

Tadeusz Kowalski, Wawrzyniec Sadkowski

EXISTENCE AND STABILITY OF GLOBAL CLASSICAL SOLUTIONS
FOR A FIRST FOURIER PROBLEM1. Introduction

Let Ω be a bounded domain in the n -dimensional Euclidean space R^n , $n > 2$, with C^∞ -boundary Γ . Let A be an uniformly elliptic operator of the form

$$A = \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial}{\partial x_j} \right) - a(x), \quad a_{ij}(x) = a_{ji}(x)$$

for $x \in \Omega$, $a, a_{ij} \in C^\infty(\Omega)$, $i, j = 1, \dots, n$, $a(x) \geq 0$, and let $D = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right)$.

This paper deals with the existence and the stability of global bounded classical solutions of the equation

$$(1) \quad u_t - Au = f(t, x, u, Du), \quad (x, t) \in \Omega \times (0, \infty),$$

with the initial condition

$$(2) \quad u(x, 0) = \phi(x), \quad x \in \Omega,$$

and the boundary condition

$$(3) \quad u(x, t) = 0, \quad t \in R^+ = (0, \infty), \quad x \in \Gamma.$$

J. Havlová [1] has investigated the existence of the periodic solution for this type problem. She has used a fixed-point-theorem to the equivalent system of nonlinear integral

equations. The existence and the stability of solution of the initial-boundary value problem for the nonlinear hyperbolic equations have been proved in [6] and [2].

Our method of the proof is similar to [6]. At first the existence of the time global solution for linear problem with $f = f(t, x)$ will be proven and the Fourier method will be used. In the case $f = f(t, x, u, Du)$ the Picard iteration method will be applied.

Let $L^q(\Omega)$, $0 \leq q \leq \infty$, and $H^p(\Omega)$, $H_0^p(\Omega)$ be Lebesgue and Sobolev spaces with the norms $\|\cdot\|_{L^q}$ and $\|\cdot\|_{H^p}$, respectively.

Define the subspace

$$(4) \quad K^p(\Omega) = \left\{ u \in H^p(\Omega), A^\alpha u \in H_0^1(\Omega); \quad 0 < \alpha \leq \left[\frac{p-1}{2} \right], \quad p \geq 1 \right\}$$

of the space $H^p(\Omega)$ which is connected with the boundary condition (3).

It follows from the trace theory, the continuity of the operator A and the properties of the space $H^p(\Omega)$ that $K^p(\Omega)$ is a Banach space with a norm $\|\cdot\|_{H^p}$.

Let X be a Banach space with a norm $\|\cdot\|_X$. We denote by $C^p(R^+, X)$ the space of p -times continuously differentiable mappings $u: R^+ \rightarrow X$ and introduce a norm $\sup_{t \in R^+} \sum_{k=0}^p \|D_t^k u(t)\|_X < \infty$ (D_t^k is a k -order differential operator in t). Denote by $F^p(\Omega)$ a space of functions from $C^0(R^+, K^p(\Omega))$ with the norm $\|\cdot\|_{F^p} = \sup_{t \in R^+} \|u(t, \cdot)\|_{H^p}$ and let $G^p(\Omega) = \bigcap_{i=0}^1 C^i(R^+, K^{p-2i}(\Omega))$ be a space with the norm $\|u\|_{G^p} = \sup_{t \in R^+} \sum_{k=0}^1 \left\| \frac{d^k u(t, \cdot)}{dt^k} \right\|_{H^{p-2k}}$. The space $F^p(\Omega)$ is a Banach space with the norm $\|\cdot\|_{F^p}$. We remark

that $G^p(\Omega) \subset \bigcap_{i=0}^1 C^i(R^+ \times \bar{\Omega})$ for $p = \left[\frac{n}{2} \right] + 3$ (see [5]).

