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ASYMPTOTISCHE ENTWICKLUNGEN
DER HYPERGEOMETRISCHEN FUNKTION F(a, b, c, z)
FOR ld~ .o UND KONSTANTE WERTE a, b UND z

1. Einleitung
Asymptotische Lntwicklungen der hypergeometrischen Funk-

tion F(a,bjc;z) fur petragsméBig groBe reelle oder komplexe
werte elnes oder mehrerer Parameter wurden erstmalig von O.Per-
ron (7] und G.N. Watson [12] untersucht. Rir [c| — oo, bei
konstanten Werten von a, b, z werden in [7] uater der ein~-
schrédnkenden Bedingung Im ¢ = const asymptotische Entwicklung:.
angegeben, wihrend in [12] zwgr ¢ine Konzept zur Herleitung
derartiger Entwicklungen fiir beliebig gegen Unendlich stre-
bendes c vbrgestellt wird, dariiber hinaus aber nur die sehr
enfach zu beweisende Entwicklung

kK, P(b+v) 1-b-
(1) Fla,bierliz) = reseioey o0 —rqpy— L0 (111 = w)
»=0

(mit einer erzeugenden Funktion fiir die Koeffizienmten k)
angegeben ist. Die den Geltungsbereich von (1) definierenden
Bedingungen sind in [12] nur zum Teil konkret formuliert und
zudem mit einem wesentlichen Vorzeichenfehler behaftet. Das
Konzept von Watson wird in [4] etwas weiter ausgefiihrt und
dabeli (mit einem nicht ganz luckenlosen Beweis) geseigt, de3
in einem explisit angegebensn, von 2 abhangigen Winkelraum
der komplexen c-Ebene aus (1) die fiir Is| <1 sogar nit dem
Gleichhelitszelchen geltende Batwicklung
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2 E, Wagner

(a),(b)
(2) F(a,b;c;z)zz —v,—v(‘j; 2 (icl— o, a,b,z fest,

9=0 |arg(1-2z)| < x)

tolgt. (Hier und im folgenden verwenden wir die iiblichen Be-
zeichnungen (a), = r(a+v)/r(a), also (a)o =1, (a), =

= a(a+1)(a+t2)...(a+v-1) fiir v21). Nicht richtig ist die in
[4] wie in [1] aufgestellte, unbewiesene Behauptung, dad (2)
bei teliebig gegen Unendlich strebendem ¢ gilt, falls nur
12} <1 ist.

In der vorliegenden Arbeit werden asymptotische Entwick-
lungen fiir F(a,b3c;z) bei beliebig gegen Unendlich strebendem
¢ hergeleitet, deren Gliltigkeitsbereiche bei jeweils belie-
bigen Werten a, b, z (larg(1-z)i<sm ) die komplexe c-Ebene voll
ausschopfen, selbstverstdndlich bis auf die nicht zum Defini-
tionsbereich von F gehdrenden Punkte ¢ = O,~1,-2,... &

2. Bezeichnungen
Ist Re2z>1/2, z # 1 nit |arg(1-z)] <&, so sei

(3 « = (2) = arctan ax-g('lliz)1:1.l).:g| 2o

arg(1-z) - Arg z = o
arctan In1-4/21 )

(4) B=p(2)

wobel Arg z den Hauptwert des Arguments bezeichnet, d.h.
Arg z e (-%, m}. Wegen 1lni1-1/2| <0 und arg(1-z)-Arg z e [-%,5%)
fiir Re z> 1/2 gelten die Ungleichungen

(%) -n/2 <x g0 <P<M/2,

wobei offembar o und B nicht gleichzeitig verschwinden kénnen.
Mit € und 6 werden im folgenden stets positive Konstanten
bezeichnet, die beliebig klein gewidhli werden kSpnen, widhrend
k, m und n stets beliebige, voneinander unabhingige, nicht-
negative ganze Zahlen bedeuten.
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Asymptotische Entwicklungen 3

3. Resultate

Die folgenden Satze gelten unter den generellen Vorausset-
zungen ¢ # -n, |arg(1-z)|<x, 2z # O und z # 1. Die Parameter
a und b sowie z seien beliebige feste komplexe Zahlen,

Satz 1 Es gilt

&, (a),(b)
(6) Flabiess) & 2,y (. &0 (lel = )

v=0

in jedem der folgenden Fidlle:

