Vol. XXI

No 3

1099

Ram Nivas, Rajesh Singh

ON ALMOST r-CONTACT STRUCTURE MANIFOLDS

1. Preliminaries

Almost contact metric structure manifolds have been defined and studied by Sasaki [1], Mishra [2] and others. In the present paper, we have considered \mathbf{r} linearly independent \mathbf{C}^{∞} vector fields U and \mathbf{r} (\mathbf{C}^{∞}) I-forms u, \mathbf{r} some finite integer, and studied the notion of almost \mathbf{r} -contact structure.

Let M^{2n+r} be (2n+r) dimensional differentiable manifold of class C^{∞} . Suppose there exists on M^{2n+r} a tensor field F of type (1,1), $r(C^{\infty})$ linearly independent vector fields U and $r(C^{\infty})$ 1-forms U, v = 1,2,...,v and satisfying the following properties:

(1.1)
$$F^2 = -I_n + \overset{X}{u} \otimes U_x$$
, I_n being unit tensor field (1.2) $\overline{X} \stackrel{\text{def}}{=} F(X)$ ror arbitrary vector field X

and
$$\begin{cases} (i) & F(U) = 0, \\ (ii) & u \circ F = 0, \\ (iii) & u (U) = \delta^{x}y, \end{cases}$$

x.y = 1.2....r and δ^{X} y denotes Kronecker delta.

Thus M^{2n+r} satisfying conditions (1.1), (1.2) and (1.3) will be said to possess an almost r-contact structure.

Suppose further that M^{2n+r} is endowed with a Riemannian metric g satisfying [1]

$$g(\overline{X},\overline{Y}) = g(X,Y) - u(X)u(Y).$$

Then in view of equations (1.1), (1.2), (1.3) and (1.4), \mathbb{M}^{2n+r} will be said to possess an almost r-contact metric structure.

Substituting X = U in (1.4) and making use of the equations (1.3)(i) and (iii), we get

(1.5)
$$g(U,Y) = u(Y), l = 1,2,...,r.$$

Again, putting \overline{Y} for Y in (1.4) and using (1.1) and (1.3)(ii), we get

$$(1.6) g(\overline{X},Y) + g(X,\overline{Y}) = u(Y)g(\overline{X},U).$$

Putting X = U in (1.6) and making use of (1.3)(i), we obtain

(1.7)
$$g(U,\overline{Y}) = 0, m = 1,2,...,r.$$

Thus in view of (1.7), equation (1.6) takes form

(1.8)
$$g(\overline{X},Y) + g(X,\overline{Y}) = 0.$$

Let us now define 2-form 'F as

$$(1.9) 'F(X.Y) = g(\overline{X}.Y).$$

2. Some results

In this section we shall prove some theorems related to almost r-contact structure.

The orem 2.1. An almost r-contact structure is not unique. If γ be a non-singular vector valued function on M^{2n+r} , let us put

Then $\{F', V, V\}$ gives an almost r-contact structure on M^{2n+r} .

Proof. Post multiplying (2.1)(i) by F' and making use of equations (1.1) and (2.1), we get

$$\nu \circ F^{'2} = F \circ \nu \circ F' = F^2 \circ \nu = -\nu + u(\nu)U, \quad \nu \circ F^{'2} = -\nu + v(\nu)V,$$
or

$$(2.2) F1/2 = -In + xv \otimes vv.$$

Also from (2.1)(i) and (iii), we have $\mu \circ F'V = F \circ \mu V = FU = 0$. Thus

(2.3)
$$F'V = 0, x = 1,2,...,r.$$

Again $\mathbf{v} \circ \mathbf{F}' = \mathbf{u} \circ \mu \circ \mathbf{F}' = \mathbf{u} \circ \mathbf{F} = 0$ by (1.1). Thus we have

$$(2.4) \qquad \qquad \overset{\mathbf{x}}{\mathbf{v}} \circ \mathbf{F}' = \mathbf{0}.$$

Further $\overset{\mathbf{x}}{\mathbf{v}}(\overset{\mathbf{y}}{\mathbf{y}}) = \overset{\mathbf{x}}{\mathbf{u}} \circ \psi(\overset{\mathbf{y}}{\mathbf{y}}) = \overset{\mathbf{x}}{\mathbf{u}}(\overset{\mathbf{u}}{\mathbf{y}}) = \delta^{\overset{\mathbf{x}}{\mathbf{y}}}$ or

(2.5)
$$v(V) = \delta^{X}y, \quad x,y = 1,2,...,r.$$

By virtue of equations (2.2), (2.3), (2.4) and (2.5) we conclude that ${F', V, \overset{X}{v}}$ gives an almost r-contact structure to ${M^{2n+r}}$.

The erem 2.2. The necessary and sufficient condition that $\mathbf{M}^{2\mathbf{n}+\mathbf{r}}$ be an almost r-contact structure manifold is that it possesses a tangent bundle π_n of dimension n tangent bundle $\widetilde{\pi}_n$ conjugate to π_n and the product set $\pi_{\mathbf{r}}(\mathbf{R}^{\mathbf{r}})$ of ordered r-tuples of real numbers such that $\pi_n \cap \widetilde{\pi}_n = \widetilde{\pi}_n \cap \pi_{\mathbf{r}} = \pi_n \cap \pi_{\mathbf{r}} = \varphi$ and they span together a tangent bundle of dimension (2n+r). Projections L, M, N on π_n , $\widetilde{\pi}_n$ and $\pi_{\mathbf{r}}$ are given by

(2.6) (ii)
$$\begin{cases} 2L = -F^2 - iF, \\ 2M = -F^2 + iF, \\ N = F^2 + I_n = u \otimes U. \end{cases}$$

Proof. Suppose first that M^{2n+r} admits an almost r-contact structure. Hence corresponding to eigenvalue i[2], let P, x = 1,2,...,n be n linearly independent eigenvectors.