O.A.Ladyżenska [3], [4] has considered the eigenvalues problem $A\phi = \lambda\phi$ in Ω , $\phi = 0$ on $\Gamma = \partial\Omega$ and proved that if the following assumptions hold:

A1. $\Gamma \in C^\infty$, $a, a_{ij} \in C^\infty(\Omega)$, $i, j = 1, \dots, n$,

A2. $a(x) \geq 0$ and A is an uniformly elliptic operator in Ω , then

(i) there exists a negative decreasing eigenvalues sequence $\{-\lambda_k^2\}$ which has no accumulating point and $\lambda_1 \neq 0$,

(ii) the system $\{\phi_k\}$ of the corresponding eigenfunctions is complete and orthonormal in $L^2(\Omega)$, each ϕ_k belongs to $K^\infty(\Omega)$,

(iii) any $u \in K^p(\Omega)$, $p \geq 1$, is expanded into the Fourier series $u = \sum_{k=1}^{\infty} \phi_k u_k$, converging to u in $K^p(\Omega)$.

We introduce now in the space $K^p(\Omega)$ the new norm

$$|u|_{K^p} := \left(\sum_{k=1}^{\infty} \lambda_k^{2p} u_k^2 \right)^{\frac{1}{2}}$$

equivalent to the norm $\| \cdot \|_{H^p}$ for $u \in K^p(\Omega)$ i.e. there exist positive constants δ_1, δ_2 depending on Ω and such that

$$(5) \quad \delta_1 \|u\|_{H^p} \leq |u|_{K^p} \leq \delta_2 \|u\|_{H^p} \quad \text{for any } u \in K^p(\Omega), \quad p \geq 1.$$

The solution u of the problem (1)-(3) is searched in the space $G^p(\Omega)$.

2. The linear case with $f = f(t, x)$

Let us assume that $p \geq 2$ and

A3. $f = f(t, x)$, $f \in C^0(R^+, K^{p-1}(\Omega))$, $\sup_{t \in R^+} |f(t, \cdot)|_{K^{p-1}} = H < \infty$,

A4. $\phi \in K^p(\Omega)$,

and consider the equation

$$(1') \quad u_t - Au = f(t, x).$$

Theorem 1. If the assumptions A1 - A4 hold, then the problem (1'), (2), (3) has a unique global classical solution $u \in G^p(\Omega)$ satisfying

$$(6) \quad \sup_{t \in \mathbb{R}^+} \|u(t, \cdot)\|_{H^p} \leq C_0 \left(\|\phi\|_{H^p} + \frac{1}{|\lambda_1|} \sup_{t \in \mathbb{R}^+} \|f(t, \cdot)\|_{H^{p-1}} \right).$$

Proof. By A3 and (iii), the function f can be expanded into the Fourier series

$$(7) \quad f(t, \cdot) = \sum_{k=1}^{\infty} f_k(t) \phi_k$$

which converge in $K^{p-1}(\Omega)$ with respect to $t \in \mathbb{R}^+$ and has a norm given by

$$(7') \quad \|f(t, \cdot)\|_{K^{p-1}}^2 = \sum_{k=1}^{\infty} \lambda_k^{2(p-1)} f_k^2(t).$$

Similarly, by A4 and (iii), for the function ϕ we have the series

$$(8) \quad \phi = \sum_{k=1}^{\infty} p_k \phi_k$$

converging in $K^p(\Omega)$ and with norm given by

$$(8') \quad \|\phi_k\|_{K^p}^2 = \sum_{k=1}^{\infty} \lambda_k^{2p} p_k^2.$$

We set up a solution u in a formal Fourier series $u(t, \cdot) = \sum_{k=1}^{\infty} u_k(t) \phi_k$ and at first we show that this formal series converges in $F^p(\Omega)$. Next, we prove that $u \in G^p(\Omega)$. Substituting (7), (8) into (1'), (2) and taking an inner product with ϕ_k in $L^2(\Omega)$, due to the property (ii) of eigenfunctions, we obtain an infinite ordinary differential system

$$(9) \quad u_k + \lambda_k^2 u_k = f_k(t), \quad k=1, 2, \dots,$$

with the initial conditions

$$(10) \quad u_k(0) = p_k, \quad k=1, 2, \dots.$$

The solution u_k of the problem (9), (10) has a form

$$(11) \quad u_k(t) = p_k e^{-\lambda_k^2 t} + \int_0^t e^{-\lambda_k^2(t-\tau)} f_k(\tau) d\tau, \quad t \in R^+, \quad k = 1, 2, \dots.$$

