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FÜR Id- o» UND KONSTANTE WERTE a, b UND ζ 

1. Einleitung 
Asymptotische Entwicklungen der hypergeometriechen F u n k -

tion F ( a , b ; c ; z ) fur betragsmäßig große r ee l l e o d e r komplexe 
Werte eines oder mehrerer Parameter wurden erstmalig von O.Per-
ron [7] und G.N. Watson [12] untersucht. Für |c| —+ oo , bei 
konstanten Werten von a, b, ζ «erden in [7] unter der e in-
schränkenden Bedingung Im c = const asymptotische Entwicklung^ 
angegeben, während i n [ 1 2 ] zwqr e i n e Konzept zur Herleitung 
derart iger Entwicklungen für bel iebig gegen Unendlich s t re -
bendes c -vorgestellt wird, darüber hinaus aber nur die sehr 
enfach zu beweisende Entwicklung 

(1) g(a ,b ;c+l iz ) « ρ(c+l—b) Σ ^ ( b ) ^ ^ C ' 1 1 ^ 0 0 ) 
•o=0 

(mit einer erzeugenden Funktion für die Koeffizienten k^) 
angegeben i s t . Die den fieltungsbereioh von (1) definierenden 
Bedingungen sind in [12] nur zum Tei l konkret formuliert uni 
zudem mit einem wesentlichen Vorzeichenfehler behaftet . Dae 
Konzept von Watson wird in [4] etwas weiter ausgeführt und 
dabei (mit einem aient ganz lückenlosen Beweis) gezeigt , d&3 
in einem expl iz i t axtgegebenen,, von ζ abhängigen #inkelraua 
der komplexen o-Ebene aus (1) die fü r Izl <1 sogar mit dem 
Gleichheitszeichen geltende SatWicklung 
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2 E, Wagner 

v, ζ (|c| oo , a,b,z fest, 
<> = 0 |arg(1-z;| ̂  χ ) 

folgt. (Hier und im folgenden verwenden wir die üblichen Be-
zeichnungen (a)^ = Γ (a+o)/r(a), also (a)Q = 1, (a)^ = 
= a(a+1)(a+2)... (a+o-1 ) für s>g1). Nicht richtig ist die in 
[4] wie in [ 1 ] aufgestellte, unbewiesene Behauptung, daß (2) 
bei beliebig gegen Unendlich strebendem c gilt, falls nur 
I z| <1 ist. 

In der voi-liegenden Arbeit werden asymptotische Entwick-
lungen für F(a,b;c;z) bei beliebig gegen Unendlich strebendem 
c hergeleitet, deren Gültigkeitsbereiche bei jeweils belie-
bigen Werten a, b, ζ (|arg(1-z)K« ) die komplexe c-Ebene voll 
ausschöpfen, selbstverständlich bis auf die nicht zum Defini-
tionsbereich von F gehörenden Punkte c = 0,-1,-2,... . 

2. Bezeichnungen 
Ist Rez>1/2, ζ Φ 1 mit |arg(1-z)| so sei 

(3) « =«(z) = arctan ' S ^ f f l ' * 31 · 

(4) β = ß(z) = arctan " ^ g f a f f l Z ~ « , 

wobei Arg ζ den Hauptwert des Arguments bezeichnet, d.h. 
Arg ζ e (-π,π]. Wegen 1η|1-1/ζ| <0 und arg(1-z)-Arg ζ e t-π,π] 
für Re ζ > 1/2 gelten die Ungleichungen 

(5) -π/2 <«<0 $/ί<π/2, 

wobei offenbar « und β nicht gleichzeitig verschwinden können. 
Mit e und 6 werden im folgenden stets positive Konstanten 
bezeichnet, die beliebig klein gewählt werden können, während 
k, m und η stets beliebige, voneinander unabhängige, nicht-
negative ganze Zahlen bedeuten. 
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Asymptotische Entwicklungen 3 

3. Resultate 
Die folgenden Sätze gelten unter den generellen Vorausset-

zungen c Φ -η, ] a r g ( 1 - z )U * , ζ ¿ 0 und ζ Φ 1. Die Parameter 
a und b sowie ζ seien beliebige feste komplexe Zahlen, 

