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OF THE FREE GROUP OF INFINITE RANK

1. Introduction

It is known [9] that an endomorphism of a free group Fy
of a finite rank which is invertible from one side must be
an automorphism, We consider the situation in the semigroup
of endomorphisms of the free group F of countably infinite
rank, Two endomorphisms u and v are called equivalent
if there exists an automorphism a such that u = &8 of. The
duality of automorphisms and the infinite Nielsen transfor-
mations allows us to use Thsorsm 6 from [7] to state that
every endomorphism is equivalent to the so-called free endo=-
morphism which maps a part of a base into 1 and another part
into a Nielsen-reduced set, Applying this fact we generalize
the proofs of several known theorems from Pn to F, We show
also that every endomorphism of F is a product of a mono-
morphism and an epimorphism, The same 1is proved for the free
abelian group F/F’ whioch implies that every infinite matrix
over Z with a finite number of non-zero oomponenis in every
row 1s a product of a matrix with lineary independent rows
and a left invertible matrix, We will be dealing with sub-
ssmigroups of endomorphisms of F which are listed below:
End ~ semigroup of all endomorphisas,
Endo =~ subset of endomorphisms with the infinitely generated

image,
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2 0. Macedoriska

BEpi ~ semigroup of epimorphisms,

Mono - semigroup of mornomorphisms,

Sur = semigroup of surjective endomorphisms,

Inj =~ semigroup of injective endomorphisms,

M - gemigroup of endomorphisms which map a base into a set
independent mod P,

R ~ gsemigroup of endomorphisms invertible from the right
side,

L - gemigroup of endomorphisms invertible from the left
sids,

Aut - group of invertible endomorphisms that is asutomorphisms,

2+ Definitions and preliminaries

Pollowing [9] we comsider a fixed relatively free group
G = F/V of countably infinite rank, As the basis of G a set
of free gensrators Xq9Xgse0s is chosen and will remain fixed.
Its charaoteristic property is that every mapping of these
‘generators into the group can be extended to an endomorphism
of the group, We shall use a presentation of an endomorphism u
by means of its components, namely, the images of the free
genarators X4 If u maps xy into Uy, i=1,2,444, we interpret
the ordered set of elements W as an infinite veotor
u = (8y,u5,0ee)s The word infinite will be omitted. If now u -
is arbitrarily chosen, the ocorresponding -endomorphism u is
defined to map the elemsnt 5(11,...,xn) into g(x1,...;xn)g =
= g(xq0ye00yxpu) = gluy,0e0,u,) or briefly, g(xlu = gla),
wheTe x = (x1,22,...). The set of all endomorphisms u of G
is represented by the set of all veotors with componsnts
u = x;u, Two veotors represent the same endomorphism 1f
and only if the corresponding components interpreted as ele-~
ments of the absolutely free group F on the same generatora
xy differ by elements of V.

The product u ov of endomorphisms is defined by xi(u ov) =
= (xqu)y = ui(y) and is represented by the vector uocy =
= (u1(g),u2(g),...).krhe veotor x Tepresents the identity
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Semigroup of endomorphisms 3

endomorphism, We shall use the same small bold-faced letter
to signify either an endomorphism or a corresponding veotor
with components from G,

2., Definition. ([11], 2.2.1). A4n endo-
morphism u is oalled a monomoi'phism {epimorphism) if
Vou=wouimplies v =w (unov = uow implies v = wj.

2.2 Definition. An endomorphism u 1is
called invertible from the right side if there exists v
such that uoy = x. Respectively, v 1is called invertible
from the left side. An endomorphism invertible from both sides
is called invertible or an automorphism,

In the category of groups the notions of monomorphism
and injectived morphism (epimorphism and surjective morphism)
coinoide ([11], 2.2.4, 2.2.12) but, since we restricted our-
selves to the subcategory with one object G and the semigroup
of morphisams End G, the situation is not obvious,

2.3+ The notions of monomorphism and injective endo-
norphism coincide. Indeed, vou = wou implies v = w if and
pnly if vyu = wyu lmplies vy = wy for all 1 whioch gives the
required result,

2.4. There exists an endomorphisam u of the free group F
which is a monomorphism and an epimorphism, but is not sur-
Jective,