Then the formal solution of the problem (1'), (2), (3) is

$$(12) \quad u(x, t) = \sum_{k=1}^{\infty} \left[p_k e^{-\lambda_k^2 t} + \int_0^t e^{-\lambda_k^2(t-\tau)} f_k(\tau) d\tau \right] \phi_k(x).$$

In order to show that $u \in F^p(\Omega)$ we must examine the convergence of the following series

$$\sum_{k=1}^{\infty} \left[p_k e^{-\lambda_k^2 t} + \int_0^t e^{-\lambda_k^2(t-\tau)} f_k(\tau) d\tau \right].$$

By applying the Schwarz inequality, it is easy to obtain the estimate

$$(13) \quad u_k^2(t) \leq 2 \left[p_k^2 e^{-2\lambda_k^2 t} + \frac{1}{\lambda_k^2} \int_0^t e^{-\lambda_k^2(t-\tau)} f_k^2(\tau) d\tau \right].$$

Thus, by (i), we have

$$(14) \quad \begin{aligned} & \sum_{k=1}^m u_k^2(t) \lambda_k^{2p} \leq \\ & \leq 2 \left[\sum_{k=1}^m p_k^2 \lambda_k^{2p} e^{-2\lambda_1^2 t} + \sum_{k=1}^m \int_0^t e^{-\lambda_1^2(t-\tau)} \lambda_k^{2p-2} f_k^2(\tau) d\tau \right] = \\ & = 2 \left[e^{-2\lambda_1^2 t} \sum_{k=1}^m p_k^2 \lambda_k^{2p} + \int_0^t \left(\sum_{k=1}^m \lambda_k^{2p-2} f_k^2(\tau) \right) e^{-\lambda_1^2(t-\tau)} d\tau \right]. \end{aligned}$$

Since $\phi \in K^p(\Omega)$ and $f \in C^0(R^+, K^{p-1}(\Omega))$, the right-hand side of (14) tends to zero uniformly in $t \in R^+$, as $m, l \rightarrow \infty$. This

means that the series $\sum_{k=1}^{\infty} \lambda_k^{2p} u_k^2(t)$ converges uniformly in $t \in \mathbb{R}^+$. Due to (7), (7'), (8), (8'), it follows from (14) that

$$(15) \quad |u(t,.)|_{K^p}^2 \leq 2 \left[e^{-2\lambda_1^2 t} \|\phi\|_{H^p}^2 + \int_0^t |f(t,.)|_{K^{p-1}}^2 e^{-\lambda_1^2(t-\tau)} d\tau \right].$$

Using the equivalence of the norms $\|\cdot\|_{H^p}$, $|\cdot|_{K^p}$ and the inequality (5), we have the desire estimate

$$(15') \quad \begin{aligned} \|u(t,.)\|_{H^p}^2 &\leq \\ &\leq C_0^2 \left[e^{-2\lambda_1^2 t} \|\phi\|_{H^p}^2 + \int_0^t \|f(t,.)\|_{H^{p-1}}^2 e^{-\lambda_1^2(t-\tau)} d\tau \right], \end{aligned}$$

with $C_0 = \frac{\sqrt{2}\delta_2}{\delta_1}$. From (15') we obtain the inequality (6).

In order to show that $u \in C^1(\mathbb{R}^+, K^{p-2}(\Omega))$ it is enough to prove that $\sum_{k=1}^m \lambda_k^{2(p-2)} (u_k(t))^2$ converges uniformly to zero, as $l, m \rightarrow \infty$. From the equation (9), after some calculations, we have

$$\sum_{k=1}^m \lambda_k^{2(p-2)} \dot{u}_k^2(t) \leq 2 \left[\sum_{k=1}^m \lambda_k^{2(p-2)} f_k^2(t) + \sum_{k=1}^m \lambda_k^{2p} u_k^2 \right].$$

By the assumptions A3, A4, the right-hand side of the previous inequality tends to zero uniformly for $t \in \mathbb{R}^+$ and this implies that $\dot{u} \in C(\mathbb{R}^+, K^{p-2}(\Omega))$. Thus

$$|\dot{u}(t,.)|_{K^{p-2}}^2 \leq 2 \left[|f(t,.)|_{K^{p-2}}^2 + |u(t,.)|_{K^p}^2 \right].$$

Having $|f(t,.)|_{K^{p-2}} \leq \tilde{C}_1 |f(t,.)|_{K^{p-1}}$ for some positive constant \tilde{C}_1 , we get

$$|\dot{u}(t,.)|_{K^{p-2}}^2 \leq \tilde{C}_2 \left[|f(t,.)|_{K^{p-1}}^2 + |u(t,.)|_{K^p}^2 \right],$$

with $\tilde{C}_2 = \max(2, 2\tilde{C}_1)$.