S a t z 1: Ss g i l t 

Σ ya;·^0 ·^ o 
V| ( c ) ζ (|c| — oo) 

9=0 

in jedem der folgenden Fäl le: 
( i ) a = -m oder b = -η; 
( i i ) Re ζ <1/2 und I c + n l ï 6 > 0 ; 
( i i i ) Re ζ = 1/2 und | arg ό Κ π - ε ; 
( i v ) Re z> 1/2 und 

(7) - ß - π/2 + e < arg c * - α /2 - ε , 

S a t z 2: Sind a ¿ -m und b j( -η sowie Re ζ > 1/2, so 
g i l t im Winkelraum 

(8) -cx-jT/2 + ε 4 arg(-c) ^ - β + π / 2 - e 

für |c| - » oo die asymptotische Entwicklung 

(9) F (a ,b }c ;z ) κ 

π z 1 - c ( 1 - z ) ° - b - a r(a+b-c) v 1 r, o * 
~ sin(jrc) r ( a ) r (b) Γ (1-c ) Z_. (c-b-a+1)_, ' 

v>=0 

S a t z 3: Sind a -m und 1) Φ -η, βο g i l t für 
|c| - · co 

(10) F(a,b;c;z) » £ ^ ( c ) " ' * ζ9 + 0(c"k-1) + 
0=0 

π z1"°(l-z)C"b~a r(a»b-c) 
+ sin(jrc) r(a) T(b) Γ(1-ο) 

k ( l -aL( l -b ) 

Lo=0 
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4 E« Wagner 

in jedem der folgenden Fäl le : 
( i ) Re ζ <1/2 und c = -η + o (1 ) ; 
( i i ) Re ζ = 1/2 und arg(-c) = o (1 ) ; 
( i i i ) Re ζ > 1/2 und arg c = -cx+π /2 + o(1) oder 

a r g c = - ß - n / 2 + o ( 1 ) . 

Zu Satz 3 bleibt zu bemerken, daQ in Abhängigkeit von den 
Werten der Konstanten a, b, ζ eine der beiden Summen in (10) 
gegenüber der anderen νernachlässigbar sein kann, aber darüber 
keine einfache allgemeine Aussage möglich i s t . Das hängt 
offenbar davon ab, ob der Vorfaktor der zweiten Summe mit 
I c I co exponentiell wächst oder f ä l l t . 

4, Beweise 
4.1. Der Fal l ( i ) von Satz 1 i s t t r i v i a l , da (6) nach 

Definition der hypergeometrischen Funktion sogar mit dem 
Gleichheitszeichen g i l t . Wir können deshalb im folgenden 
annehmen, daß weder a noch be gleich Null oder einer nega-
t iven ganzen Zahl i s t . 

4.2. Für c > 0 und %>>n g i l t 

(e),, = c(c+1) . . . (c+n-1 ) ( c+n ) . . . (c+o-1) £ c^Cn+l) . . . (o -1 ) = 

= c -?(n-1) l ' 

Daraus f o l g t für |z| <1 (z ¿ 0 ) , beliebige komplexe a, b 
und c > 0 die Abschätzung 

^ (a)^ (b)^ 
F (a , b }C } z ) - ^ ζ 

v>=0 
cn 
c ·Ρ=η+1 

odaD^Clbl)^ 

(·»!')2 
i » r < 

^ (n-11l_UI ^ ï ( la|,|b|;1j|z|) = Οζο"11), 
c 

Damit i s t (6 ) für (z| <1 und o (reel l )—*• +oo bewiesen. 
4.3. Zum Beweis der nichttr iv ialen Fälle gehen wir von 

der bekannten Integraldarstellung 
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Asymptotische Entwicklungen 5 

(11) F ( a , b | c ; z ) = 

1 
= r (b ) r^c -b) J t b ' 1 C l - t ) ° " b " 1 C l - t z ) - a d t (Re o Re b> 0) 

0 

aus, wobei für arg(1-z) = - π oder arg(1-z) = ir (oberes bzw. 
unteres Ufer des Schnit tes z > 1 ) der Punkt 1/z des Integra-
t i o n s i n t e r v a l l s auf einem kleinen oberen bzw. unteren Halb-

— χ 
kre i s umgangen wird. Mit der Subst i tut ion 1 - t = e erhält 
man aus (11) 

oo 
(12) F ( a , b ; c ; z ) = r ( b ) p ^ b ) f β - ° τ θ ^ ( 1 - β - τ ) * - 1 ( 1 - ζ + ζ β - τ Γ 3 ά τ . 