(1) a=-n oder b = -nj

(ii) Re z2<1/2 und lc+nl: §>0;
(iii) BRe z = 1/2 vuvnd |arg ¢l<:—-¢;
(iv) Re 2> 1/2 und

&) =B-N/2 +E < arg Cx=x+N /2 -~ €,

Satz 2: Sind a # -m und b # -n sowie Re z > 1/2, so
gilt im Winkelraum

(8) —x—mn/2 + € g arg(-c)g-P+R/2 - ¢

fiir |c] — oo die asymptotische Entwicklung

(9 F(a,bjciz) =
~ ! z1'°§1-zE°"b'a I a+b-c; 2, (1-a),(1-b), (1-2)°
= sin(we) ~ r(a) r(o r(1-c vi(c-b=-at1), —z) .

v=0

Satz 3 Sind a # ~m und b # -n, B0 gilt fir
el —» oo : .

k (a)\)(b)v 9

(10) F(a,bjc32z) = ZW 2’ + o(c~ ) 4
v=0

Xk
x z'l-'::(‘l-z)c'b-a C(as+b=c (1-2),(1-b),

+ sinfrc) r(a) F(b) r{1-c “1{c-b-as1), (1-2)” + o(c
: v=0 .

-k=1,
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4 BE. Wagner

in jedem der folgenden F&lle:

(1) Re 2 <1/2 und ¢ = -n + o(1);

(ii) Re 2 = 1/2 und arg(-c) = o(1);

(iii) Re 2>1/2 und arg ¢ = -x+% /2 + 0(1) oder
arg ¢ = =p=3/2 + o(1).

Zu Satz 3 bleibt zu bemerken, da8 in Abhidngigkeit von den
Werten der Konstanten a, b, z eine der beiden Summen in (10)
gegeniiber der anderen vernachldssigbar sein kann, aber dariiber
keine einfache allgemeine Aussage méglich ist. Das hingt
oftrenbar davon ab, ob der Vorfaktor der zweiten Summe mit
{c| = co exponentiell wichst oder fallt.

4, Beweise

4,1, Der Fall (i) von Satz 1 ist trivial, da (6) nach
Definition der hypergeometrischen Funktion sogar mit dem
Gleichheitszeichen gilt., Wir kdnnen deshaldb im folgenden
annehmen,'.daB weder a noch be glsich Null oder einer nega~-
tiven ganzen Zahl ist.

4,2, Fir ¢> 0 und v>n gilt

(e)y = c(c*1).eo(ctn=1)(c*n)...(ct2-1) > cPn(n+1)cea(o=1) =
_ .n 21
= C Q(n—1)! .
Daraus folgt fiir (z! <1 (z # 0), bellebige komplexe a, b
und ¢> 0 die Abschidtzung

&2, (a),(b) % y(laD, (vl
favioia) = 3 Sorayy @ | ¢ EFH YL T e
=0 v c v=n+1 (+1)

< M,;&z—' adg F(lal, [b1313121) = O(c™).
c

Damit ist (6) fiir 1z] <1 und o (reell) —+ +oo bewlesen.

4.3, Zum Beweis der nichttrivialen Fille gehen wir von
der bekannten Integraldarstellung
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Asymptotische Entwicklungen 5

(1) F(a,bjc3z) =

1
= myresdey | t7(1-6)°P Y (1-42)"%t (R > Re 1> 0)
. 0

aus, wobei fiir arg(1-z) = -m oder arg(1-z) = = (oberes bzw.
unteres Ufer des Schnittes z> 1) der Punkt 1/z des Integra-
tionsintervalls auf einem kleinen oberen bzw. unteren Halb-
kreis umgangen wird. Mit der Substitution 1-t = e~ " erhilt

man aus (11)

(12) F(a,b3¢52) = mpyrvadey | e °%ePT(1-e"M) PV (1-z+ze™T) 2ar,

O“sg

Das bedeutiet: F ist fiir Re ¢> Re b (>0) bis auf den Faktor
vor dem Integral die Laplace-Transformierte der Funktion

(13) £(z) = ePT(1-e"T)P"V(1-z+ze~7)"8,

Die Funktion f ist holomorph beziiglich 7 in jedem Winkelraum
mit dem Scheitel O, der keine Nullstellen +2kwi und
~Log(1-1/2z) + 2kmi von 1-e~" baw. 1-z+ze”" enthdlt, insbeson~
dere also fir

(14) -n/2 <Arg t<mn/2, falls Re z <1/2 ist,
und
(15 a<hrg 1<f3, falls Re z> 1/2 ist.