Uniqueness follows from (6). Thus Theorem 1 has been proved. For $p = \left[\frac{n}{2} \right] + 3$, due to Sobolev's imbedding theory, u is a classical solution i.e. $u \in C^1(\mathbb{R}^+ \times \bar{\Omega})$ and $u_{xx} \in C(\mathbb{R}^+ \times \bar{\Omega})$

3. The nonlinear case

Due to Moser's theorem (see [6] Appendix), the following lemma holds.

Lemma 1. Let function $f(t, x, a)$, $a = (a_1, a_2^1, \dots, a_2^n) \in \mathbb{R}^{n+1}$, be defined on $\mathbb{R}^+ \times \bar{\Omega} \times \mathbb{R}^{n+1}$. Let f be of the class C^{s+1} in (x, a) and $(D^k D_a^l f)(t, x, a)$, $0 \leq k+l \leq s+1$, be continuous in $t \in \mathbb{R}^+$. Let $B(Q)$ be any bounded domain in \mathbb{R}^{n+1} of the form

$$B(Q) = \{a: a \in \mathbb{R}^{n+1}; |a_i| \leq \zeta, i = 1, 2, a_2 = (a_2^1, \dots, a_2^n)\}.$$

Set

$$h_Q(t) = \max_{0 \leq k+l \leq s+1} \sup_{x \in \bar{\Omega}, a \in B(Q)} (D^k D_a^l f)(t, x, a),$$

and denote

$$F_Q = \{u: u \in F^S(\Omega); |u| \leq \zeta, |u_{x_\mu}| \leq \zeta, \mu = 1, \dots, n\}.$$

Then the following assertions hold:

(I) For any function $u \in F_Q$ we have

$$\|f(t, ., u(t, .), Du(t, .))\|_{H^S} \leq C_1 h_Q(t) (\|u(t, .)\|_{H^S} + 1),$$

where C_1 is a constant depending on f , Q and n .

(II) For any functions $u_j \in F_Q$ satisfying $\|u_j(t, .)\|_{H^S} \leq M$, $j = 1, 2$, with some constant M , it holds

$$\begin{aligned} & \|f(t, ., u_1(t, .), Du_1(t, .)) - f(t, ., u_2(t, .), Du_2(t, .))\|_{H^{S-1}} \leq \\ & \leq C_2 h_Q(t) \|u_1(t, .) - u_2(t, .)\|_{H^S}, \end{aligned}$$

where C_2 is a constant depending on f , Q , M and n . Both C_1 , C_2 monotonically increase as Q does.

Now, assume that:

A1. g satisfies the assumptions of Lemma 1,

A2. for any $u \in F^p(\Omega)$ the function $g(t, \cdot, u(t, \cdot), Du(t, \cdot))$ belongs to $C^0(R^+, K^{p-1}(\Omega))$,

A3. $\sup_{t \in R^+} h_Q(t) = \tilde{H}$ for every $Q > 0$,

A4. $\Phi \in K^p(\Omega)$.

Consider the equation

$$(1'') \quad u_t - Au = \varepsilon g(t, x, u(t, x), Du(t, x))$$

with the conditions (2) and (3).

Theorem 2. If the assumptions A1 - A4 are satisfied, then for any $M > C_0 L$ (C_0 being the constant from Theorem 1) and $L = \|\Phi\|_{H^p}$ there exists a positive constant

$$(*) \quad \varepsilon_0 := \min \left(\frac{(M - C_0 L) |\lambda_1|}{C_0 \tilde{H} C_1 (M+1)}, \frac{|\lambda_1|^\theta}{C_0 C_2 \tilde{H}} \right), \quad 0 < \theta < 1.$$

such that for any $\varepsilon \in (0, \varepsilon_0)$, the problem (1''), (2), (3) has a unique bounded classical solution in $G^p(\Omega)$ satisfying $\|u(t, \cdot)\|_{H^p} \leq M$ for $t \in R^+$ and $p = \left[\frac{n}{2}\right] + 3$.