Proof., We take u = (xf.xg,...). If now uo¥v = Uow,

then (v?,vg,...) = (wg,wg,...) and, by [4], vf_ = w? implies

Vy o= Wy and hence v = w which shows that u 18 an epimorphism,
Since u 1is injective, by 2.3, u 1is a monomorphism. The
endomorphism u is not surjective, since gp(u) # F.
2.5, R€Mono, L = Sur <Bpi for a relatively free group G.
Proof. Letgog=5,thatisgeR,!eL.va_glog=
= W, o U, then multiplied by v we have Wy =W, and hence
R < Mono. Similarily Lc Epi. Now G = gp(x) = gpluov) cgp(v)
implies L ¢Sur, If v e Sur, then we denots by uy the contra-
image of x; under v, that is w;v = x;. For u = (u1,u2....)
we get uoV = x and hence v e L which completes the proof,
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4 0. Macedopriska

In the case of F both inclusions in 2.5 are proper, because
of 2.4.

2.6. Aut. = RnL = MononL = R nEpi ¢ Mono nEpi,
Proof. All that is required is to ensure that
ueMononL implies ueR and ue RnEpi implies uelL, In both
cases there exists v such that uovou = u., The alternative

cancellings give the results,

2,7, Definition ([5}, [8]). &n endomorphism
r of G onto a subgroup H = gp{r) is called a retraction and
H is called a retract if and only if r? = r. The notion of
the retract in [11] has a different meaning.

2.8, A monomorphism u is invertible from the right side
if and only if gp(u) is a retract.

Proof,. If ueR, then there exists v such that

oV = X. We write r = v ou, then gp(u) = gp(uovoun) =
gp(uor) cgp(r) = gp(v o u) cgp(u) which gives gp(r) = gp(u).
Moreover, ;2 = VouoVol =T, and hence gp(u) is a retract,
Conversely, if u eMono and gp(u) is a retract, then there
exists a retraction r (obviously r # u if u # x), such that
gp(u) = gp(r). Since every u; can be written as & word in
generators from r and every ry oan be written in generators
from u, we have I = Vou, U =Wor =Wo(vou) = (Woy) ou
Because u is a monomorphism we conclude that wov = x. The
property 92 =T gives Yol oVol = Volu, Multiplying it by w
from the left side and ocancelling u from the right side we
get uov = x, which means that u is invertible from the right
side, which completes the proof.

A group G is not a Hopf group if it is isomorphie to
a proper quotient group. The natural homomorphism onto this
quotient group followed by the isomorphism of the emotient
group onto G constitutes a surjeotive endomorphism u which
is not anh automorphism, Conversely, if u e Sur \Aut, then
G £ G/Ker u and G is not a Hopf group. Baer s theorem [1]
says that,if a relatively free group G is isomorphic to a
proper quotient group,then it is also isomorphic to e proper
subgroup. %e can extend this theorem e little further.

(L~
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Semigroup of endomorphisms 5

2¢9. Theorem, If arelatively free group G
is isomorphic to a proper quotient group,then it is also
isomorphle to a proper retract,

Proof. Since G is not a Hopf group, there exists
a surjective endomorphism y which is not an automorphism,

By 2.5, vel that is uov = x for an endomorphism u such that
neRcMono, The u is not a surjection, because otherwise,

by 2.6, u and hence v would be automorphisms which is not
true. Now,by 2.8,gp(u) is a proper retract of G freely gene-
rated by the set u, Since the endomorphism v maps the base

of gp(u) cnto the base x of G, so that uv = x;, we conclude
that gp(u) £ G, which completes the proof,

2410, Definition. & vector u is called free
if the set of its non-unit components generates gp(u) freely.
By a unit in g relatively free group we mean a word whieh,
interpreted as an element of F, is congruent to 1 modulo V.

The free vector may contain finite or infinite sets of
units and non-unit componsnts., Multiplying the free vector
by a proper permutation from the left side we can get a
so-oalled standard vector of one of the types given below:

1 0 = (1,...,1,uk+1,uk+2,...), k> 0,.

2, = (u1,1 u3,1,...),

3. = (u greceslntyt, 15e0e), k20,

where uy f 1. We say that u and v are of the same type if the
corresponding standard vectors are of the same form for

the same k.

2.11, The set of free veotors without units represents
the semigroup Mono.

