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Int roduction

The aim of this paper is {o construct a field on the horizon
of 3-dimensional hyperbolic space and coordinatize the space
over the field we obtain. Our construction is a natural analogue
of Hilbert's "End-Calculus”. Let's recall the classical
construction (compare [1], {5]). For given ends a, B we denote
aup the line joining a and B. Given lines L, M we. denote L o M
the 'bisector line; it is unique whenever K, M are parallel or
hyperparallel. Denote by 6} the symmetry with axis K. Let 0,1,0
be three distinct ends. Then we define for ends a.8 # ®

a + B =7 if! Juo = 6(OUG)Q(OUB)(OUO).

Ve obtain - a =7 iff Jue = 65 laue) , i.e.
~-a=7 iff 1T =a=0 or aul + Ouw.
a >0 iff 0, « does not separate 1, a’ (the
» horizon can be projectively ordered).
For a,p > 0 we put
«B =17 iff 7>0 and
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Tu-7 = U(au-a)e(Bu—B)(lu—1)

and extend this by a-(-8) = (-a):B = -a-B , (-a)-{-B) = a-B.
Drawing the figures we see that the construction involves two
pencils of lines - lines parallel in the direction o, and lines
orthogonal to Oue. Even subgroup of the first one is invariant
under the even subgroup of the second - this gives
distributivity. Operations +, - form groups because of simple
properties of pencils {see [3] or [4]).

The above tonstruction can be generalized to 3-dimensional
hyperbolic geometry; the {field we obtain is in fact a

complex-type field {see [2}).

Basic notions and notations

The geometry we shall be concerned with is the 3-dimensional
hyperbelic geometry. It is considered as -the theory of all
3-dimensional Kleins Models, i.e. ‘structures with universe K
consisting of points inside non ruled quadric V in an ordered
projective space coordinatized by some ordered Euclidean {ield.
Lines and planes in the model are interpreted as intersections
of K with projective lines and planes. Let us {ix one such
model; all the constfuctions will be presented in this arbitrary
but fixed structure. One can visualise Vasa sphere (in some
coordinate system), this will be helpful to understand the
construction. The horizon of our model ig simply the set V; its
clements, ends, will be usually denoted i, g, 1. 6,... . To
every two ends a, B there corresponds uniquely a line auf having

a, B as ends. For given (hypérbdlic)'pl&ne Q we denote by 3Q the
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set of all ends of lines contained in Q, clearly Q determines Q
uniquely. Moreover 38Q is a circle on V. For any three ends a, 8,
1 we denote by cla.B,?) the circle on V determined by «, B. 7.
Then P(a.B,¥) denotes the plane Q such that aQ = cla,B,7). Just
from the construction we obtain

Fact 1. < V; {8Q: Q-hyp. plane},e > is a Mébius plane.

Using an order we can define a half-line aa with origin a and
direction (end) a, and a (hyperbolic) half-plane. If Q' is a
half-plane, then 8Q' denotes its boundary, the set of ends of
halflines contained in Q'. Then 8Q' forms a "half-circle”. For
three ends a, 8, 7 we denote by hcla,B;¥) this half-circle of
cla,B,?) with ends a, B, which contains 7; analogously HP{«,B:7)
denotes this halfplane of Pla,8,7) with boundary line aug which
contains on the horizon.

Let us choose O,E,o € V-three distinct ends. They will be
used as parameters in construcfing field. In the surrounding
projective space we consider planes Zo' Za tangent to V in O, ®.
Next we consider the stereographical projection A with pole o,
from ¥ \ {o} onto Z = Zo\ Zé . Clearly Zo\ 26 can be considered
as an affine plane. But we know even wmore.

Fact 2. 2 =<2, ({ c: ®» € c, c-circleon V }},

A ({ c.: o ¢ ¢, c-circle on V })> 1is an Euclidean plane with
{euclidean) circles.

This fact will be crucial in justifying further investigations.

Ih t i x) fi o)
For hyperbolic line L we denote by L the line symmetry with
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axis L, analogously if Q is a plane then 6q denote the

reflection on Q. Its known for L = aup that 1(6L) is a inversion

with centers Ala), A(B). Analogously 1(60) is a inversion on
A{aQ).
Let M = auo , L = Buw. Then there exists unique line N with

end o, such that GN(L) = M; we denote N = LeoM.