0 

Das bedeutet: F i s t für Re c> Re b (>0) b i s auf den Faktor 
vor dem Integra l die Laplace-Transformierte der Funktion 

(13) f ( t ) = e t o t ( 1 - e - ' c ) b - 1 ( 1 - z + z e - ' t r a . 

Die Funktion f i s t holomorph bezüglich χ i n jedem Winkelraum 
mit dem Sche i te l 0 , der keine Nul l s te l len +2kjri und 

— ζ — χ 
-Log(1-1/z) + 2kJti von 1-e bzw. 1-z+ze en thä l t , insbeson-
dere also für 

(14) -π/2 < Arg t < π / 2 , f a l l s Re ζ ί 1/2 i s t , 

und 

(15) α <Arg τ <(3, f a l l s Re z> 1/2 i s t . 

In jedem abgeschlossenen Teilwinkelraum von (14·) bzw. (15) 
i s t offenbar e f ( x ) = 0(1) für χ co , so daß der I n t e -
grationsweg in (12) innerhalb der rfinkelräume (14) bzw. (15) 
be l i eb ig um den Nullpunkt gedreht werden kann. Bezeichnet <f 
den Orehwinkel, so erhäl t man die analytische Fortsetzung 
der Bildfunktion in die Halbebene Re [e i < f>(c-b)] > 0, [2 ] . Da 
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6 Β. Wagner 

F(a,b;c;z )/r (c ) eine ganze holomorphe Funktion von c i s t , 
g i l t demnach 

(16) F(a,b}o;z) = 

ooe1? 
= r (b )r jc-b) j e-CTf(T)dT (Be b> 0, Re[(c-b)e i<1'] > 0) 

0 

mit 

(-π/2, jt/2) für Re ζ $1/2, 

( « ,ß) für Re ζ >1/2. 
(17) «Ρ e 

Die Punition f (t)T~b+ ' ' i s t holomorph in einer Umgebung von 
τ = 0, so daß f eine asymptotische Entwicklung 

(18) f ( t ) K τ°-Λ ¿ ( τ — 0) 
•?=0 

besitzt . Die Koeffizienten P.;>(a,b,z) sind, wie man aus (13) 
leicht erkennt, Polynome in a, b und z. Aus (18) fo lg t nach 
einer bekannten Verallgemeinerung des Lemmas von Watson [3] 
in jedem Winkelraum | arg [ e^ ic -b ) ] | $ π/2 - ε die bereits von 
Watson [12] (vg l . (1) in der vorliegenden Arbeti) angegebene 
asymptotische Entwicklung 

(19) F(a,bjc;z ) « 

00 

g r (b ) r (c-b ) Σ IV(a,b,z )r fr+b)c-*-b (|c| — 00) . 
s>=o 

4.4. Nach [8] g i l t für beliebige komplexe Zahlen s und t 
oo g(s—t+1 

« O ) f £ t } · - Σ C U * ^ ^ ^ 
k=0 

( c - » o o , |arg(c+s)| $π-ε), 
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Asymptotische Entwicklungen 7 

wobei d ie ß j ^ ( t ) die durch die erzeugende Funktion 

oo B ^ ^ f t } 
(21) z s e t z ( e z - 1 ) " s = £ z* ( | z | < 2π) 

k=0 

d e f i n i e r t e n vera l lgemeiner ten Bernoul l ischen Polynome ( i n s 
und t ) s i nd . 