Proof. Let ube a free vector without units and
Vous=wou, then v;u = w;u and hence viw;1g = 1 for all i,

1

IS 1=

This means that viw; interpreted as element of F is con-
gruent to 1 mod V. Thus, v and w Trepresent the same endo-
morphism of G, and ue Mono. Conversely, if ueMono, then,
by 2.3, u is an injection and hence u is free without units.
The proof is complete.
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6 Os Haoedoﬂské'

2+12. The subsets R,L, R\ Aut, L\ Aut, Bnd\(Rul),
End\ R, End\L form the subsemigroupe in Bnd. ([&], VI, 1.8).

2.13. For our future needs we introduce also & subsemi-
group M of the veotors,where every finite subset of components
is independent modulo P‘, Obviously M ¢ Mono. The natural homo-
morphism o:F — F/F’ induces an isomorphism of X onto the
semigroup of monomorphisms of P/F’., We note also that Autc M,
because every automorphism of F indutes an automorphism
of F/F’,

3. Bquivalence in the semigroup of endomorphisms of P

"In this seotion we consider sndomorphisms of the free
group F and use the word vector instead of the word endo-
morphism,

3. Definition. Veotors u and v are called
equivalent if there exists an invertible vector a such that
L= a0V,

By 2.10, every free %ector is equivalent to a standard
vector,

3.2. Bguivalent vectore-generate the same subgroup.

Proof, Ifus=aov, then gp(u) = gplaov)cgplv) =
= 8P(g'1ogy cgp(u), which gives gp{u) = gp(v). The converse
%s not true,sinoce the veotors x and u = (1,x1,12,...) gone-
rate F, but are not equivalent,

3¢3. The subsemigroups from 2,12, 2.13 are closed under
equivalence.

34 T heorem. Bvery vector is equivalent to
a standard vector with the Nielsen-reduced set of non-unit
components,

Proof, By [7], for every vector u with components
in F there exists an invertible vector & such that the set
of non-unit components in a o n is Nielsen=-reduced and hence
aou is a free vector equivalent (by 2.10) to a standard
vector, thus completing the proof.

Note that the Nielsen-Sohreier subgroup theorem for F
follows from 3.4 and 3,2,
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Semigroup of endomorphisms 7

3.5 Theorems., BEvery subgroup of F is a free

PAd

group.

Proof, Let Hc F and u .be any set of generators
in H, Then, by 3.4, u is equivalent to a free vector v, which
generates the free subgroup gp(v). By 3.2, H = gp(u) = gp(yv)
is free, whioch completes the proof,

Using Theorem 3.4 we can generalise Proposition 2,12 [5]
and Theorem 3.3 [8] from F, to F. A complicated proof of the
following theorem is given in [3}, Theorem 6.4.

36 Theorem. Let ube ahomomorphism from F
onto a free group H. Then F has a basis Z = Z1\JZZ such that
u maps gp(Z1) isomorphically onto H and meps gp(Zz) into 1,

Proof., Sinoe the extention F of a group by the
free group H splits, we ocan treat H as a subgroup of F and u
as the endomorphism of F onto H = gp(u). By 3.4, there existe
an invertible vector & such that v = aou is a standard vec-
tor, We consider the case of v = (v1,1,v3,1,v5,1...). For
other forms of v the proof is similar. Now, by 3.2, H = gp(u)-=
= gp(v) is frealy generated by the set {¥qsV3sVgseeeds Since
a8 corresponds to an sutomorphism, ths set of 1ts components
819859855000 =3 Z 18 a free base in F such that under u
its elements with the odd indices are mapped onto the free
generators v1,73,v5,... of H and the elements with the even
indices into 1, The above suggests taking 2, = <B1,83,85,...>,
Zy = {ByyB,48gseee>s Just as in the case of Fy [8] 1t follows
that Ker u coincides with the normasl olosure gp(2,) of Z,
in F. The proof is complets.

3¢7. Two free veotors are equivalent i1f and only if they
are of the same type and generate the same subgroup,

Proof. It follows from the previous proof that
the orders of the sets Z1 and 22 are in the one-to-one corres-
pondence with the type of the standard vector v to which n
is equivalent., This shows that if u and w are equivalent
free veotors, then they are equivalent to the same standard
vector and hence have the same type. By 3.2, they generate
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8 0. Macedotiska

the same subgroup. If now gpltu) = gp(w), where u and W are
standard vectors of the same type, then we shall show their
equivalence. Every word u; can be expressed through the
non-unit elements of w and every w; can be expressed through
the non~unit elements of u, giving u= aow and w = bou,
where we take a; = by = X4 if u; = wy = 1. We have now u =

= (aocb) ou, w=(boa)o we Since the non-unit elements of u
and w build the sets of free generators in gp(u), gpiw), we
conclude that (aob); = x; = (boa)y if uy, wy # 1 and, if
u; = wg = 1, then we also have (aobl); = a,(b) = x;(b) = by =
= x;. Similarly, (boa)y = x;. This shows that a is inver-

tible end u, w are equivalent, which completes the proof,

4, Relations for subsemigroups in End F
We introduce here the simplest vectors whioch are surjec-
‘tions but not the sutomorphisms.