Now we define addition on V \ {o}.

Definition 3. a, B, I 20— a+ 8 =17: ¢ Juo

= 6(au<»)e(Bu«>) (Oua) .

One can notice that for every 6 # o the function X(GGUQ) is “a

central symmetry on Z, with center A{é). Therefore Al+) is a
usual {affine) addition in Z. This proves

Lemma 4. <V \ {w0},0,+ > is an abelian group.
If Q, R are planes, QR + M, M is a line then there is exactly
one plane S such that GS(O) = R; we denote S = QeR. If Q, R are

planes and Q,R =2 M then there are two, such bisecting planes.
But if we consider two half-planes Q', R' with common boundary
line M then there is exactly one plane S with 6_{Q') = R'; we
denote also S = Q'e R'.

Given any end 6 we denote

Q; : Q; a plane, Q.+ Ouw, 6 € alQj,
Q; : HPIO,0 ; 6).

Now we define multiplication
Definition 5. a8#20, o —
a'p := al6 (Q:)) n 8l6ns .0 (QF))
Qaer E anQB E
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a0 =0.a =0.

One can notice that X(Qé) is a circle in Z, with center
0 = X(0), and AMQj) is a half line with origin o. Then we see

that - is a multiplication in a complex field, as a /<E  on V
one can take I such that T e a(Qp), Eu-E + Iu-I. The point A{I)

will serve as a "imaginary unit” with respect to A(:) on Z.
Finally we put
Definition 6, a#0-—
a=7:¢>aedP(0,Eow) 8a =7 or aul + P(0,E o).

More easily we can write a = 6p(0.E o)(a).

All the above considerations give us
Theorem 7. 2Z=<V\ {a},0,E,+,-,” > is a complex
2

field satisfying (Ix)I x“ = -1 A x = -x ].

Remark 8. It is seen that Definition 3 is exactly the
same as this used in Hilbert's construction. But we also can
define multiplication in a way which will be more similar to

those of Hilbert. Let § #+ 0, ». Then du-d » Ouo. Denote by Ls
the halfline Ls = Téu-8) n (Oud),d . For any two ends &;B # 0,0

there is exactly one line M such that GM(L&) = Lé y M+ Ouo. Ve
denote M = L&e Lé . Then we can put
a,B # 0,0 —
a-B=7:¢e> Ly =6;,_7,(Lg).
7 LaeLB E

Analytical interpretation of hyperbolic geometrical notions

To describe hyperbolic geometry in terms of the field we
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have gonstructed above it suffices to give analytical
interpretation of points, lines, incidence and orthogonality. To
do so we sﬁall carefully analyze A on K u V and fix the {field on
1. Denote Vo= Y \ {0} . Lines correspond to pairs of ends,
therefore lines are interpreted as elements of

{{a.B} ta B, a,pe Vo} u Vo. Then we have natural

interpretation {a,g} r— aup, a +— wua. Let a € K, a¢Ouw. There

is unique line La such that a € LaL Ouw. Let ta auf. There is
unique line Ha such that ae "a' Ha has « as an end. Let Ha= oul .
Then a determines a*triple a, B8, 7. It's seen that a = - and
1 # 0, 7 lies between a, B. Therefore every point a corresponds
to < {a,B}.? > such that a=-8, la-8l =Ila-71 + 1y - Bl.

The point a determined by {a,B},7 will be denoted by Pa,p:7 - Ve
have Pa,p:7 € a'vp’ iff a, B, a', B' are cocincular in Z and 7
lies between a', B'. This means Po,g:7 € a'up’ — la' - 'l =

=la’ - 71 + 17 -B8'1 &

Ial2 a a 1
812 g B 1
@2 o a1
ig't B B 1

Analogously Pa.p:7 € a'uo > 7 = a’.

Obviously circles and lines in Z are interpreted as
byperbolic planes - orthogonality of such planes correspond to
usual (euclidean) orthogonality. Therefore we have interpreted
all primitive notions of hyperbolic geometry in terms of complex

field.
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Practically this means that one can investigate
3-dimensional hyperbolic geometry analytically with the help of

complex fields.
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