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EXISTENCE AND STABILITY OF GLOBAL CLASSICAL SOLUTIONS 
FOR A FIRST FOURIER PROBLEM 

1. Introduction 
Let 2 be a bounded domain in the n-dimensional Euclidean 

space Rn, with C°°-boundary r . Let A be an uniformly 
e l l i p t i c operator of the form 

n 
A= Z ¿ ( a i d { x ) sk)-a(x)* a i o ( x ) = a j i { x ) 

i,G=1 3 

f o r x e Si, e C°° (2 ) , i , j = 1 , . . . , n , a(x)£ 0, and l e t 

D = ( ¿ j » ' • • ' 3x^) ' 

This paper deals with the existenoe and the s tabi l i ty of 
global bounded classical solutions of the equation 

(1) ut - Au = f ( t ,x ,u ,Du) , ( x , t ) e a x (0 ,oo ) , 

with the i n i t i a l condition 

(2) u(x,0) = <t>(x), x e Q, 

and the boundary condition 

(3) u (x , t ) = 0, t e R + = <0,oo), x e r . 
J.Havlova [ l ] has investigated the axifctenoe of the pe-

riodic solution for this type problem. She has used a f i xed-
-point-theorem to the equivalent system of nonlinear integral 
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2 T.Kowalaki, W.Sadkowski 

equations. The existence and the s t a b i l i t y of so lut ion of 
the in i t ia l -boundary value problem f o r the nonlinear hyper-
bol ic equations have been proved i n [6] and [2 ] . 

Our method of the proof i s s imi la r to [6] . At f i r s t the 
existence of the time g lobal so lut ion f o r l inear problem with 
f = f ( t , x ) w i l l be proven and the Fourier method w i l l be used. 
In the case f = f ( t , x , u , D u ) the Picard i t e r a t i o n method w i l l 
be appl ied. 

Let 0 $ q $ 00, and H p (a ) , HQ(£J) be Lebesgue and 
Sobolev spaces with the norms ||*|| and || *|| , r e s p e c t i v e l y . 

Lq Hp 

Define the subspace 

(4) Kp(fl) = { u e H p ( f l ) , A ^ u e l i j i f l ) ; p ^ l j 

of the space Hp(ffl) which i s connected with the boundary con-
d i t i o n ( 3 ) . 

I t fo l lows from the trace theory, the continuity of the 
operator A and the propert ies of the space HP(G) that KP(Q) 
i s a Banach space with a norm [|»|| . 

Hp 

Let X be a Banach space with a norm IHIX» We denote by 
CP(H+,X) the space of p-times continuously d i f f e r e n t i a b l e 

mappings u : R + - » X and introduce a norm sup 2H|l>+u(t) | | Y < <» 
teR+ k=0 * A 

i s a k-order d i f f e r e n t i a l operator i n t ) . Denote by F p ( f l ) 
a space of f u n c t i o n s from C ° ( R + , K p ( n ) ) with the norm ||«|| _ = 

1 p"P 
= sup | | u ( t , . ) | | and l e t G p (o) = O C ^ ( R + , K p ~ ^ ( q ) ) be t e R + h P 11 jk 
a space with the norm ||u|| _ = sup ^ ^ 

Gp t e R + k-0 
space P p ( f l ) i s a Banach space with the norm ||>|| . We remark 

that G p ( a ) c H C i ( R + ' « c ) f o r p, = [ § 1 + 3 ( see [ 5 ] ) . 

O .A.Ladyienska [3] , [4] has considered the e igenva lues 
problem A4> = A,<t> in 0 , = 0 on r = 3!Q and proved tha t i f the 
fo l lowing assumptions hold 1 
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Existence and s t a b i l i t y 3 

A1. r e C ° ° , a , a i ; j e C°°(fl) , i , j = 1 
A2. a ( x ) ^ 0 and A i s an uniformly e l l i p t i c operator in ft, 

then 
( i ) there e x i s t s a negative decreasing eigenvalues sequence 

{ " ^ k l w^ich n o accumulating point and 4 0 , 
( i i ) the system j ^ } of the corresponding eigenfunctions 

i s complete and orthonormal in L 2 (Q), each belongs to 
K°°(Q), 

( i i i ) any ueK p (Q) , i s expanded into the Fourier 
do 

s e r i e s u = ^ Z <t>,,u. , converging to u in K p (n ) . 
k=1 * * 

We introduce now in the space Kp(Si) the new norm 

1 

K k=i 

equivalent to the norm ||*|| for ue Kp(fl) i . e . there ex i s t 
Hp 

posit ive constants , depending on ft and such that 

(5) 5Ju|| <|u| dS5J|U|| for any ueK p ( i i ) , P > 1 . 
i HP Kp Hp 

The solution u of the problem ( 1 ) - ( 3 ) i s searched in the 
space Gp(fl). 

