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ON THE EXISTENCE OF SOLUTIONS
OF A SYSTEM OF DIFFERENTIAL INEQUALITIES

Introduction

Let C and D be matrices of dimensions kxm. Let v(t) us
continuous function for te [to,t1] =: T, with values in'Rk.

We will be dealing with the problen cf existence of a s~
lution of the following system of differentisl inequalities:

(1) cx(t) + Dx(t) <v(t),
(2) x(0) = %X, for teT,

In this paper we show thst under some natural conditions,
system (1)-(2) admits a solution.

The proof will be based on some recently obtained results
for differential inclusions.

The purpose of this paper is to cbtain the following
theorem.

Theorems. If thke rows of matrix C are non-negative
and nonzero (see Application), then there exists a function
x(t) absolutely continuous on the time interval T such, that
{1) is satisfied almost everywhere on this interval and (2)
holds,

The proof of this theorem consists of several lemmas,
which we shall be dealing with in the sequel.
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2 J. Janiak

Main Result
Let E™ be the m-dimensional vector space composed of vec-

mn
tors X = (X,,ee0,X, ) with the norm fix| =y/2_ x° and let
! @ =

P(E®) be the metric spsce of all nonempty closed subsets of
E® with the Hausdorff metric:

h(W,2) = win {6 : Wesylz), zcsym},

where W,Z ¢ P(E®) and’ Sy(M) denotes a d-neighbourhood of the
set M in the space g%,
For a given multimapping H : E' x " —» P(E™) we consider

the relation:
(3) xeH(t,x), =x{0) = X,

An absolutely continuous. function x(t) is said to be a solu=-
tion of (3) on the time interval T if the condition
x{t) e H{t,x(t)) holds almost everywhere on this interval,

We consider a function H given in the form:

(4) H(t,x) ={zeEm : Cz:g =Dx + v(t)} R

where the function v(t), teT is given.

Let us remark that a function x(t) which is defined on
the time interval T is a solution of the differential in-
equaliv. ' es (1) - (2) if and only if it sstisfies (3) with the
function H(t,x) defined by (4).

Now we reformulate the inequalities (1) in terms of so
called differential inclusions.

In connection with the above, the problem of existence
of any solution of differential inequalities (1) - (2) can
be reduced to the problem of existence of a solution of the
differential inclusion (3), where H{t,x) is a funoction de-
fined by (4).

Lemma 1. If the rows ri(c) of the matrix C are
non~-negative and nonzero, then the set H(t,x) is nonempty
and closed for all x ¢E™ and teT,
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Proof. From the assumption of the lemma, the set
H(t,x) ie a common part of k closed half-spsces defined by
the inequalities:

(1) (ry(c), 2) < (ry(=D}, x) + v (t) =2 g4(t,x),

where i = 1,2,...,k and (a,b) denotes the scalar product of
vectors a and b,

Because each vector ri(C) is non-negative and nonzero,
the intersection of these half-spaces is non-empty for each
Ti’ i= 1,0.0’1(0

Let 2; be the smallest positive number such that the vec-
tor =A; (1,1,¢40,1) belongs to the helf-space defined by
inequality (i). Then =-p(1,1...,1) ¢ H(%,x), where

p= max {21,000'21‘} .

It follows that for each t ¢ T and for each x ¢ B® H(t,x)
is a nonempty set, independent of the value of the function
v(t)., This compleates the proof of Lemma 1.

Let us observe that if one of the rows of the matrix C,
for example ri(c), is zero for somes i, then the condition
(ri(c). 2) <74 deternines a nonempty set (the whole space ET)
only if 7y 2 0. So, in the case whers some rows of matrix C
are zero, H(t,x) is nonempty with additional limitations of
x and v(t). We observe that H(t,x) is an unbounded set.

Thus to show the existence of a solution -of the problem (3)
we may apply the theorem on the existence of solutions for
differential inclusions, when the right side is unbounded,

The following theorem is included in ‘the work of J.,Himmel=-
berg and F.S. Van Vleock [1].

Theorem (Himmelberg, Van Vlieck). Let a multi- -
mapping H': T xE® — P(B™) be such that:

a) H(t,x) is a closed set for each (t,x) ¢T xET;

b) H(.,x) is measurabls for each x ¢ B™;

o) thers exists a function ¢ integrable on the time inter-
val T, such that h (H(t,x), H(t,3)) < ¢(%)lix=yll for each
X, ¥ %3
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8} there exists an absolutely continuous function w:T x BB
such that: sup{d(w(t), H(t,w(t)))|teT}< o,
Then the problem (3) has a solution on the time interval
{in the sense of absolutely continuous functions),
We shall prove the assuaptions of this theorem are sa-
tisfied by the function defined by (4).
We know that H{t,x) is a closed and nonempty subset B®,
So the condition a) of the Himmelberg and Van Vleck'’s theoren
is satisfiad,
Now we shall prove that H(.,x) is a measurable function
for each x ¢ BT in the sense of the following definition:
Definition. Amultivalued function F:E" = Q(E®)
is called measurabie if for any closed set Pc E" the set
{x : F(x)nP #£ ¢} is Lebesque measurable,
Continuity and lipschitzianity of a multivaluned function
F(x) are defined in the usual way. For example a function
F(x) satisfies & Lipschitz condition with constant I if for
any points x, x’¢ E® the inequality

