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ORBITS OF K+-ACTION ON NORMAL VARIETIES 

Let K be an a lgebra ica l ly c losed f i e l d of c h a r a c t e r i s t i c 
z e r o . In t h i s paper K+ denotes the a d d i t i v e group of K and P n 

the p r o j e c t i v e space of dimension n. Let K+ a c t s on a normal 
v a r i e t y X. We w i l l prove the fo l lowing theorem. 

T h e o r e m . Let X be a normal v a r i e t y with K + - a c t i o n 
on i t . I f K + ( a ) i s an orb i t of a point a , then K + ( a ) i s a 
smooth curve . 

P r o o f . By [1 ] , there e x i s t s a K + - i n v a r i a n t q u a s i -

- p r o j e c t i v e neighbourhood of K + ( a ) , a l s o , by [ l ] ,we can embed 
i t e q u i v a r i a n t l y in some p n " ' ' with a l i n e a r a c t i o n on i t . 
Hence , i t i s s u f f i c i e n t to prove the theorem i n the case of 
X = P n ~ 1 . 

Let K+ act a l g e b r a i c a l l y on p n ~ 1 by an a l g e b r a i c mor-
phism <p i . e . <p : K+ x p n _ 1 —». Then there e x i s t s a n i l -
potent matrix A such that <p(t ,x) = e A t x f o r any t e K+ and 
x e P "* , [2] . We may assume that the matrix A i s in i t s Jordan 
form and dimension of b locks of A d e c r e a s e s and the h ighes t 
dimension of b locks i s m and number of the b i g g e s t ' b locks 
i s k j [ 2 ] . Let a = [ a 1 , . . . , a f i ] e P n ~ 1 . We w i l l show that K + ( a ) 
i s a smooth curve . We cons ider two c a s e s : 

1. There e x i s t s i , 1 $ i $ k j s u c h that ^ ( ^ - 1 + 1 ) ^ 0 i • 8 • 
there e x i s t s a non zero coord inate which l i e s on the l a s t 
place i n one of the b i g g e s t b l o c k s . 

2. For any i , 1 ^ i there i s 3 , ^ - 1 + 1 ) = 0 . 
In the f i r s t case we may assume that a m 4 0 ( i n the oppo-

s i t e case we change the base on ) . The second case can be 

- 603 -



2 D.Sterna 

reduced to the f i r s t one, since the set { a e Pn~1 :a„,/,, ,..) = 0 , , i m(K-I+1 
for any i , 1 ^ i i k } i s K - invariant and isomorphic to the pro-
j e c t i v e space Pn~k~1 . I f the point a in the space pn"lc~'1 

i s not of the form as in the point 1, we continue the same 
method. At the end we find the projective space P"' in which 
the point a i s of the form as in the case 1 and P'' i s em-
bedded in P as a IT-invariant subspace. 

So to complete the proof i t remains to prove that i f 
am 4 0 , then K+(a) i s smooth. We sha l l assume am = 1. 

Let x e K + ( a ) , then there e x i s t s such t e K+ that x1 = f ( t ) , 
x 2 = f ' ( t ) xm = f ( m ~ 1 ) ( t ) , where f ( t ) = t m _ 1 + b ^ t ® - 2 + 

a i + 1 ( m - 1 J ! + . . . + b 1 t + bQ and bĵ  = —^-j-j for i = 0 , 1 , . . . , m - 1 . 

By the smoothness of the orbit K + (a) , i t i s s u f f i c i e n t 
to prove that the point lim ta (which l i e s in the closure 

t "*oo 
of the orbit K+ (a)) i s nonsingular in K + (a) . 

Since am 4 0 , the point lim ta has the f i r s t coordinate 
t * oo 

not equal to zero. 
We w i l l consider the equations of K^a) in some neigh-

bourhood of the point lim t a . Let U = { x e P n " 1 : x1 £ 0 } . 
t • oo 

Then lim t a e U n K + ( a ) . The set U n K ^ a ) contains almost a l l 
t •<» 

points of .K^a) ; i t does not contain only these points for 
which f ( t ) = 0 . So Un i s a neighbourhood of the point 
lim ta in K+ia). t •oo — L e t x = [ x 1 , . . . , x Q J t l l n I T ( a ) , t h e n x 1 = 1 , f » * m " 

f ( » - D 1 a = —~ . Putting u = t , we get lim ta = lim i— . 
r 1 t »oo. u » 0 u 

We w i l l show that there e x i s t constants c 1 , . . . , o n i such 
t h a t : f ( t ) = 0 l t f ' ( t ) + c 2 t f " ( t ) + . . . + c ^ t f { m " 1 , ( t ) + 

+ c ^ ^ J i t ) . Coef f ic ients -at the same power of t of the 
le-ft and righ1«-hand side of t h i s equation are equal,, hences 

1 - 0,(111-1), 
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b1 = b1c1 + 2 b2c2 + 2«3 b^c-j + . . . + ( c -1 ) ! cm_1 , 

b0 = cm{m-1)I. 

V/e get m equations in m var i ab les . The determinant of 
th i s system of equations i s not equal to zero, so there ex i s t s 
a unique solution of i t . Hence,we get 1 = c^t x^ + . . . + 
+ «m-l* xm + cmxm ^ P 1 ? ^ 

1 - C_X_ C j Xrt + n i 1 „„j 1 2 m-l m t = ——-—: — — and u -c 1x 0 + . . . + cm .,x_ 1 - cmxm i d m-l m mm 

Let U1 = | [ x 1 , . . . , x m ] £ U : cmxm 4 l ] , U1 i s an open 
neighbourhood of lim t a . This g ives the in jec t ion u : U1 n 

t*-oo 1 

n ^ ( a ) —• K, where K denotes a f f ine space of dimension 1. 
It i s easy to check that the inverse i s also r egu l a r . Hence, 
i t i s an isomorphism of U1 n l f ^ a ) with an .open subset in K, 
so K+(a) i s a smooth curve. 
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