4 . 5 . Se tz t man f ü r den Faktor r ( c ) / r ( c - b ) i n (19) d ie 
nach 4 . 4 . f ü r | a rg c l ^ J t - ε gel tende asymptotische Entwicklung 
(20) e i n und m u l t i p l i z i e r t anschließend beide Entwicklungen 
mi te inander , so e r h ä l t man f ü r | arg[(ο-^)β*"φ] | ^ π / 2 - e 

(22) F ( a , b ; c ; z ) κ ¿ Q< )(a,b,z)c" s > ( Ic i —0 0 ) 
^=0 

mit Koef f i z i en ten die Polynome i n a , b und ζ s i n d . Werden 
die Potenzen c nach der äquiva lenten asymptotischen Skala 

e n t ; w i c k e l t , 8 0 f o l g t aus (22) 

(23) F ( a , b ; c ; z ) « 

OO 

« R * ( a , b , z ) [ ( c ) 9 ] ( c - 0 0 , | a r g [ ( e - U ) e 1 , p ] U * / 2 - e ) 
>>=0 

mit i n a , b , z ganzra t iona len Koe f f i z i en t en R^. 
Für | z | <1, φ = 0 und c ( r e e l l ) +00 müssen nach 4 .2 

d ie Entwicklungen (6) und (23) i d e n t i s c h s e i n , a l so R^ = 
= (aXp (t>)9 z^ /o l . Berücks ich t ig t man noch (17) , so i s t geze ig t , 
daß (6) im F a l l Re ζ < 1 / 2 im Winkelraum | a rg cK j t - ε und im 
F a l l Re ζ > 1/2 im Winkelraum - ß - a t / 2 + ε * arg c $ -c* + π / 2 - ε 
g i l t , aber j ewei l s noch unter der einschränkenden Bedingung 
Re b > 0 , 

4 . 6 . Se tz t man i n der Gaußschen Beziehung [1] 

F ( a , b ; c ; z ) = (1-z)F(a ,b+1}cjz) + (1-a /c)zF(a ,b+1;c+1;z) 

f ü r die hypergeometrischen Funktionen auf der rechten S e i t e 
d ie nach 4 .5 f ü r Re b> -1 gel tenden Entwicklungen (6) e i n , 
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8 E. Wagner 

so erhält man für F(a,b¿cfz) wieder (6). Durch wiederholte 
Anwendung dieser SchluSweise kann awn eich von (fer Ein«* 
schränkung Be b > 0 befreien. Damit ist Satz 1 bis auf den 
Fall (ii) bewiesen. 

4.7. Zum Beweis des für arg(-c) = o(1) noch offenen Falle 
(ii) von Satz 1 sowie der Sätze 2 und 3 gehen wir aus von 
der bekannten Beziehung [l] 

(24) F(a»bja+b-c+1;1-z) = + 

+ rÇa+b-c.1^c-1) z1-c ( 1. a )c-b-a p ( l_ a > 1_ b. 2_ c ; z ) > 

Wegen r(c-1) = -π/[Γ(2-ο)β!η(πο)] erhält man aus (24) 

(25) F(a,b;c$z) = ls1(a,b,c)F(a,b{a+b-c+1;1-z) + 

+ k2(a,b,c,z)F(1-a,1-b;2-c{z) 

mit 

(26) kyj = r(a-c+1)r(b-c+1)/[r(a+b-c+1)r(1-c)] , 

(on\ ν π Γ ( a-o+1 ) r(b-c+1 ) „1-c,,. „\ c-b-a 

( 2 7 ) 2 = sin(jrc) r(a5r(b)rhlc)r(2-c) z ( 1" z ) 

Nach dem bis einschließlich 4.6 geführten Beweis gilt 

~ (a)^(b)^ c (28) F(a,b}a+b-c+1>1-z) « ^ (a+b-o+l)v
 ( 1" z ) (lel-oo) v>=0 V 

in einem durch die Ungleichungen Iarg(-c)I $ π - ε für 
Re(1-z) $ 1/2 oder - fi - π/2 + ε « arg(-c) « + π /2 - ε 
(ex =cx(1-z), ß = β (1-z)) für Re(1-z) > 1/2 definierten Win-
kelraum, der mit bezeichnet werde. Die Reihe in (28) 
kann in eine asymptotische Reihe nach der äquivalenten 
Skala übergeführt werden, deren Koeffizienten Poly-
nome in a, b und ζ sind: 
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Asymptotische Entwicklungen 9 

oo 
(29) P(a,b;a+b-c+1}1-z) « ^ P0 ( a . t ^ z j c " ^ ( | c l - » o o , c e « 1_ z) . 