(1) p= (1.11.120130000)0

(2) p® = (x4412Xp,14X3,15000)0

The k-th power of p contains k units p -(1 Tyeeayl, x1.x2,x3,...)
and go = X. We shall show that every veotor whioh 1s inver-
tible from the left side is equivalent to one of gk, O<k<oo.

4.1. Bvery standard vector of the form (1) or (2) can be
written as u = pk oun’, where u’ is a free vector containing
_non-unit oompon;nts of u in the same order, This gives imms-
diately for the set of End,, of endomorphisms with infinite
images the following result,

4,2, Theorems. End, =.Surelnj.

Proof. vaeEndoO,then, by 3.4 and 4,1, v=aou=
=a o(pkou ) = (Bop ) ou’e Sur o Inj. Conversely, if w=uov
where ueSur = L, Vv eInj = Mono, then there exists a vector g
which is a lett inverse for u, which gives v = so w, This
implies gp(w) = gp(uov) < gp(v) = gp(sow) cgp(w), that is,
gp(w) = gp(v) 1s infinitely gensrated and henoe W ¢ Bnd, «

4,3. Theorem.,. L=UAutopk,0sksoo,where
the union is disjoint. k
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Proof. By 3.3, L is a disjoint union of classes
of equivalent veotors., By 3.4, esvery class contains a standard
vector with a Nielsen~reduced set of non-unit components which
generate F, since by 2,6, elements of L are surjeotions, By
([8], p.122) the Nielsen-reduced set of generators for F

consists of xii, 51 =41, 1 = 1,2,¢4¢ « This implies that

every class cohtains a vector gk, O<k ¢ oo, Since,by 3.7,
_;_;k and gi are not equivalent for k # i, the result follows,

4.4. The set of left inverse vectors for gk consists of
the vectors of the foram s(k) = (xk+1c1, xk+202,...), where

0y € gp(x1,12,...,xk) = Ker Ek for k <oo, and s( o) =
= (1101, x303,...), where o4 e gpixz,x4,...).
Proof., We consider the case k < co, then F
= N Ker pk, where N = gp(xk+1,xk+2...). Let now uop = X,
then We express u; as n;0;, where ny e N, 04 ¢€ Ker p « Because

nE = X ) and "12 = nigk = X34 We conolude that ny = x, .,

and u = (u1,u2,...) = (xk+1c1, xk+202....). whioh complstes
the proof. In the case of k = oo the proof is similar,

4.5. R = Us(k)o Aut, O<k coo &

Prooft. 1f ueR, then there exists vel snoh that
WoV = X, By 4.3,V = aop for an invertiblo 8y O0<k<oo, We
gét then x = uov = uo(aop ) = (uog)o p and by 4.4,
uoa = g(k) whioch gives u = 8(k) o a =1 completing the proof,
The union above is not disjoint; we can take 8(2) =
= (x3x X9 Xy xs,...) and 8°(2) = (x3x2x1, X4 x5,...) which
are different but 8 = 8'c a8, where a permutes x4 and x,. So,
Box and &> x give two presentations of the same endomor-
phisms

4.6, We note here that the set of components of a s(k)
is independent modulo P’ and hence Rc M,

4,7 Theorem, The subgroup H of F is a retract
if and only if there exists a free base 8 of F and a free
base {hy, JeJ, |[d] € > of H such that for the partition
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of the set of natural numbers N = JuK, we get h;j = ajcj,
cye gp(ak, keK), Jed.

Proof., If H is finitely genarated, then we can re-
strict ourselves to a F, and the result trollows from ([8],
pe 149)e. If H is infinitely generated and u is any base of H,
then u defines slso a monomorphism of F onto H. By 2.3,H is
a retract if and only if ueR and,by 4.5, if and only if
u = s(k) oa, 0<k < co which implies the result.

