then the mapping 
P has at l e a s t one f i xed p o i n t . 

T h e o r e m 3 . 1 . I f the assumptions (B.,), (B 2 ) , (B^) 
hold and g(x) i s the s i n g u l a r f u n c t i o n wi th r e s p e c t t o ( 1 ) , 
then f o r each value of a parameter C 4 0 the re e x i s t s a s o l u -
t i o n y(x,C) of the equa t ion (1) such t h a t 

( 8 ) y ( i , U , c ) - sS<5- ( f n ( x ) . p n ( x , C ) ) ( i ) 1 - 0 , 1 , 

f o r x e ( 0 , x Q ] , where 6 >1 i s a oons t an t , xQ depends on 6 , C, 
n and f n ( x ) i s the s o l u t i o n (6 n ) of the equa t ion (5 Q ) . 

P r o o f . 1°) Let the Banach space E be the se t 
C 1 ( 0 , x 0 ] of a l l f u n c t i o n s h cont inuously d i f f e r e n t i a b l e on 
the i n t e r v a l [ 0 , x Q ] with the norm 
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||h(x)|| - max |h(x)| + max I h ' (x ) | 
xe[0 ,x o ] * e [ 0 , x o ] 

and S the eat of a l l functions h e C 1 [ 0 , x o ] s a t i s f y i n g the 
inequa l i t i e s 

( 9 ) 

|h(x) - y ^ U . o l ^ . l y x J . / U . C ) ! , 

- y ^ i x . C ) <5. )'| . 

The set S i s obviously nonempty and, as i t i s easy to see, 
convex and closed. 

2°) Construct the mapping P of S into i t s e l f . Let hQ e s 
be an arbitrary function. Substituting h.Q(t) t h^(t) instead 

yC*)» y ' ( t ) into (1) we obtain the d i f f e r e n t i a l equation 

(10) g ( x ) . y ' ( x ) = 

x r M 1 ± 

= y(x) + J > ^ ( 4 , ( * ) - v i ( 4 ) ( t ) . y 1 ( x ) . h 0 2 ( t ) . 
0+LI(4)=2 

• (y' (x) (h'0(t) dt . 

Set 

( 1 1 , ) 

( 1 1 2 ) 

j U ) = 7 n - 1 ( x » C ) + 9» n ' 1 ( * tC)»Y 0 (x ) , 

y ' U ) = y ; . 1 ( x , c ) L n ^ ( x , c ) ) ' Y ^ x ) , 

where the new functions YQ, Y1 s a t i s f y the d i f f e r e n t i a l equa-
tion 

( 1 2 ) g(x).Yp(x) = ( l -n) .Y 0 (x ) + Y ^ x ) . 
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Asymptotio behaviour of eo la t ions 9 

Ppob (9) i t fol lows that 

V x ) - J n - i ( x » c ) +|H0(a)|, \n 0 ( x )\<ô .\ t D ( x ) ' p n ( x t C)\ t 

Subs t i tu t ing (11. ,) , t l 1 2 ) , (13) into (10 ) , by ( 5 h ) , gat 

(14) Y.,{x) - YQ(x) + 9>(x,C) + 

z 
+ 9> 1 - n (z ,C) . J Q ^ x . t . ^ f x J . T ^ i t J . ^ i t J . H ^ t J J d t , 

0+ 

M 
i 3 3 k k 

where Qn- ) P j ( 2 ) ( x ) .Y 0 1 (x ) •T 1 2 (x ) .Hj j .^ t ) •H Q 1 ( t ) «H 1 2 ( t ) , 
JK(2)=0 

P ^ 2 ) ( z ) 1 8 t i i e polynomial with respeot to arguments u i ( 4 ) ( * ) » 
f m ( x ) , Fm (x ) , <p(x,C) and R j c ( 2 ) ( t J 1 8 t t i e polynomial with r e -
spect to arguments 4) (* ) # * m ( t ) » .*m(*)» p ( t »C)» m»1 , 
1(4) - 2 , . . . , M . Denote <pn(x,C) « <p(x,C) • £ t 

* k k 
R j ( 2 ) ( x ) = 9J1"n(x,C)- f H k ( 2 ) ( t ) « H 0 1 ( t ) - H 1 2 ( t ) d t , 

0+ 

V J k ( 2 ) i x ) a P j ( 2 ) ( x , * R k ( 2 ) ( x ) » J K ( 2 ) = 

Then the equation (14) has the form 

M i j 
Y.,(x) - Y0(x) - <pn{x,C) - V j k ( 2 ) ( x , , Y o 1 ( x , e Y 1 2 ( x ) B 

JK(2)=0 
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Let D0={(x,X0,Y1)iO«Jtsx0,|T0|<50,|Y1|<(51}50,i1 are constants}. 
Consider the function 

(15) W(x) - W(V j k ( 2 ) ,9'n ,Y0 ,Y1 ) -

M j j 
- Y.,(x} - Y0(x) - <pn(xtC) - > V j k { 2 ) ( x ) . Y 0 1 ( x ) ' Y 1 2 ( x ) . 