2 . The l inear case with f = f ( t , x ) 
Let us assume that p? 2 and 
A3, f = f ( t , x ) , f e C ° ( R + , K p - 1 ( Q ) ) f sup | f ( t , . ) | 1 = 

= H <oo, KP-1 

A4. * e Kp(fl), 
and consider the equation 

( 1 ' ) Oj - Au = f ( t , x ) . 

T h e o r e m 1. I f the assumptions A1 - A4 hold, 
then the problem ( 1 ' ) , ( 2 ) , (3) has a unique global c l a s s i c a l 
solution u c G p ( a ) satisfying 
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4 T. Kowalski, Sadkowski 

(6) sup ||u(t,.)|| $c0(fl»|| D + n n sup ||f(t,.)|| 0 _ 1 ) . 
t e f i + Hp Hp r i l teH+ Hp 1 7 

P r o o f . By A3 s?nd ( i i i ) , the function f can be 
expanded into the Fourier ser ies 

oo 

(7) f ( t , . ) = ] T f k ( t ) « k 

k=1 

which converge in Kp""1(fl) with respect to t e R+ and has a norm 
given by 

K k=i 

Similarly, by A4 and ( i i i ) , for the function 4> we have the 
series 

(8) • = £ P k * k 

k=1 

converging in Kp(fi) and with norm given by 

K k=1 

We set up a solution u in a formal Fourier series u ( t , . ) = 
oo 

= ¿L^ u.,(t)<>,, and at f i r s t we show that this formal series 
k=1 

converges in P p ( f i ) . Next, we prove that ueG^(f l ) . Substituting 
(7 ) , (8) into ( 1 ' ) , (2) and taking an inner product with <t>v 

in L (si), due to the property ( i i ) of eigenfunctions, we 
obtain an infinite ordinary di f ferentia l system 

(9) uk + a£uk = f k ( t ) , k=1,2 , . . . , 

with the in i t i a l conditions 

(10) uk(0) «4 pk, k=1,2,. . . . 
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Exis tence and s t a b i l i t y 5 

The s o l u t i o n uk of the problem ( 9 ) , (10) has a form 

( 1 1 ) u k ( t ) = pke K + J e K f k ( r ) d r , 
0 

t e R+ , k = 1,2 

Then the formal s o l u t i o n of the problem ( 1 ' ) , ( 2 ) , (3) i s 

(12) u ( x , t ) = 
k=1 

Pkfl + J e 
0 

f k ( t ) d z • k ( x ) . 

In order to show t h a t u e P ^ ( n ) we must examine the convergence 
of the fo l lowing s e r i e s 

Z 
k=1 

pke * + J e k f k ( r ) d r 
o 

By applying the Schwarz i n e q u a l i t y , i t i s easy to ob ta in the 
e s t ima te 

(13) u k ( t ) 2 

Thus, by ( i ) , we have 

(14) 

2 -2X\X 1 f ? 
Ak 0 

2 

= 2 

k=l 

-2xh JL i - ^ f ( t - t ) £ 1 K 1 
L k=l 

-Zfcft m 

k=l 0 

t 

k=l 0 k=l 

Since OeKP(fl) and f e C°(S + ,K p " 1 (a ) ) , the right-hand side 
of (14) tends to zero uniformly in t e R+-, as m,l » . This 
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means that the ser ies XZ converges uniformly in 
,k=1 

t e R + . Due to ( 7 ) , ( 7 ' ) , ( 8 ) , ( 3 ' ) , i t follows from (14) that 

(15) |u( t , . )| 2 <2 
Kp 'kp 

0 

2 - A f ( t - t ) 
n 1 6 

Using the equivalence of the nor sis II* II , J* I and the in-
Hp Kp 

equality (5)» we have the desire estimate 

(15 ' ; I M t . - ^ p « 

< c 

with C,. 

0 

V?6 

2 
Hp 

+ f ||f(t,.i||-_ , e 
'hp-1 

-A^(t - t ) 
dT 

E> —. Prom ( 1 5 ' ) we obtain the inequality ( 6 ) . 