Let Q be eigenvectors conjugate to P. Further there are r linearly independent vector fields U. Thus we have

$$\begin{array}{ccc}
\mathbf{x} & \mathbf{a} & \mathbf{p} & \mathbf{x} & \mathbf{a} & \mathbf{b} \\
\mathbf{x} & \mathbf{b} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{x} & \mathbf{b} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{x} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{x} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} & \mathbf{c} \\
\mathbf{c} & \mathbf{c} & \mathbf{c} &$$

Now, if

(2.7)
$$\frac{x}{a}P + \frac{x}{b}Q + \frac{x}{c}U = 0$$

then

$$\begin{array}{ccc} \mathbf{x}_{\overline{\mathbf{p}}} + \mathbf{x}_{\overline{\mathbf{q}}} + \mathbf{x}_{\overline{\mathbf{q}}} & = \mathbf{0}. \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \end{array}$$

In view of the equation (1.2)(i) and the fact that P, Q x x are eigenvectors corresponding to eigenvalues i and -i respectively, we have

(2.9)
$$\begin{array}{c} x \\ aP \\ x \end{array} = \begin{array}{c} x \\ bQ \\ x \end{array} = 0, \quad x = 1, 2, \dots, n.$$

Baring (2.9) again and using the same fact that P, Q are X X eigenvectors corresponding to eigenvalues i, -i, we get

Thus from (2.9) and (2.10), we have

$$x = x = 0, x = 1,2,...,n.$$

Thus from (2.7), it follows that $\ddot{C} = 0$.

Thus $\left\{ \begin{smallmatrix} \mathbf{p} & \mathbf{Q} & \mathbf{U} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \end{smallmatrix} \right\}$ is a linearly independent set. From equation (2.6), we can easily show that

(2.11) (i)
$$LP = P$$
, (ii) $LQ = 0$, (iii) $LU = 0$,

(2.12) (i)
$$MP = 0$$
, (ii) $MQ = Q$, (iii) $MU = 0$,

(2.13) (i)
$$NP = 0$$
, (ii) $NQ = 0$, (iii) $NU = U$.

Thus, there exists a tangent bundle π_n of dimension n, a tangent bundle $\widetilde{\pi}_n$ conjugate to π_n and the product space π_r or ordered r-tuples of real numbers such that $\pi_n \cap \widetilde{\pi}_n = \pi_n \cap \pi_r = \widetilde{\pi}_n \cap \pi_r = \varphi$ and $\pi_n \cup \widetilde{\pi}_n \cup \pi_r$ gives a tangent bundle of dimension (2n+r), projections on π_n , $\widetilde{\pi}_n$ and π_r being L, M and N respectively.

Suppose conversely that in \mathbb{M}^{2n+r} there exists a tangent bundle π_n of dimension n, $\widetilde{\pi}_n$ conjugate to π_n and product set π_r such that they are mutually disjoint and span together a tangent bundle of dimension (2n+r).

Let P be n linearly independent vectors in π_n , Q in $\widetilde{\pi}_n$ conjugate to P and U be r linearly independent vectors in product set π_r . Suppose $\left\{ \begin{smallmatrix} P \\ X \end{smallmatrix} \right\}$, U span a tangent bundle of dimension (2n+r). Define the inverse set $\left\{ \begin{smallmatrix} X \end{smallmatrix} \right\}$, Q, U as

(2.14)
$$p \otimes P + q \otimes Q + u \otimes U = I_{n^{\bullet}}$$

Let us now put

(2.15)
$$F \stackrel{\text{def}}{=} i \left\{ \begin{matrix} x \\ p \otimes P \\ x \end{matrix} - q \otimes Q \right\}.$$

Thus we have

(2.16)
$$\mathbf{F}^2 = \mathbf{i} \left\{ \begin{matrix} \mathbf{x} \\ \mathbf{p} \otimes \mathbf{\bar{p}} - \mathbf{q} \otimes \mathbf{\bar{Q}} \\ \mathbf{x} \end{matrix} \right\}.$$

In view of the equation (2.15), the above equation takes form

$$\mathbf{F}^2 = -\left\{ \begin{matrix} \mathbf{x} \otimes \mathbf{P} + \mathbf{q} \otimes \mathbf{Q} \\ \mathbf{x} & \mathbf{x} \end{matrix} \right\}$$

which by virtue of (2.14) takes the form

$$(2.17) F2 = -In + u \otimes v.$$

Thus M2n+r admits an almost r-contact structure.

REFERENCES

- [1] S. Sasaki: On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J. 12 (1960) 459-476.
- [2] R.S. M is hra: Structures on a differentiable manifold and their applications Chandrama Prakashan, Allahabad, India (1984).

[3] K.K. Dube, Ram Nivas: Almost r-contact hyperbolic structure in a product manifold, Demonstratio Math. 11 (1978) 887-897.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY, LUCKNOW, INDIA
Received December 15, 1986.