Die in (26) auftretenden Quotienten r(a-c+1)/r(a+b-c+1) und 
r(b-c+1)/r(1-c) besitzen nach 4.4 für Ici - * oo, I arg(-c) Ι«π-ε 
b i s auf sich gegenseitig· wegkürzende Faktoren ( - c ) - ^ und 
(-c)k asymptotische Entwicklungen nach Potenzen von 1/c mit 
Koeffizienten, die Polynome in a und b bzw. in b sind. Multi-
p l i z i e r t man beide Entwicklungen miteinander und die Produkt-
reihe anschließend mit (29)« so erhält man die Entwicklung 

(30) k 1(a ,b,c)F(a,b}a+b-c+1;1-z) κ 

CO 
55 Σ 3 * ( a f b t z )c " · * ( lei -

9=0 

die schließlich noch in die äquivalente asymptotische Geihe 

(31) k 1(a ,b,c)F(a,b;a+b-c+1}1-z) s 

00 
S Σ Ma,b t8){(c)V )}~1 ( ICI — oo , c e W^) 

0=0 

transformiert werden kann. Dabei sind und Polynome 
in a , b und z . Zur Berechnung der beschränken wir uns 
zunächst auf den F a l l Be ζ <1/2 , O < γ 0 /2 <arg(-c) $ f Q mit 
einer kleinen fes ten Zahl 2Γ0· Dann i s t offenbar 1/sin(Jtc) = 
= o(1) , wegen (20) Γ ( a - c + 1 ) / r ( 1 - o ) ~ ( - c ) a und 
r ( b - c + 1 ) / r ( 2 - c ) ~ ( - c ) b ~ 1 sowie mit t - arg(-c) 

(32) | z~ c (1 -z ) c | = 

= exp{- |c |cos y[ lnl1-1/z |+tan γ (Arg ζ - a r g ( l - z ) ) ] } < 

(33) < eacp{-1c|cos y 0 [ ln l1-1/z l - tan 3rolArg ζ - arg(1-z) I] } , 
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10 a. wagner 

so dai kg bei hinreichend klein gewähltem 2T0 I c I —» oo 
exponentiell gegen Null strebt. Da wegen (6) F(1-a,1-b;2-c}z) 
gleichzeitig beschränkt bleibt, folgt aus (25) und (31) 

(34) P(a,b;c;z) κ R^(a,b,z){(c)^} 
o=0 

-1 

(Ici — oo , 0 <γ0/2 s arg(-c) $ y0, Re ζ <1/2). 

Andererseits gilt unter den angegebenen Bedingungen nach 
4.6 die Entwicklung (6), woraus wegen der Eindeutigkeit der 
Koeffizienten einer asymptotischen Entwicklung R^(a,b,z) = 
= (a)^ (b)̂  folgt. Statt (31) kann man also schreiben 

(35) k^(a,b,c)F(a,b;a+b-c+1 ;1-z) s: 

Σ ( Ici —• oo , o . W ^ ) . 
1? =0 

Ersetzt man in (35) a durch 1-a,b durch 1-b,c duroh c-b-a+1 
und ζ durch 1-z, so erhält man 

( Ici -*. OO , o € W8). 

Aus (25), (35) und (36) folgt schließlich 

(37) P(a,b;c|z) = 2 9 ·* • 0(c"n-1) + 
v>=0 

+ k^(a,b,c,z) » Q-a),(1-b), , 
2_ ·?! (c-b-a+1)^ ( 1" z ) + 0 ( c > 

L 
(Ici —» oo, cc IKj n l ^ ) 
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Asymptotische Entwicklungen 11 

mit 

/ - j n \ ν r ~ ν , ~ „ s , π r(a+b-c) „1-C/·* „ \ C - b - a (38) k3(a,b,c,z) = sin(jrc) r(a5r(b)r(1-c) z ( 1~ z ) 

Offenbar hängt es von k^ ab, ob und gegebenenfalls welche 
Teile in (37) vernachlässigbar sind. 