JK(2)=0 

I f xQ is sufficiently small,then there exists a constant 
<5g = 62 (x0 ,C,n) such that 

| V j k { 2 ) (x )|<<S 2 > |95n(x,C)|<<S2, JK(2) = 0,. . . ,M. 

Now we oan apply to (15) the implicit function theorem 
(see [2]) at the point G » (V.jk(2) = 0, <pn » 0, YQ = 0, 
Y1 = 0 ) . 

It is obvious that, after a suitable extension of V for 
x - 0, We C2(D ) and W(G) - w' (G) - 0, J, + U + 0, 

v jk(2) 
JK(2) - 0, . . . ,M, W' (G) - w' (G) o w' (G) = -WT (G) - -1, 

= ¡2 » 0, K(2) - 0, . . . ,M. Henoe the equation W(x) « 0 uni-
vooally defines the implicit function Y1 « W1 (Vjk (2 )*9nt1Q ) 
in a region D1 - j(x,YQ): | YQ | < 6Q } for su f f i -
ciently small xQ. 

Denote V„ k ( 2 ) ( * ) = V j k ( 2 ) ( * ' f o r «h * ^2 * T h e f i r s t 

approximation of the function V1 has the form 

(16) W1CVJk(2),90n,Yo) - Y 0 ( x ) + i P n ( x ,C ) + V o k ( 2 ) ( x ) + R 2 (V j k { 2 ) ,Y 0 ) , 

R2 being a continuous function of the second order with res-
peot to arguments YQf v - jk (2 i* 

Substituting (16) into (12) we obtain the differential 
equation 
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(17) g(x) *Tp(x) = ( 2 - n ) . Y 0 ( x ) + 9£>a(x,C) + V o k ( 2 ) . ( x ) + 

+ R 2 ( V j k ( 2 ) ' V * 

The equation (17) s a t i s f i e s i n the region D2 = L̂  - | o | the 
condit ions of exis tence and uniqueness of the s o l u : i o n s . I t 
follows from condition (B^) and d e f i n i t i o n s of the f u n c t i o n 

V* V j k ( 2 ) ' V o k ( 2 ) ' I n v i 0 W o f i 1 " ^ » i 1 : i s o b v i o u s 

that the solut ion of (17) determines the so lut ion of (10)„ 
In the sequel we s h a l l use Wazewski's topologica l method 

(see [ 3 ] ) * Invest igate the behaviour of the i n t e g r a l curves 
of (17) with respect to the boundary of the set 

Calculat ing the der ivat ive u Q (x ,Y 0 ) along the t r a j e c t o r i e s of 
(17) on the set UQ = j ( x , Y 0 ) : 0<x<xQ , u Q (x ,Y 0 ) = o j , we obtain 

d a ) ¿ 0 u » V = gfcr [ - 5 2 - f n ( x ) ^ 2 ( x , o L n ± 

± < 5 . f n ( x ) . i 0 2 ( x , C ) - E n + Y o ( x ) . V o k { 2 ) ( x ) + Y o ( x ) . R 2 ( V j k ( 2 ) f Y o ) ] . 

The assumptions of Theorem 3.1 and the r e l a t i o n 

lim ^ = 0 (6" i s a rb i t rary r e a l number) imply that the 
x - 0 + g (x) 
powers of <p[xtQ) in f luence , in decis ive way, the oonvergenoe 
to zero of the terms in ( 1 8 ) . The f i r s t two of them are of 
second order with respect t o y ( x , C ) . The polynomials 
P j ( 2 } ^ * R k(2) ^ a r e a t l e a s 1 : o f t t l e second order with r e s -
peot to cp{x,C), Hence,the terms V V o k ( 2 ) ( x ) , R 2 ( Y o ' V i k ( 2 ) , , Y o 
are at l e a s t of the third order with respect to $£>(x,C). Since 