In jedem abgeschlossenen Teilwinkelraum von (14) bzw. (15)
ist offenbar e'brf(T) = 0(1) fir 7 —» 0 , so dad der Inte-
grationsweg in (12) innerhalb der winkelrdume (14) bazw. (15)
beliebig um den Nullpunkt gedreht werden kann. Bezeichnet ¢
den Drehwinkel, so erhdlt man die analytische Fortsetzung
der Bildfunktion in die Halbebene Re|e®(c-b)]> 0,[2]. Da
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6 E. Wagner

F(a,bjc3z)/r(c) eine ganze holomorphe Funktion von ¢ ist,
gilt demnach

(16) F(a,bj;c32) =
4::03:"(P
= 7B ? g-b j e"*£(7)dr (Re b> 0, Re[(c-b)ei¢]> 0)
' 0
mit

(-n/2, ®/2) fiir Re z<1/2,
7 @€ ,
(=,p) fir Re z> 1/2.

Die Funktion f(t)T-b+1 ist holomorph in einer Umgebung von
7= 0, 80 da8 £ elne asymptotische Entwicklung

(18) £(z) = 01 i P,(8,b,2)t° (T —= 0)

+=0
besitzt. Die Koeffizienten P,(a,b,z) sind, wie man aus (13)
leicht erkennt, Polynome in a, b und z. Aus (18) folgt nach
einer bekannten Verallgemeinerung des Lemmas von Watson [3]
in jedem Winkelraum Iarg[eiq(c-b)]ls /2 - ¢ die bereits von
watson [12] (vgl. (1) in der vorliegenden Arbeti) angegebene
asywptotische Entwicklung

(19 F(a,bjc;2z) =

= FTIWII:—%%)-?Y ZO Pv(a,b,z)F(9+b)c'v'b (lel — o).
J=

4.4, Nach [8) gilt fiir beliebige komplexe Zahlen s und t
(s-t+1)

oo B (8)(t-8) bk
0§55 = 5 e g
k=0

(¢ —+ o, |arg(cts)|<n-¢),
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Asymptotische Entwicklungen 7

wobei die B](:B)(t) die durch die erzeugende Funktion

(s)

© B t

1) 28eV2(e%-1)"8 = E —kk!—(—) 2X  (1z] <21
k=0

definierten verallgemeinerten Bernoullischen Polynome (in 8
und t) sind. v

4,5, Setzt man fiir den Faktor r(c)/r(e-b) in (19) die
nach 4.4. fir |arg c|¢cn—-¢ geltende asymptotische Entwicklung
(20) ein und multipliziert anschlieBend beide Entwicklungen
miteinander, 80 erhiélt man fiir Iarg [(c-b)ei"” < m/2-¢

O
(22) Fa,bsc32) & D Qy(a,b,2)c™” (el — o)

=0
mit Koeffizienten q,, die Polynome in a, b und z sind. Werden
die Potenzen ¢~ " nach der dquivalenten asymptotischen Skala
{[(c)y]-1}yao entwickelt, so folgt aus (22)

(23) F(a,bjciz) =
~ Z Rg(a.b.z)[(c)p] 1 -, lars[(c-b)ei"]ls 7 /2-¢)
»=0

mit in a,b,z ganzrationalen Koeffizienten R,.

Fir |1z} <1, ¢ = O und ¢ (reell) — +oo miissen nach 4.2
die Entwicklungen (6) und (23) identisch sein, also R, =
= (a),(b), 2’ /71, Beriicksichtigt man noch (17), so ist gezeigt,
da8 (6) im Fall Re z €1/2 im Winkelraum }arg c¢i<s - €und im
Fall Re z> 1/2 im Winkelraum - p-m/2 + € carg c {~o+ n/2-¢
gilt, aber jeweils noch unter der einschrénkenden Bedingung
Re >0,

4,6, Setzt man in der GauBschen Beziehung [1]

F(a,b3c3z) = (1-2)F(a,b+13c;2) + (1-a/c)zF(a,b+13c+132)

fiir die hypergeometrischen Funktionen auf der rechten Seite
die nach 4,5 fiir Re b> -1 geltenden Entwicklungen (6) ein,
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8 E. Wagner

so erhélt man fiir F(a,bjcyz) wieder (6). Durch wiederholte
Anwendung dieser SchluBweise kann msn sich von der Eine
schrénkung Re b> 0 befreien. Damit ist Satz 1 bis auf den
Fall (ii) bewiesen.