4.8. Ist He ζ ^1/2, so gilt (37) speziell für γ= 
= arg(-c) = o(1). In diesem Fall folgt aus r(a+b-c)/r(1-c)~ 
~ (-c)a+b"1, (32) und (38) 

(40) |k3(a,b,c,z)|* 

- 8 ΐ η( π ο) |(-Oa+b-1 |θ3φ{-|ο| (1+0(1)) [ln|1-1/z|+o(1)]} . 

Daraus wird ersichtlich, daS für Re ζ <1/2 und I c+n I ί 5> 0 
der Koeffizient k^ mit |c| — » oo exponentiell fällt, und sich 
deshalb (37) auf (6) reduzieren läät. Damit ist auch der Fall 
(ii) von Satz 1 vollständig bewiesen. 

Ist He ζ <1/2 und c =-n+o(1) (n —·· oo) oder Re ζ = 1/2 
und arg(-c) = o(1), so kann über die GröSenordnung von k^ 
keine allgemeingültige Aussage gemacht und folglich keiner 
der Anteile in (37) von vornherein vernachlässigt werden. 
Das stimmt überein mit den Aussagen in den Fällen (i) und 
(ii) von Satz 3. 

4.9* Es sei jetzt Re ζ>1/2 und c strebe in dem zum Win-
kelraum (7) komplementären »Vinkelraum 

(41) W* s π/2 - ε < arg(-c) = γ <- β + π /2 + ε 

gegen Unendlich. Da ex und β nach (3) und (4) nicht gleich-
zeitig Null sein können, folgt aus (5) β -α>0. Also ist W* 
vollständig in Wz (-β-π/2 + e 4 τ « -α + π/2 - ε) enthalten und 
wegen Wz η = Wz gilt (37) in W*. Aus (3) und (4) erhält 
man 
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12 E , W a g n e r 

( 4 2 ) | z " c ( 1 - z ) ° | = e x p { - | c | c o s 2 r l n | 1 - 1 / z | [ 1 - t a n a t a n y ] -

- η | c | s i n γ } 

o d e r 

( 4 3 ) | z ~ c ( 1 - z ) ° | » e x p j - l c l o o e y I n | 1 - 1 / » I [ l - t a n | 3 t a n f f · ] + 

+ η I c i e i n χ } . 

I m T e i l w i n k e l r a u m 

W** : - π / 2 < - c* - π / 2 + ε « a r g ( - c ) = tf < - β + π / 2 - ε < π / 2 

v o n W* f o l g t w e g e n 1 / t a n ( a - e ) < t a n j f « 1 / t a n ( ß + e ) u n d 

c o a y j s i n e a u s ( 4 2 ) b z w . ( 4 3 ) 

( 4 4 ) | z " c ( 1 - z ) c U Θ 3 φ { - λ ε I c i s i n e l n | 1 - 1 / z | + π | c | ' s i n i c i } 

m i t e i n e r p o s i t i v e n K o n s t a n t e n = 1 - t a n o t / t a n ( « - e ) f ü r 

F <0 u n d Α ε = 1 - t a n ß / t a n ( ß + e ) f ü r y » 0 . B e r ü c k s i c h t i g t m a n 

n o c h Ι 1 / β 1 η ( π ο ) ΐ £ e x p { - n | c | s i n l ^ l } , 8 0 e r h ä l t m a n s c h l i e ß l i c h 

f ü r b e t r a g s m ä ä i g h i n r e i c h e n d g r o ä e c e W** d i e A b s c h ä t z u n g 

( 4 5 ) | k 3 ( a , b , c , z ) | * 

r \ a + b — 1 . 
> g ^ a j r ( b ) z ( 1 - z ) " * a e x p { - A £ l c | s i n e I n 1 1 - 1 / » l } , . 

A u s i h r i s t e r s i c h t l i c h , d a B | k ^ | m i t | c | 00 e x p o n e n t i e l l 

g e g e n U n e n d l i c h s t r e b t u n d m i t h i n d i e e r s t e Summe i n ( 3 7 ) 

v e r n a c h l ä s s i g b a r i s t * D a m i t i s t S a t z 2 b e w i e s e n . 