f n ( x ) » C n ~ ( n - 1 ) . b 2 n ( x ) ' g n ( x ) f o r x — 0 + , we have 
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(19) sgn u 0 U , Y 0 ) = B g n ( - f n ( x ) . E n ) = -1 

f o r s u f f i c i e n t l y s m a l l xQ depending on C, 6 , n . The r e l a t i o n 
(19) i m p l i e s t h a t each po in t of t he s e t UQ i s a s t r i c t i n g r e s s 
po in t w i th r e s p e c t t o the e q u a t i o n ( 1 7 ) . Change the o r i e n t a -
t i o n of the a x i s x i n t o o p p o s i t e . Now each po in t of the s e t UQ 

i s a s t r i c t e g r e s s po in t w i t h r e s p e c t t o the new sys tem of 
c o o r d i n a t e s . By Wazewski 's t o p o l o g i c a l method,we s t a t e t h a t 
t h e r e e x i s t s a t l e a s t one i n t e g r a l curve of (17) l y i n g in £>Q. 
I t i s obvious t h a t t h i s a s s e r t i o n r ema ins t r u e f o r a r b i t r a r y 
f u n c t i o n hQ e S. 

How we s h a l l prove t he un iqueness of the s o l u t i o n of ( 1 7 ) . 
Let YQ be a l s o a s o l u t i o n of ( 1 7 ) . P u t t i n g ZQ = YQ - YQ and 
s u b s t i t u t i n g i t i n t o ( 1 7 ) , we o b t a i n 

(20) g ( x ) . Z p ( x ) = ( 2 - n ) * Z 0 ( x ) + 

+ 9 > 1 - n { x t C ) . [ R 2 { V j k ( 2 ) ( x ) , Z 0 (x ) + Y 0 ( x ) ) -

" R 2 { V J k ( 2 ) ( x ) ' * o { x , ) ] ' 

Let 

= | ( x , Z 0 ) : 0<x<x0 , u-| (x»Z0) = Z\ - [ < 5 . f n ( x ) ' 1 - o r ( x , C ) ] 2 < 0 

wi th s u f f i c i e n t l y s m a l l c o n s t a n t o<>0. I n v e s t i g a t e the b e h a -
v i o u r of t he i n t e g r a l c u r v e s of (20) w i th r e s p e c t t o the boun-
dary of-£>.,. Using the same method as above,we have 

(21) sgn u . , (x ,Z 0 ) = -1 

f o r s u f f i c i e n t l y sma l l x Q . I t i s obvious t h a t _S2oe . Let 

ZQ(x) be any nonzero s o l u t i o n of (20) such t h a t [ x 1 , Z Q ( x 1 ) ] 6 ^ 

f o r 0 « ^ x ^ < x o . Let <5e(0,<5) be such a c o n s t a n t t h a t 

[x1 , Z 0 ( x 1 ) ]e 3 ^ ( 6 ) . I f t he curve ZQ «= ZQ(x) l a y s i n ^ ( 6 ) 
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Asymptotio behaviour o f e o l a t i o n s 13^ 

f o r 0 < x < x . , , i t would have t o be v a l i d t h a t [ x . , , Z 0 ( x ) ] i s 
a s t r i c t e g r e s s point o f (c5). T h i s c o n t r a d i c t s t h e r e l a -
t i o n ( 2 1 ) . Henoe i n i? c i ? . , t h e r e i s only the t r i v i a l s o l u t i o n 
Z o ( x ) = 0 o f ( 2 0 ) , so Y Q ( x ) i s unique s o l u t i o n o f ( 1 7 ) . 

From (11 . , ) we o b t a i n 

( 2 2 ) | y 0 ( x ) - y n - 1 ( x , C ) | = | ^ n - 1 ( x , C ) YQ <5. | f Q ( x ) - p a ( x , C ) | , 

where 7 0 ( x ) i s a s o l u t i o n of ( 1 0 ) f o r x e ( O t x Q ] . S i m i l a r l y , 
from ( I 1 2 ) t ( 1 4 ) we have 

( 2 3 ) l y ^ x J - y ^ U . O l = O a 0 ) . 

I t i s obvious ( a f t e r a s u i t a b l e e x t e n s i o n of y Q ( x ) f o r x = 0 ) 
t h a t Pi h 0 — - y Q maps S i n t o i t s e l f and P S c S . 