4,7. Zum Beweis des fiir arg(-c) = 0(1) noch offenen Falls
(ii) von Satz 1 sowie der Sdtze 2 und 3 gehem wir ‘aus von
der bekannten Beziehung (1]

(24) F(a,bja+b=c+1;1-2) --—%ﬁig:g;;zgglzg% F(a,bjcyz) +

. P(a+b-%;_l‘%l;‘§c-1) -0(1 z)c-b-& F(1-a,1~b;2-c;2).

Wegen M(c=1) = =xn/[F(2-c)sin(nc)] erhilt man aus (24)
(25) F(a,bjc3z) = k1(a,b.c)F(a,b;a+b-c+1;1-z) +

+ k2(a,b,c,z)F(1-a,1-b;2—c;z)

mit :
(26) kg = r(a=c+1) P(b-c+1)/ [F(a+tb-c+1)r(1-c)],
(27) K, r(a~o+1)r(b=-c+1 z1-c(1_z)c-b-a.

sinixci r(a)r{v)r(1-c)r(2-c
Nach dem bis einschlieBlich 4.6 gefiihrten Beweis gilt

= (a), (b),
(28) F(a,bjatb=c+131-2) = Z m (1-2) (lcl=wo0)
=0
in einem durch die Ungleichungen |arg(-c)lg¢m=—-¢ fiir
Re(1-2) £1/2 oder ~p-m/2 +¢ g arg(-¢c) < =oa+x% /2 - ¢
(x =x(1-2), B =B (1-2)) fir Re(1-z)> 1/2 definierten Win-
kelraum, der mit W, , bezeichnet werde. Die Reihe in (28)
kann in eine asymptotische Reihe nach der &dquivalenten
Skala {c'y}p>o iibergefiihrt werden, deren Koeffizienten Poly-
nome in a, b und z sind:
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Asymptotische bntwicklungen 9

[s*]
(29) F(a,bja+b=-c+131=-2) = Z f’;,(a,b,z)c-g (lel 00, ceW,_,).
+=0
Die in (26) auftretenden Quotienten r(a-c+1)/r(at+b-c+1) und
r(b-c+1)/P(1~c) besitzen nach 4.4 fir lc| —» o, |larg(-c)lsx=-¢
bis auf sich gegenseitig wegkiirzende Faktoren (--c)"b und
(—c:)b asymptotische Entwicklungen nach Potenzen von 1/c mit
Koeffizienten, die Polynome in & und b bzw. in b sind, Multi-
pliziert man beide Entwicklungen miteinander und die Produkt-
reihe anschliedend mit (29), so erhdlt man die Entwicklung

(30) k,(a,b,c)F(a,bjatb-c+131-2) =
1
> v
= Z Qu(a,b,2)c” (lel — o, ceW, ),
»=0

die schlielich noch in die aquivalente as_ymptotische Reihe
(31 k,“(a,b,c)l"(a,b:a+b-c+1;1-z) =

00
S ,,Z(:, Ro(a,0,8){(e)5} (lel =@, ceW,_,)

transformiert werden kann. Dabei sind 6\, und ﬁv Polynome
in a, b und z, Zur Berechnung der ﬁ\, beschrdnken wir uns
zunfichst auf den Fall Re z <1/2, 0 <7,/2 ¢arg(-c) <, mit
‘einer kleinen festen Zahl Ty Dann ist offemnbar 1/sin(mc) =
= o(1), wegen (20) r (a-c+1)/r(1-0)~(-c)®  und

P (b=ct1)/1(2=c) ~ (~c)?~7 sowle mit 7 = arg(~c)