In order to show that u e C (R+ ,Kp~ z (a)) i t i s enough to 

prove that A^ p ~ 2 ' ( Uv.( t ) ) 2 converges uniformly to zero, 
k=l 

as l,m -*-oo . Prom the equation ( 9 ) , a f t e r some ca lcula t ions , 
we have 

r m 
£ » I ' ^ ' i » ) < » E « I " - * ' i « ' ) - E 
k=l Lk=l k=l 

By the assumptions A3, A4, the right-hand side of the previous 
inequality tends to "zero uniformly for t e R+ and th is implies 
that ue C(R+ ,Kp~2(fi)) . Thus 

Having | f ( t , . ) | g < C.| | f ( t , . ) | ^ f o r some positive con-

stant C1 , we get 

with C2 = max(2,2C1). 
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Kxistence and s t ab i l i t y 7 

Uniqueness fo l lows from ( 6 ) . Thud Theorem 1 has been 
proved. For p = + 3» due to bobolev's imbedding theory, 
u i s a c lass i ca l solution i . e . u e c ' ' { R + * 2 ) and u x x € C ( R + * f t ) 

3. The nonlinear case 
Due to l o s e r ' s theorem (see [6] Appendix), the fo l lowing 

lemma holds. 
L e m m a 1. Let function f ( t , x , a ) , a= ( a ^ , a 2 , . . . , a 2 ) e 

e R n + 1 , be defined on R+*£2 x R n + 1 . Let f be of the class 
C s + 1 in ( x ,a ) and ( D k D 1 0 f ) ( t , x , a ) , O's k+1 « s+1, be continuous 
in t e R . Let B(Q) be any bounded domain in R of the form 

3(Q) = { a : ae R n + 1 ; |a±| « W, i = 1,2, o2 = ( a j , . . . , a £ ) } . 

Set 

h 6 ( t ) = max sup ( D k D ^ f ) ( t , x , a ) , 
w Osk+l^s+1 xe2,aeB(Q) a 

and denote 

= j u : u e F s ( f l ) ; [u| $ Q, | u | $ Q , p = 1 , . . . , n j . 

Then the fo l lowing assertions hold: 
( I ) For any function u c i j , we have 

|| f ( t , . , u( t , . ) , Du( t , . ) ) j| s $C . ,h Q ( t ) (||u(t,.)|| B + 1) , 
H H 

where Ĉ  i s a constant depending on f , Q and n. 
( I I ) For any functions u. e P, sa t i s f y ing ||u.(t,.)|| _ $ Li, 

J W " J H 
j = 1,2, with some constant K, i t holds 

| | f ( t , . , u 1 ( t , . ) , D u 1 ( t , . ) ) - f ( t , . , u 2 ( t , . ) , D u 2 ( t , . ) ) | | «: 
H 

s C2iig{ t ) [ [^ ( t , . ) - u2 ( t , . )|| s , 
H 

where C2 i s a constant depending on f , Q, M and n. Both C1 , C2 

monotonically increase as Q does. 
Now, assume that : 
A1. g s a t i s f i e s the assumptions of Lemma 1, 
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8 T.Kowalski, 'V.Sadkowski 

A2. for any ueF p ( f l ) the function g( t , . , u( t , . ) ,Du( t , . ) ) 
belongs to C°(R+ ,KP~1 ( f l ) ) , 

A3. sup h Q ( t ) = H for every Q> 0, 
t e R+ w 

A4. »eKp ( i2 ) . 
Consider the equation 

(1" ) ut - Au = eg ( t , x ,u ( t , x ) ,Du ( t , x ) ) 

with the conditions (2) and (3 ) . 
T h e o r e m 2. I f the assumptions A1 - A4 are sa-

t i s f i ed , then for any M > CQL (CQ being the constant from 
Theorem 1) and L = ||<t>|| there exists a positive constant 

Hp 

,(1,1 - C0L) IAJ \ X . \ Q i 
0 v ^HC^M+1) C0C2Hy 

such that for any e e (0,6^), the problem ( 1 " ) , ( 2 ) , (3) has 
a unique bounded classical solution in Gp(&) sat is fy ing 
II u ( t , . )|| iM for t e R + and p = [§ l + 3. 

Hp idi 
P r o o f . Following , we w i l l apply the Picard 

i terat ion method. The sequence { u n ( t , . ) J i s constructed by 
an i terat ion scheme in the following way 

(16) un - Aun = e g ( t , . , u n _ 1 ( t , . ) , D u n _ 1 ( t , . ) ) , n=1,2, . . . , 

(17) Uy _ Ai^ = e g ( t , . , 0 , 0 ) 

with the - in i t i a l conditions 

(18) uQ(0) = 0 , n = 0,1 

and the boundary conditions 

(19) un ( t ,x )| p = 0 for t e H+, h = 0 ,1 ,2 , . . . . 