4 . 1 0 . F ü r R a z > 1 / 2 u n d Γ = a r g ( - c ) = - Α - Λ/2 + o ( 1 ) 

o d e r γ - a r g ( - c ) = - | 5 + π / 2 + o ( 1 ) e r h ä l t m a n a u s ( 4 2 ) b z w . 

( 4 3 ) w e g e n t a n 2 f ~ 1 / t a n a b z w . t a n ~ ì / t a n | ì 

( 4 6 ) I z ~ c ( 1 - z ) ° / s i n ( n c ) | = e i p { o ( I c i ) } , 
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also in Ubereinstimmung mit F a l l ( i i i ) von Satz 3 keine aus-
reichend genaue Aussage über die Größenordnung von k y 

5. Bemerkungen und Ergänzungen 
5 .1 . I s t He ζ <1/2 und c = -n+y(n) mit μ(η) = o(1) fü r 

η —» oo ( F e l l ( i ) von Satz 3)» so kann man s ich , anknüpfend 
an (40) , le icht überlegen, daâ s ich (10) auf (6) reduzieren 
läßt , wenn In μ(η) s o(n) i s t . 

5 .2 . Es i s t bekannt, claS mit den Beziehungen 

F ( a , b » c ; z ) = ( 1 - z ) 0 - b ~ e P ( c - a , c - b ; c { z ) = ( 1 - z ) " ' a F ( a , c - b ; c ; z / ( z - 1 ) ) 

und F ( a , b ; c { z ) = F ( b , a ; c ; z ) aus den Entwicklungen (6 ) , (9) und 
(10) le icht entsprechende asymptotische Entwicklungen in den 
Fäl len 
- I c| oo , | b | - » oo , 
- IC ι -» oo , I a| OO , 
- I ΟI oo , lai oo , Ibl-frOo 
hergelei tet werden können, jeweils aber unter dien s tark 
einschränkenden Bedingungen, daJ3 die Differenzen der gegen 
Unendlich strebenden Parameter konstant se in müssen. 

5.3 · Folgt man dem Konzept von Watson [12], so können 
mit te l s der Beziehung [1] 

(47) r(c-b-a+1 i z 1 - C ( 1 - 3 ) C - t , - a » 

χ i ' (1-a,1-b; c-b-a+1 }1-z) = F ( a , b j c , z ) + 

+ e ± * i (1 -b ) r (1-a)r (b) ( . z ) a - c ( 1 _ z ) c - b - a , 

χ F(1-a ,c-a ;b-a+1:1/z) 

(die oberen Vorzeichen in den Exponenten stehen f ü r Im z> 0, 
die unteren für Im ζ < 0) aus asymptotischen Entwicklungen 
f ü r |c | -» 00 und f e s t e a , b, ζ solche f ü r Ibi -»00 mit f e s t en 
a , c , ζ oder fü r | a | 00 mit f e s ten b, c , ζ berechnet werden. 
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14 Β. Wagner 

Zu diesem Zweck i s t (47) nach F(1-a,c-a;b-a+1;1/z) aufzulösen 
und a, b, c und ζ durch 1-a bzw. o-a bzw. b-a+1 bzw. 1/z 
zu ersetzen; Wenn man anschließend noch a und b vertauscht, 
ergibt sich nach kurzer Heohnung 

(48) ^ V t ö " 0 = ^ îa+Îï-o+1 + 

+ <12 P(1-b,c-b;a-b+1j1/z) 

mit 

(49) 

und 

^ = (-z)~br(a+1-c)/[r(c-b)r(a+b-c+1)] 

(50) *2 
/Λ ^ c-b-a _b-c r(a-c+1) 

Aus den Sätzen 1 bis 3 erhält man für I a I CO 

(51) F(b,b-c+1;a+b-c+1;1-1/z) = 

Σ <1 w * « K . - 1 , 

mit 

(52) 

+ λ2 k (a-b+1)^, » • < > ( » ) Σ 
L-?=0 

k = k (a ,b , c , z ) = 

π ( 1 - 1 / z ) c " W ( 1 / z ) a ~ b r (b-a) 
= sin(a+b-c+1 )ft r(b)r(b-c+1) Γ(c-b-a) 
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und Konstanten λ^, λ^, die i n Abhängigkeit von ζ und arg a 
die Werte 0 oder 1 annehmen. Ersetzt man i n (51) a , b , c 
und ζ in dieser Reihenfolge durch a - c + 1 , 1 - b , 2 - c , ( 1 - 1 / z ) 
so ergibt das 