(32 | |2=¢(1-2)¢| =
= exp{-lclcos 7[1ni1-1/z1+tan 5 (Arg z - arg(1-2))]} <

(33) < exp{-lclcos ¥o [1nl1-1/21=tan ¥, lArg z - arg(‘l-z)l]} '
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10 ' E, vagner

so das k2 bei hinreichend klein gewahltem 7o mit ¢l — o
exponentiell gegen Null strebt. Da wegen (6) F(1-a,1-b;2~c;z)
gleichzeitig beschrankt bleibt, folgt aus (25) und (31)

o 1
(34) Fla,bse52) = > Ryla,b,2){(e)o}”
v=0

(lel » o0, O <y /2 carg(-c) < g, Re 2<1/2).
Andererseits gilt unter den angegebenen Bedingungen nach
4.6 die Entwicklung (6), woraus wegen der Eindeutigkeit der

Koeffizienten einer asymptotischen Entwicklung ﬁ‘,(a,b,z) =
= (a), (b)), 2V /1 folgt. Statt (31) kann man also schreiben

(35) k,(a,b,c)F(a,bja+b=ct131~2) =

= Z-\?_l(a:z (Icl—.oo,cel]_a)'.

Ersetzt man in (35) a durch 1-a,b durch 1-b,c durch c-b-a+i
und z durch 1-z, so erhdlt man

. - ., (1-a), (1-b)
(36) HEEIREHL Ftr-a,1bs2-0in) = 3 Srrepoarny, (-9
+=0

(l¢] =+ o , oewz).

Aus (25), (35) und (36) folgt schlieBlich

B (a),(b)
(37 F(a,b;cyz) = Z T‘Y(BQ_’ 2° + 0~y +

»=0

2 (1-a), (1-b)
+ k3(a|b701z) Zo m (1—2)9 + O(G-n-1)
V=l

(lel —= o, cewznw,l_z)
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Asymptotische kntwicklungen 11

mit

b-c .- ~b~
(38) k3(a,b,c,z) s:.n(Jrc) r‘(a)?‘?b)l‘(’l c) 2 T(1-2) 08,

Offenbar hangt es von k3 ab, ob und gegebenenfalls welche
Teile in (37) vernachlidssigbar sind.

4,8, Ist Re z <1/2, 80 gilt (37) speziell fiir =
= arg(-c) = 0(1). In diesem Fall folgt aus r(a+b-¢c)/r(1-c) ~
~ (=c)8P1, (32) und (38)

(40) |k3(8.b,°.2)|z

x m%‘m | (~¢)@*=1] exp{- lel (1+0(1)) [1n11-1/z1+o(1)]}

Daraus wird ersichtlich,da8 fiir Re z<1/2 und |c+nl> §>0
der Koeffizient k3 mit |c|] — o exponentiell f&Allt, und sich
deshald (37) auf (6) reduzieren 1lddt. Damit ist auch der Fall
(ii) von Satz 1 vollstdndig bewiesen.

Ist Re 2 <1/2 und ¢ =-n+0o(1) (n —» o0) oder Re z = 1/2
und arg(-c¢c) = 0o(1), so kann iliber die GrdBenordnung von k3
keine allgemeingiiltige Aussage gemacht und folglich keiner
der Anteile in (37) von vornherein vernachlidssigt werden.

Das stimmt iiberein mit den Aussagen in den Fallen (i) und
(ii) von Satz 3.

4,9, Es sei Jetzt Re z>1/2 und ¢ strebe in dem zum Win-

kelraum (7) komplementédren winkelraum

(41) W; $ —x=N/2 - € <arg(~-c) = F<-P+R /2 + €

gegen Unendlich, Da o und P nach (3) und (4) nicht gleich-
zeitig Null sein kounen, folgt aus (5) P -«>0. Also ist W,
vollstdndig in W, (-p-m/2+e<y < ~x+x/2 - €) enthalten und
wegen W, nW, _ = w gilt (37) in W*. Aus (3) und (4) erhdlt
man
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12 E, Wagner

(#2) |z"°(1-2)°| = exp{-lclcosa* 1n(1-1/2| [1=tanc tany] -
-7 |c]| sina*}

oder

(43) |z'°(1-z)°| = exp{-lclcosa* 1n(1-1/2| [1-tanp tany] +

+1 |cl sing‘}.