In the set of vectors s(k) which are letr$ inverses for
gk we fix g, = (xk+1, : P "k+3'"" for k <co and B8y, =
= (11, X3y xs;.,.).

4.8, We have the inclusions: {a) v o Mono cMonooy,
(b) woM cMov, (o) voLcLov, (d) voRc Rov for any veotor ve L.
In particular for k> 03

(a’) gkOHonOCMonOo_p_k, (v’) BkOMcMoEk’

(0’) p¥eLc Lop¥, (a’) p*oRcRopk.

Proof. We shall prove first (a‘)~(d'). For a given
vector u we define u(k) = (Xy, Xpyeee,Xy, u1(§k), uy{8y)yees)
for k <o and uy = (u1(§°°). X0, u2(§°°). Xy u3(_s_°°), xb"i:.,'
It ia easy to see that gkog = (1ye00y1, LA uz,...) = u(k)op™,
for k <co and pPou = (uy, 1, uy, 1, Uy, Tyeee) = uy 0p® .,
Now, if u e Mono, that is u 1s free without units, or if neM,
then obviously the same is true for u(k) and u,, whioh proves
(a’) and (b’)s If uel (ucR) and You = x (uoy = x), then the
left (right) inverse for u(k) is (x1,....xk, v1(§k), vo(8,),
v3(_e_k),...) and the lett (right) inverse for u., 1is
(v1(§°°), Xpy V5(850), X4 v3(§°°), Xgsese)o This means that
u(k) and u,, are in L (in R) which proves (c’) and (d’'). The
unequalities (a‘)-{d’) are proper,because every vector Ekog
from the lert side has the first component equal to 1 tor
k <o , and the second component equal to 1 for p,ou, while
the right sides contaln vectors without this property. The
unequalities (a)~(d) follow from (a’)-(d’), because,by 4.3,
any vector v trom L is equal to _a_ogk for an invertible a
and 0 <kgoo ,
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4.9, It follows from 4.8 that (&) LoMono c MonooL,

(B) LoM ¢ MoL, (&) LoRg RoL. The unequalities (&), (b) are
proper,because, by 4.2, LoMono = Bnd,, while MonooL = Bnd
which 1s shown below and the simllar eitustion for (b) will
follow from 5.3 and 5.4. o

410, Theorem, BEnd=InjsSur and hence End =
= MonooEpi.

Proof. By2.3and 25, Inj = Mono, Sur = L so,
since Bnd,, = LoMono cMonooL, we shall only consider a veo-
tor u with a finitely generated image., Because of 3,3 and 3.4
we take u = (u1. Uyseoosllyy 1, 1,0+.) a8 a standard vector.
One can check that u = (u1(§q°)....,uk(gug),xz,x4,xb,...)og“’t
Sinoe<h1,u2,...,uk)ie a free set and 8o, 18 a monomorphism
onto gp(x1,x3,x5....),we oome to the conclusion that
u € Monoep™ c MonooL completing the proof.

4,11 Corollary. The endomorphisms which have
iptinitely generated kernels form the semigroup Monoecp>,

The sndomorphisme whioh have finitely generated kernsels form
the semigroup E Monoogk, k<o

5« Endomorphisms of a free abelian group

We shall consider a free abelian group of a countably
infinite rank as the quotient group F/¥  with the abelian
base xF’ = (x1F'. X5F’yes0)s Bvery endomorphism of F/F’ is
uniquely detined by the set of images of elements from the
base, 80 we denote the endomorphism as uF’ = (u1F'.u2F',...),
where the vector u is not fixed. The natural homomorphism
o’t¥ — F/F’ induces the homomorphism a:End F -» End F/#’
which is obviously onto and maps u into w¥’, The kernel of «
consists of all vectors u = (x1c1, x2°2"")' where ¢, ¢ F’,
that is Ker ¢ M, We denote Ker o n Ant by I.

5¢1. Ker xnR = Kerax n L a I, that is every slement trom
Ker o« which is invertible ftrom one side must be invertible
trom the other.
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12 0. Macedoriska

Proof, By 2.6, Ker xnLcMn L c Aut, which gives
Ker o nL = I. Now, if u cKer o nR, then there exists v el
such that uev = x. This implies veKer anl = I, and henoce
uel, whioh was required.