- 1 

(53) F ( 1 - b , c - b ; a - b + 1 ; 1 / z ) = 

= λ. 
Ls>=0 

(a-b+1 L ζ + 0 ( a " n ~ 1 ) 

+ λ/.k Σ C 1 W . « K . - 1 , 
0=0 

mit k * = k ( a - c + 1 , 1 - b , 2 - c , ( 1 - 1 / z ) " 1 ) und Koeff izienten λ ^ 
die i n Abhängigkeit von a und ζ die Werte 0 oder 1 annehmen. 
Aus ( 4 8 ) , (51) und (53) f o l g t 

(54) F ( a , b : c ; z ) 
r W 

= [ V n + V ^ a ] 
•p=o 

( b ) 9 ( b - c f 1 ) ^ 
0$(a+b-c+1)o 

(1 -1 /z) v + 0 ( a - n - 1 ) 

[ W S ^ ] 
£ (1-b)„(c-b)^ 

•9=0 
>>!( a-b+1 + 0 ( a - n - 1 ) 

Die i n q2> ^ 11111(1 k* auftretenden Quotienten der Form 
r ( a + s ) / r ( a + t ) und r ( s - a ) / r ( t - a ) ( s , t konstant) lassen s ich 
nach (20) b i s auf Faktoren a s _ t bzw. ( - a ) s - t in asymptotische 
Reihen nach der Skala entwickeln. Nach dieser Skala 
können auch die in (54) auftretenden Summen entwickelt werden. 
Berücksichtigt man noch, daß s ich aus /l^q^+A^k^qg der Faktor 

. ( - a z ) Γ ( c - b ) und aus J lgkq.j+Ä^ der Faktor ( - a z ) b - c χ 
χ (1-z) c - l 3 ~ a /r i (b)herausheben lä f l t , so ergeben s ich Entwicklun-
gen der Gestalt . c c 
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16 E. Wagner 

-b -fcB-v F(a.b;oiz3 _ ζ-az) 
r ( c ) r (c-b) 

p0 (b,c,1/z) 
0 (a - n _ 1 ) 

+ ( 1 - z ) - a z 
w 

η 

Σ, . OCa-n~1) 
.9=0 

mit geeignet za wählenden Werten d«r Potenzen von -az . Die 
Koeffizienten p^ und p̂ , sind auf diesem Weg zwar pr inz ip ie l l 
berechenbar, aber sohon die Berechnung vea P2 und p2 würde 
erheblichen rechnerischen Aufwand erfordern, zumal auBerdem 
in Betraoht zu ziehen ist, dafl dabei wegen der Abhängigkeit 
von λ^ bis die den Fällen der Sätze 1 bis 3 entsprechenden 
Fallunterscheidungen hinsichtlich Se(1/z) und arg a zu machen 
sind. In [9] wird eine Entwicklung der Form (55) auf anderem 
Wege hergele i tet , der die Berechnung der Koeffizienten mit-
te ls einer erzeugenden Funktion oder rekursiv [11] gestattet. 
Bs sei noch bemerkt, dsjB der Versuch, den umgekehrten Weg 
£U gehen, also aus (55) mittels geeigneter Funktionalgleiohun-
geti die Sätze 1 bis 3 zu beweisen, fehlschlägt, da sich dann 
in gewissen Winkelräumen der komplexen c-Ebene nur o-Beziehun-
gen ergeben. 

5.*. Läßt man im Fall Ici - *oo zu, daâ auch lai und Ibi 
unbeschränkt sein können, allerdings unter den Bedingungen 
ρ ρ 

a s o (c ) und b s o ( c ) , so bilden die Reihenglieder in (6) 
ebenfalls eine asymptotische Skala. Es erhebt sich die Frage, 
ob auch dann (6) und damit (9) und (10) gelten, was in einer 
nachfolgenden Arbeit untersucht werden wird. Die ansprechende 
Fragestellung für |a| 
in [10] behandelt. 

2 2 co mit b = o(a) und c = o(a) wird 
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