In Teilwinkelraum

L2

W, /2 <= x =-n/2 + € carg(=c) sy s -P+n/2 ~€<n/2

von W; folgt wegen 1/tan(x-€) ¢ tan 7 <1/tan(p+e) und
cos > sine aus (42) bzw. (43)

() lz"c('l-'z)clz exp{-;ﬁe fe] sine 1n|1-1/z] += |cf sinw[}

mit einer positiven Konstanten 1, = 1 ~ tan o/tan(o=-¢) fLiir
%<0 und _AE = 1 - tan B/tan(Bf+€) fir p2> O. Beriicksichtigt man
noch 11/sin(nc)| > exp{-wic| sin |gl}, 80 erhilt man schlielich
fir betragsmiflg hinreichend groBe c ¢ W;* die Abschiétzung

(45) ]k3(a,b,c,z)| >

- a+b=1 -a=b -
2 lﬂw z(1=-2) | exp {-Zelcl sine 1n|1-1/z|}|.

Aus ihr ist ersichtlich, daB8 |k3| mit |c] — o exponentiell
gegen Unendlich strebt und mithin die erste Summe in (37)
vernachléssigbar ist. Damit ist Satz 2 bewiesen.

4,10, Fiir Re z> 1/2 und ¥ = arg(-c) = - o =xn/2 + o(1)
oder 7 = arg(~c) = =p + x/2 + 0o(1) erhilt man aus (42) bzw,
(43) wegen tan ¥ ~1/teno bzw. tan g~ i/tanf

(46) | 27%(1-2)%/sin(ne)| = exp{oCici)},
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Asymptotische Entwicklungen 13

also in Ubereinstimmung mit Fall (iii) von Satz 3 keine aus-
relichend genaue Aussage iiber die GrdSenordnung von k3.

5. Bemerkungen und BErgénzungen

S5¢1. I8t Re z <1/2 und ¢ = -n+p(nr) mit p(n) = o(1) fir
o —» o (Fall (1) von Satz 3), so kann man sich. ankniipfend
an (40), leicht iiberlegen, daB sich (10) auf (6) reduzieren
148%, wenn ln p(n) = o(n) ist.

5.2. Es ist bekannt, daB mit den Beziehungen

F(a,b;c;z)=(1-z)c'b'aF(c-a,c—b;c;z)=(1-z)°aF(a,c-b;c;z/(z—1))

und F(a,bjc3z) = F(b,ajcyz) aus den Entwicklungen (6), (9) und
(10) leicht entsprechende asymptotische Entwicklungen in den
Fdllen

- Icl-ooo ’ Ibl-—-’@ *
- lel+>w , |8l -,
- |O] —» o |lal - oo D] w00

hergeleitet werden konnen, jeweils aber unter den stark
‘einschrinkenden Bedingungen, daB die Differenzen der gegen
Unendlich strebenden Parameter konstant sein miissen.

5.3. Folgt man dem Konzept von Watson [12], so kdnnen
mittels der Beziehung [1]

+7i(c— - - - .
(47) etri(c-b) ng 2£££;+$; 2 €(1-2)¢ b-a
*» F(1-a,1-bjc-b-a+i;1-z) = Ei%;%%%:?l F(a,bj;c3z) +
+7i(1-b) r(1-a)r(ov a~-¢ c=b-a
+ e —7$(5:%;%71 (=2z) (1-2) x

x F(1-a,c-ajb-a+131/z)

(die oberen Vorzeichen in den Exponenten stehen fiir Im z> 0,
die unteren fiir Im z <0) aus asymptotischen Entwicklungen

fir |c|l - oo und feste a, b, z solche fiir |bl » co mit festen
a8, ¢y z oder fir fal - o mit festen b, ¢, z berechnet werden.
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14 E. Wagner

Zu diesem Zweck ist (47) nach F(1-a,c-ajb-a+131/z) aufzuldsen
und a, b, ¢ und z durch 1-a bzw. o-a bzw. b-a+l bzw. 1/2

zu ersetzen: Wenn man anschlieB8end moch a und b vertauscht,
ergibt sich nach kurzer Rechnung

(48) F(810i0i2) - g, F(b,bmot13a+bmct131-1/2) +

+ 95 F(1-b,c-bja-b+131/2)

mit

(49) q = (-2)"Pr(a+1-0)/[F(c~b) r(a+b-c+1)]
und

c-b-a ,b~c r(a=c+4
(50) 9 = (1-2) 2™ it F(a~b*1) °

Aus den Sétzen 1 bis 3 erhdlt man fir |a) — o

62D) F(b,b~c+1;atb=c+131-1/2) =

2, wMtawsorn, (VA O(a'n'”] .