S5+2. The homomorphism o maps R, L and Aut onto the cor-
responding semigroups in End(PF/P‘), « maps M onto Mono(F/F’)
and maps R\ 4ut, L \ Aut isomorphically into End(F/F’).

We shall prove now a theorem anaiogous to 4.2 for ende-
morphisms of F/F’. It is not ah immediate consequence of 4.2,
becausg the image of a monomerphism under « is not necessarily
a monomorphism,

53, Theorem,., Bnd,(F/F') = Sur(F/F’')cIni(F/F’)
Inj(F/F’)oSur(F/F’) and hence, by 2.5, Bnd,, (F/F’) =
Epi(F/F’)oMono(F/F’) c Mono(F/F’)oEpi(F/F’).

Proof. Let ufF’ be an endomorphism of F/F’, To
prove the theorem we find a vector u such that uc = uF’ and
u €LoM¢c MoL; then, uslng o« we get the result because of 5.2,
So, in the subgroup gp(uF’) we choose an abelian base wF’ =
= (w,F’, WoF’ye0s)n Since gp(uF’) = gp(wF’), every wF’' 1s
a word in generators wF', let us say wF' = 8, (w,F', w,F'y..0).
We fix now any vector w such that wo= wF’ and introduce the
vector u, where uy = 8,(W,, Wyyeec) Obviously then uo= uF’
and gp(u) c gp(w). Because o maps the componsents of w onto
a set of free abelian generators, we get we M. In faot gp{u) =
= gp(w), because gp(uF’) = gp(wF’') implies that there exist
such elsments o? ¢ F’ that every w3 is a word in UgCqy UsCopesse,
that is wy = %;(u,0,, u2c2,...) = ti(u1, u2,...) mod F' =
= ti(s1(v_v), sz(v_v).,....) mod P’ and, since components of w are
independent modulo F’, we conolude that w, = ti(s1(g),92(v_u),...)=
= ti(u1,u2,...) ¢ gp(u). Bow, by theorem 3.4, there exists an
invertible vector a such that aou is a free standard vector
with infinite number of non-unit components and hence, if we
denote by r the vector of these non-unit componenis, we get,
by 4.1, acu = pfor, 0 <k oo , We have then g:(g"1ogk)og
and r = (§k‘og);g. Since w and r are two free bases in gp(u)

in
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there exists an invertible vector b such that r = bow and
then u = (a~lop¥)or = (87 lop¥cb)ow = vow e LoM. By 4.9.(B),
we have u e LoM c MoL whioh completes the proof,

54 Theorems. BEnd(F/P') = INJ(P/F')eSur(F/F’) =
= Mono{F/F’)eEpi(F/F’). ’

Proof, Because of the previous thecrem we need to
consider only an endomorphism gr' with a finitely generated
image gp(uF’). 48 in the previous proof we take an abelian
base wF’ in gp(uF’) and fix a vector w. Then we fix a vector u
with components in gp(w). By 3.4, u is equivalent to a stan-
dard vector u’ = gon = (u{,ué,...,ui, 1y 15000)e Since w and
u’ are two free vectors generating the same finitely gene-
rated subgroup, they are of the same type and, by 3.7, are
equivalent. Thus, for an invertible a, u = aow = @o(w,(8y)sees
cossWi By )y x5, Xg» Xgyeoe)op™ ¢ Mop™ c MoL and using o gives
the result. A

5.5, Definition. ([2], 1.3). An infipite
matrix over Z is called row-finite 1f every row contains only
a finite number of non-zero components. Bow-finite matrices
form a semigroup., The matrix is called row-bounded if there
exists an n such that all columns with indices greater than n
consist of zeros,

5.6. The semigroup End(F/F’) is isomorphic to the semi-
group of row-finite matrices over Z, The set End., (F/F’) is
in one~to-one correspondence with the set of row~bounded
matrices,

Proof. Let uP’ cEnd(F/F'), uF = (0yF' yuF yaes ),

where W = r'lxkiJ mod F'. We introduce the exponent mez rix
U = (ki ) to represent uF’, This correspondence defines the
required isomorphism,

The reformulation of 5.3 and 5.4 gives the following
theorem,

5¢7¢ Theorem, BEvery row-finite matrix over 2
is a product of a matrix with linearly independent rows and
a left invertible matrix. Every row-finite matrix over 2
whioch is not row-bounded is alsoc a product of a left invertible
matrix and a matrix with lineerly independent rows,
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