3 ° ) We s h a l l prove t h a t PS i s r e l a t i v e l y compaot and P i s 
a c o n t i n u o u s mapping. I t i s easy t o s e e , by ( 2 2 ) , ( 2 3 ) , t h a t 
PS i s the s e t o f uni formly bounded and e q u i o o n t i n u o u s f u n c -
t i o n s f o r x e [ 0 , x o ] . By A s o o l i ' s theorem ( s e e [ 6 j ) , PS i s 
r e l a t i v e l y compact . Let j h ^ x ) ! ^ be an a r b i t r a r y sequenoe 
i n S suoh t h a t 

h p ( x ) - hQ(x)|| = £ r , l i m £ p = 0 , h 0 6 S . 
r -^oo 

Denote 

where H r o ( t ) , H r 1 ( t ) , r > 1 , have the same p r o p e r t i e s as H Q ( t ) , 
H., ( t ) . I t i s obvious t h a t the s o l u t i o n Y~ r(x) o f the e q u a t i o n 

(24) 
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corresponds to the function hj.fx) and Tr
6-®0* Similarly, the 

eolation YQ(x) of (17) corresponds to the function h0(x). We 
ahall show that | Yp(x) - YQ(x) | — u n i f o r m l y on [0,xo]. 
Consider the region 

^or 0 < x < x o ' a o r ( x » Y o ) = 

= (Yo-io)2 - [ er in ( x ,? 1" y 3 ( x» C^ 2 < C } I , > 1} 

with sufficiently small constant y3>o. Evidently i20ci?or for 
any r >1 and sufficiently email zQ. Investigate the behaviour 
of integral curves of (24) with respect to the "boundary of 
.$?or. Using the same method as above we obtain for trajectory 
derivatives 

egn u ^ x ^ ) = -1 

for sufficiently small xQ and r^1. By Waiewski's topological 
method we state that there exists at least one integral curve 
of (24) lying in Qqt. Therefore 

|Y rU) - Y0(x)|<£r |ffi(x) 9P1"/3(xtC)|^L.ep> 

L > 0 is a constant depending on n, xQ and henoe, by (11^), 
we obtain 

|yp(x) - y0(^)|^/"1(x,c).|Yr(x) -Y0(x)|i 

iS 6r.L«9n"1(.\,C)^£r'm , 

m > 0 being a constant depending on n, xQ, L; x e [p,xQ]. This 
estimate implies that F is continuous. 

We have thus proved that the mapping P satisfies the 
assumptions of Schauder's fixed point theorem and hence there 
exists a function he b with h(x) = P(h(x)). The proof is com-
plete. 
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Asymptotic behaviour of solutions 15 

I h a o r e n 3.2. If the assumptions (B^, (Bg), 
(B^) are fu l f i l l ed and g(x) i s the singular funotion with 
respeot to (1), then the solution y(x,C) of (1) and i t s deri-
vative have the following asymptotic expansions 

n-1 . \ 

k-1 

Where f k ( x ) are the funotions (6^). 
P r o o f . By Theorems 2.1, 3.1» i t i s sufficient to 

show that 

faU^U.Cl)*1* 
l i n , fr~5 \ (< i * 0 for i -0 ,1| h -2 , . . . t n-1 . 

^ f^ i (x)»$£> (x,C)J ' ' 

But i t follows from (7h) and ftom the relat ion 

l i a (p(x,C)' i f(x) - 0 for any SeR. 
x—0+ 

S x a m p 1 e . Consider the equation 

x 
x2«y ' (x) « y (x) + f [ t . y ( x ) . y ' ( t ) + [y ' (t)J 2 ]d t . 

V 
The recurrence equations (5^) for h » 2, 3 are, respectively, 

x 2 , f 2 ( x ) -
x 

- - f 2 (x ) + 5 P " 2 ( X , C ) . J [ l ^ x . O ^ t . O - sp2(t,C)J dt, 

0+ * 
x 

x2't'3(x) = -2 f 3 (x ) +?-3(x,C) J [ 1 •f2(x)-92(x,C).^(t ,C) + 

0+ 

+ l t f 2 ( t ) + - | 2 2 /2f : ( t ) 4f , ( t )\ , V ( t , C ) . 9 ( x , C ) + ( - ^ 2 - + — dt. 
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1b Z. Smarda 

By Theorem 2.1 and lemma 2.1, we obtain 

, 2f„\ , / 2»„-1 
Ü (: 

2x 
f 2 ( x ) = + ü ( x ' 2 ) » f 2 ( x ) = Ü ( x ^ 1 ) ' V2 É ( -1* ' ì ) > 

f 3 ( x ) = - 1 T + 0 ( x 2 " 3 ) , f '3(x) = 0 ( x 2 " 3 " 1 ) , V3€ ( -2 , -§-). 
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