Proof. Following [6], we will apply the Picard iteration method. The sequence $\{u_n(t, \cdot)\}$ is constructed by an iteration scheme in the following way

$$(16) \quad \dot{u}_n - Au_n = \varepsilon g(t, \cdot, u_{n-1}(t, \cdot), Du_{n-1}(t, \cdot)), \quad n=1,2,\dots,$$

$$(17) \quad \dot{u}_0 - Au_0 = \varepsilon g(t, \cdot, 0, 0)$$

with the initial conditions

$$(18) \quad u_n(0) = 0, \quad n = 0, 1, 2, \dots,$$

and the boundary conditions

$$(19) \quad u_n(t, x)|_r = 0 \quad \text{for } t \in R^+, \quad n = 0, 1, 2, \dots$$

By the assumption A1 - A4, it follows from the Theorem 1 that the problem (16)-(19) has a solution $u_n \in G^p(\Omega)$, $n = 0, 1, \dots$.

We must show now that $\{u_n\}$ converges to u in $G^p(\Omega)$ and $\|u\|_{F^p} \leq M$. Boundedness of u_n will be proved by induction. For $n = 0$ it follows from the equation (17) and Theorem 1 that $\|u_0\|_{F^p} \leq M$. Assume that $\|u_n\|_{F^p} \leq M$ for $n = 1, 2, \dots, k$. Applying Theorem 1 to (16) for $n = k+1$ and using the estimate (6) we have

$$(20) \quad \|u_{k+1}(t, \cdot)\|_{H^p} \leq C_0 \left[\|\phi\|_{H^p} + \varepsilon \frac{1}{|\lambda_1|} \sup_{t \in \mathbb{R}^+} \|g(t, \cdot, u_k(t, \cdot), Du_k(t, \cdot))\|_{H^{p-1}} \right].$$

Since $\|u_k\|_{F^p} \leq M$, by the Sobolev inequality, it follows that $|u_k(t, x)| \leq C(p)M$, $\left| \frac{\partial u_k(t, x)}{\partial x_\mu} \right| \leq C(p-1)M$, where $C(p), C(p-1)$ are the Sobolev constants. Let $Q = C(p)M$. From Lemma 1, the assumption $\bar{A}3$ and induction assumption $\|u_k\|_{F^p} \leq M$ we obtain

$$(21) \quad \|g(t, \cdot, u_k(t, \cdot), Du_k(t, \cdot))\|_{H^{p-1}} \leq h_Q(t)C_1(\|u_k(t, \cdot)\|_{H^p} + 1) \leq \tilde{H}C_1(M+1).$$

The inequalities (20), (21) and the assumption $\bar{A}4$ imply the desired estimate

$$\|u_{k+1}\|_{F^p} \leq C_0 \left[L + \frac{1}{|\lambda_1|} \varepsilon \tilde{H}C_1(M+1) \right] \leq M$$

for $\varepsilon \in (0, \varepsilon_0)$ with ε_0 given by (*). Thus $\|u_n\|_{F^p} \leq M$ for any $n = 0, 1, \dots$.

In order to prove the convergence of $\{u_n\}$ to u in Banach space $F^p(\Omega)$, we must show that $\{u_n\}$ is a Cauchy sequence. Setting $v_n = u_{n+1} - u_n$, from (16), (17), (19) we have

$$\begin{aligned} \dot{v}_n - Av_n &= \varepsilon [g(t, \cdot, u_n(t, \cdot), Du_n(t, \cdot)) - \\ &\quad - g(t, \cdot, u_{n-1}(t, \cdot), Du_{n-1}(t, \cdot))], \end{aligned}$$

$$v_n(0) = 0, \quad v_n|_T = 0 \quad \text{for } t \in \mathbb{R}^+, \quad n = 1, 2, \dots$$