[ B (b), (b*+1-c),
= 11

v=0

n (1-b), (e=b), _ 01
+ k[Z FTCa5¥1 > 2 470 + o(a™" )}
v=0
nit
(52) k = k(a,b,c,2) =
_ T (1_1/z)c-b-a(1/z)a-b r(b-a)
= sin(a+b-c+1)R r(d)r{o-c+1) r(c~b-a)
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und Konstanten 11, 22. die in Abhingigkeit von z und arg a
die Werte O oder 1 annehmen. Ersetzt men in (51) a, b, ¢

und z in dieser Reihenfolge durch a-c+1, 1-b, 2-c, (1-1/z)'1.
so ergibt das

(53) F(1-b,c-bja=b+131/2) =

{ B (1-b), (c-b),
= A3

-V -n~-1
2. STy, & * o )} *
»=0

k. (D), (b~c*1)

* v v ~n-1
* Ak [ *T(avb-orm), (1-1/2)" + Oa )]
v=0

mit k¥ = k(a-c*1,1-b,2-c,(1-1/2)"") und Koeffizienten Ags Ay
die in Abhingigkeit von a und z die Werte O oder 1 annehmen.
Aus (48), (51) und (53) folgt

(54) Keabjoiz) .

3 (b),(b-c*1)
= [21‘11*"4"*‘12][2 WE%TM{Z (1-1/2)° + O(a‘n"‘)] +

v=0

B (1-b),(c-b)
+ [Agkay+ige, [Z STy, ¢t O(a‘“)} :

=0

Die in Qs 9 k und k* auftretenden Quotienten der Form
r(a+s)/r(a+t) und r(s-a)/r(t-a) (s, t konstant) lassen sich
nach (20) bis auf Faktoren a>~% baw. (—a)s_t in asymptotische
Reihen nach der Skala a'9 230 entwickeln, Nach dieser Skala
konnen such die in (54) auftretenden Summen entwickelt werden.
Berlicksichtigt man noch, da8 sich aus 21q1+24k*q2 der Faktor

(:§Z)-b/r(¢-b) und aus Zakq1+23q2 der Faktor (-az)b'c x
x (1=2)®"P~8/r(b) herausheben 14Bt, so ergeben sich Entwicklun-
gen der Gestalt - 455 -
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| —az)™P p,(b,c,1/2) e
(55) Hespiois) . (can) [ 2 G 1)] +

+ (1-Z)G-b;?§;az)b-c [i 59(b’c’1/z) + o(a"n-1)}

v
v=0 a

mit geeignet zu wihlenden Werten der Potemsen von -az. Die
Koeffizienten p, und ﬁgbaind auf diesem Weg swar prinzipiell
berechenbar, aber schon die Berechnung von P> und 32 wiirde
erheblichen rechnerischen Aufwand erfordera, zumal auBerdem
in Betracht zu ziehen ist, da3 dabei wegen der Abhingigkeit
von 11 bis 24 die den Fillen der Bltse 1 bis 3 entsprechenden
Fallunterscheidungen hinsichtlioh Re(4/8) und arg a zu machen
sind. In [9] wird eine Bntwioklung der Form (55) auf anderem
Wege hergeleitet, der die Berechhung der Koeffizienten mit-
tels einer erzeugenden Funktion oder rekursiv [11] gestattet.
Bs sei noch bemerkt, daB der Versuch, den umgekehrten Weg

2u gehen, also aus (55) mittels geeigneter Funktionalgleichun-
gen die Satze 1 bis 3 zu beweisen, fehlschlégt, da sich dann
in gewissen Winkelraumen der komplexen c-Ebene nur o-Beziehun-
gen ergeben.

S.4. LdBt man im Fall |c| — oo zu, da8 auch l|al und |b!
unbeschrinkt sein kOnnen, allerdings unter den Bedingungen
a® = o(c) und b2 = olc), so bilden die Reihenglieder in (&)
ebenfalls eine asymptotische Skala, Es erhebt sich die Frage,
ob auch dann (6) und damit (9) und (10) gelten, was in einer
nachfolgenden Arbeit untersucht werden wird, Die ensprechende
Fragestellung fiir |a] —» o mit b2 = o(a) und c® = o(a) wird
in [10] behandelt.
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