=]

h(F(x), F{x’)) € 1elix-x"]l

holds. The number |F| = h({0}, F) is called the modulus of
the get F,

Lemma 2, If Z is a closed set of Em, H(t) =
= {z eB® ; (c,2) < y(t)}, #(t) is continuous on the time
interval T,c is a nonzero vector with non-negative coordi=-
nates, then t(2) = {teT : H{(t)nZ £ #} is a measuradble set.

Proof., Let g=inf{p{t) : teT}, #=sup{g(t):ter},
There exists teT and t ¢ T such that (%) = z and 3(%) = 7.
If H(t)nZ = §, then t(Z) = #. B
If H{t)nZ # ¢, then t(Z) = T,
If H(t) nZ = ¢ and H(¥) nZ # ¢, then there exists a number 7,
such that $(2) = {te T : #(%)> 7.},

From Lemma 2 it followse that assumption b) 1is satisfied
because the intersection of measurabls sets is also a measu-
rable set, ' '
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Lemana 3. There exists a constant 5 such that
h(H(t,x), H(t,y)) <6 |x-y| for all x and y.

The distance €; between the following parallel hyperplanes
(ri(c),s) = ¢4(t,x) and r,(C), 2z = #4(%,y), bounding respec-
tively the sets H{%,x) and H(t,y) is equal tos

I'a“’i(t x) - Ti(t'y)r l(ri(-D)t x-’)l
€ = EAGI S )]

=y (-D) )
ST T 1x7l = pglxegls a=tenn ke

H(t,y) is a polyhedron which is obtained from the polyhedron
H(t,x) by a parallel displacement of its faces.

Prom geometrical wonsideratione it follows that
h(H(t,x), H(t,3)) < Vo max {€/,e00,€}. Thus we have

n(H(t,x), H(t,3)) < Vo max {pysecespp} x-3]

which shows that the multifunction H(t,x) satisfies the
assumption ¢) of Himmelberg and Van Vleok®'s theorsm,

Now we shall prove that there exists an absclutely con-
tihuous funoction w : T — B™ such thats

sup {d(i(t), H(t,w(t)))]| te T_} <o,

Let v(t) be continuous funotion on the' time interval T.
Then the functions a'i(t,x) reach a minimum on the interval T
for each fixed x ¢ BB, Let

Fy(x) = atn 7y(t,3).

Then the inequalities (i) for Ty - a’i(x) define a nonempty
set G(x) such that G(x) cH(%,x) for each te¢T and x ¢ B",

Thus d(0, H(t,x)) <d{0, G(x)) for teT,

Let w(t) = const = woelm, then we havet

d{w(t), H(t,w(s))) = d(0, H(t,wo)) <d(o, Glw,)) <=,
because G(vo) is a nonempty set.
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Thus the assumptions of Himmelberg and Van Vleck’s theoren
are satisfied and there exists & solution of the problem
xeH(t,x), x(0) = x, for t eT, where H(t,x) is defined by (4).

In this way we have completed the proof of our theorem.

Appliication

4 dynamioal open economic model of Leontief’s type (ses
[2]) is given by a system of linear differential equations
of the first order:

x(t) = ax{t) + Bx{t) + u(t)
y{t) = Px(t) + Gx(t).

We want to find such vector-functions u(t) and y(t) of
final output and of consumption of primary factors that sa~
tisfy inequalifies

u(t)> a(t) aend y(t) <F(%) for teT

when u(t) and J(t) are given continuous vector-functions,
and x(0) = x,.

The problex of existence of a plan of total output x(t;
given constraints u(t) and y(t) reduces to a problem of exi-
stence of a solution of the sycstem of differential inequali-

ties
HECEY IS EUR
x(t) + x(t) ¢ ,
G F y(t)

x{0)} = x,, tel,

(5)

We have proved that if the rows of matrices B and G (which
are non-negetive by definition) are non-zero then (5) has
a solution x{t). But there is not to ensured that x(t) be
non-negative for =11 teT,

Remark., If x{0) = 0, x{0) = X>0 and v(t) =
= v(C) = ¥v>0, where V = Dx, then x(t} = X, te¢T, 18 a po-
gitive solution of the problem xe¢ H{t,x), x(0) = x, for te?T,
where H(t,x) is defined by (4).
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Bxistence of solutions . 7

The question whether there existe a non-negative solution
of this problem when v{(t) is not constant has not been solved
8o far,
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