Applying Theorem 1 and Lemma 1 to the above problems and using the assumption $\bar{A}3$, we obtain the estimate

$$\|v_n\|_{H^p} \leq \frac{\epsilon}{|\lambda_1|} C_0 C_2 h_Q(t) \|u_n(t, \cdot) - u_{n-1}(t, \cdot)\|_{H^p} \leq \frac{\epsilon}{|\lambda_1|} C_0 C_2 \tilde{H} \|v_{n-1}\|_{H^p}.$$

The above estimate guarantees, by (*), that $\{u_n\}$ is a Cauchy sequence in $F^p(\Omega)$ with $\theta \in (0, 1)$, i.e.

$$\|u_{n+1} - u_n\|_{F^p} \leq \theta \|u_n - u_{n-1}\|_{F^p} \quad \text{for } n = 1, 2, \dots$$

Now we will prove that $\{u_n\}$ converges to u in $G^p(\Omega)$. Using the triangle inequality of the norm and the properties of the operator A and of the Sobolev space $H^p(\Omega)$, $p \geq 2$, we obtain, by (16),

$$\begin{aligned} \|\dot{u}_m(t, \cdot) - \dot{u}_n(t, \cdot)\|_{H^{p-2}} &\leq \text{const} \left\{ \|u_m(t, \cdot) - u_n(t, \cdot)\|_{H^p} + \right. \\ &+ \epsilon \left\| f(t, \cdot, u_{m-1}(t, \cdot), Du_{m-1}(t, \cdot)) - f(t, \cdot, u_{n-1}(t, \cdot), Du_{n-1}(t, \cdot)) \right\|_{H^{p-2}} \leq \\ &\leq \text{const} \left\{ \|u_m(t, \cdot) - u_n(t, \cdot)\|_{H^p} + \epsilon C_2 h_Q(t) \|u_{m-1}(t, \cdot) - u_{n-1}(t, \cdot)\|_{H^{p-1}} \right\} \leq \\ &\leq \text{const} \left\{ \|u_m(t, \cdot) - u_n(t, \cdot)\|_{H^p} + \epsilon C_2 \tilde{H} \|u_{m-1}(t, \cdot) - u_{n-1}(t, \cdot)\|_{H^{p-1}} \right\}. \end{aligned}$$

The right-hand side tends to zero uniformly in $t \in \mathbb{R}^+$, as $m, n \rightarrow \infty$. This means that $\{u_n\}$ converges in $C^0(\mathbb{R}^+, K^{p-2}(\Omega))$.

Hence $u_n \in G^p(\Omega)$ converges in $\bigcap_{i=0}^1 C^i(\mathbb{R}^+, K^{p-2i}(\Omega))$ to some element u , satisfying $\|u\|_{F^p} \leq M$ and being a solution of the problem (1''), (2), (3). Similarly as in [6] and [2] we can prove that u is a unique solution of the problem (1''), (2), (3) in $G^p(\Omega)$.

Theorem 3. If the assumptions $\bar{A}1 - \bar{A}4$ are fulfilled, then for any $M > C_0 L$ there exists a positive constant

$$(**) \quad \varepsilon_1 = \min \left(\frac{(M-C_0 L) |\lambda_1|}{C_0 \tilde{H} C_1 (M+1)}, \frac{|\lambda_1|^\theta}{C_0 \tilde{C}_2 \tilde{H}}, \frac{|\lambda_1|}{C_0 \tilde{C}_2 \tilde{H}} \right), \quad 0 < \theta < 1,$$

such that any solution of the problem (1''), (2), (3) for any $\varepsilon = (0, \varepsilon_1)$ is stable and asymptotically stable i.e. for any two solutions $u_{1\varepsilon}$ and $u_{2\varepsilon}$ of the problem (1''), (2), (3) with the initial data ϕ_1 and ϕ_2 , respectively, the following estimate holds for $t \in \mathbb{R}^+$

$$(23) \quad \begin{aligned} \|u_{1\varepsilon}(t, \cdot) - u_{2\varepsilon}(t, \cdot)\|_{H^p} &\leq \\ &\leq C_0 \|\phi_1 - \phi_2\|_{H^p} \exp \left(-\frac{1}{2} (\lambda_1^2 - \tilde{H}^2 \varepsilon^2 C_0^2 C_2^2) t \right). \end{aligned}$$

P r o o f. The assumptions $\overline{A1} - \overline{A4}$ guarantee the existence and uniqueness of a solution of the problem (1''), (2), (3). In virtue of the estimate (15'), we have for the difference of two solutions $u_{1\varepsilon}$, $u_{2\varepsilon}$ of the problem (1''), (2), (3) the following estimate

$$\begin{aligned} \|u_{1\varepsilon}(t, \cdot) - u_{2\varepsilon}(t, \cdot)\|_{H^p}^2 &\leq C_0^2 e^{-2\lambda_1^2 t} \|\phi_1 - \phi_2\|_{H^p}^2 + \\ &+ C_0^2 \varepsilon^2 C_2^2 \tilde{H}^2 \left(\int_0^t \|u_{1\varepsilon} - u_{2\varepsilon}\|_{H^p}^2 e^{\lambda_1^2 \tau} d\tau \right) e^{-\lambda_1^2 t}. \end{aligned}$$

By the Gronwall inequality, it follows

$$\begin{aligned} \|u_{1\varepsilon}(t, \cdot) - u_{2\varepsilon}(t, \cdot)\|_{H^p}^2 e^{\lambda_1^2 t} &\leq \\ &\leq C_0^2 \|\phi_1 - \phi_2\|_{H^p}^2 \exp((\varepsilon C_0 C_2 \tilde{H})^2 t). \end{aligned}$$

Hence, we obtain the estimate

$$\|u_{1\varepsilon} - u_{2\varepsilon}\|_{H^p} \leq C_0 \|\phi_1 - \phi_2\|_{H^p} \exp \left[-\frac{1}{2} (\lambda_1^2 - \varepsilon^2 C_0^2 C_2^2 \tilde{H}^2) t \right],$$

which implies stability and asymptotical stability of any solution of the problem (1''), (2), (3).

Remark 1. If the assumptions A1, A2, A4 and besides

$$A3'. \quad f = f(t, x), \quad f \in C^0(R^+, K^{p-1}(\Omega)), \quad \int_0^\infty |f(t, .)|_{K^{p-1}} dt = H$$

hold, then the problem (1'), (2), (3) has a unique global solution $u \in G^p(\Omega)$.

Remark 2. If the assumptions $\bar{A}1$, $\bar{A}2$, $\bar{A}4$ and besides

$$\bar{A}3'. \quad \int_0^\infty h_Q(t) dt = \tilde{H} \quad \text{for every } Q > 0$$

hold, then the problem (1''), (2), (3) has a unique global solution $u \in G^p(\Omega)$.

Remark 3. For the boundary condition of the third type i.e.

$$(3') \quad \frac{\partial u(x, t)}{\partial N} + h(x)u(x, t) \Big|_P = 0, \quad t \in R^+,$$

similarly as in [2] we can construct the Banach space $K^p(\Omega)$ in the following way

$$K^p = \left\{ u \in H^p, \quad \frac{\partial A^\alpha u}{\partial N} + h^\alpha u \Big|_P = 0; \quad 0 \leq \alpha < \left[\frac{p-2}{2} \right], \quad p \geq 2 \right\}.$$

In the space $G^p(\Omega) = \bigcap_{i=0}^1 C^i(R^+, K^{p-2i}(\Omega))$ we can prove the existence and stability of solutions of the problem (1), (2), (3').

REFERENCES

[1] J. H a v l o v á : On periodic solutions of nonlinear parabolic equations. Proc. Fourth Conference Nonlinear Oscillations, Prague (1967), 169-172.

- [2] T. Kowalski, W. Sadkowski : Existence of global classical solutions of a nonlinear hyperbolic equation with the mixed boundary conditions, *Demonstratio Math.*, 19 (1986), 487-502.
- [3] O.A. Ladyzhenskaya : *Краевые задачи математической физики*. Москва 1973.
- [4] O.A. Ladyzhenskaya : *Смешанная задача для гиперболического уравнения*. Москва 1953.
- [5] J. Sather : The existence of a global classical solution of the initial boundary value problem for $\square u + u^3 = f$, *Arch. Rational Mech. Anal.* 22 (1966), 292-307.
- [6] M. Yamaguchi : Existence and stability of global bounded classical solutions of initial boundary value problem for semilinear wave equations, *Funkcjalaj Ekwacioj* 23 (1980) 289-308.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received February 25, 1986.