By the assumption A1 - A4, i t follows from the Theorem 1 
that the problem (16)-(19) has a solution u n eG p ( f i ) , 
n = 0 ,1 , . . . . 
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Existence and s tab i l i t y 9 

"Te must show now thatjun }convergea to u in G^(ft) and 
||a|| „ « H. Boundedne3B of uM w i l l be proved by induction. For 

jiP n 
n = 0 i t fo l lows from the equation (17) and Theorem 1 that 
|| u0|| p̂ $ M. Assume that ||un|| fo r n = 1 , 2 , . . . , k . Applying 
Theorem 1 to (16) f o r n = k+1 and using the estimate (6) we 
have 

(20) u k + 1 ( t , . ; • H P * 

$ c. £ \ k teUS+ II 6 i ^ »•» u k ("*•»• J » D u ^ f t , . ) yp-1 j • 

Since || uk|| p ^ M, by the Sobolev inequal i ty , i t fo l lows that 

u k ( t ,x )| ^ C(p)M, 
3u ,_ ( t , x ) 

3x. < C(p-1)M, where C(p),C(p-1) are 

the Sobolev constants. Let Q - C(p)M. Prom Lemma 1, the assump-
t ion A3 and induction assumption ||iijJ ^ M we obtain 

pP 

(21) | | g ( t , . . a k ( t . . ) . D u k » t f ) ) | < 

< hQ i t jC^ l l i ^ i t , . ) ! ! + 1) «HC^M+U. 

The inequal i t ies (20) , (21) and the assumptiop A 4 imply the 
desired estimate 

uk+lll D « C 0 pP 
L + 

IA-
eHC^M+1) ] 

f o r e e ( 0 , e 0 ) with eQ given by ( * ) . Thus ||unJ ^ M f o r any 
pP 

n = 0 , 1 , . . . . 
In order to prove the convergence of { u n } to u in 

Banach space P P ( Q ) , we must show that { u n ) i s a Cauchy se-
quence. Sett ing vQ = un+1 - un,from ( 1 6 ) , ( 1 J ) , ( 1 9 ) we have 

% ~ A7'n " c [ f i ( t , . , u n ( t , . ) , D u n ( t , . ) ) -

- g ( t , . . , u n _ 1 ( t , . ) , D u n _ 1 ( t , . ) ) ] , 
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10 T.Kowslski, 'V.Sadkowski 

v n (0 ) = 0, vn | r = 0 for t e R + , n = 1 ,2 , . . . . 

Applying Theorem 1 and Lemma 1 to the above problems and 
using the assumption A3, we obtain the estimate 

I N l ^ P ^ o W ^ I V « ' - ) " W l v ^ l ^ . 

The above estimate guarantees, by ( * ) , that j u n j is a Cauchy 
sequence in Fp(i2) with 8 e ( 0 , 1 ) , i . e . 

II Un+1 " unII < ®llun - un-1 II f o r n * • 
p s p8 

Now we w i l l prove that {u n } converges to u in Gp ( f i ) . 
Using the triangle inequality of the norm and the properties 
of the operator A and of the Soblolev spaoe H p ( » ) , p?.2, we 
obtain, by (16), 

||im(t,.) - ¿ n ( t . . ) I H p . 2 < o o n a t { | | B B ( t M ) - un ( t , . )|lH p + 

+ 6||f ( t , . ,u [ n_ 1 ( t , . ) ,Dum_ 1 ( t , . ) ) - f ( t , . ,u n_ 1 ( t , . ) ,Du n_ 1 ( t , . ) )|H { > . 2 }^ 

5 c onst {|| um( t , . ) -un( t , . ) |Hp+eC2hQ ( t ) || u ^ ( t , . ) -u f l_1 ( t , . ) H ^ < 

, const {|| um ( t , . ) -un ( t , . )||H p + £C2H||um_1 ( t . , ) -un .1 ( t , . )||H p_1 } . . 

The right-hand sida tends to zero uniformly in t e R + , as 
m,n-^oo . This means that {u Q } converges in C°(R+ ,KP~2 (G)) . 

Hence u e G?(fl) converges in fl C i (R + ,Kp~2 i (£ l ) ) to soma e la-
n i=0 

ment u, sat is fy ing llul! „ < M and being a solution of the prob-
F 

lem ( 1 " ) , ( 2 ) , ( 3 ) . Similarly as in [6] and [2] we can prove 
that u is a unique solution of the problem ( 1 " ) , ( 2 ) , (3) 
in Gp(Q). _ _ 

T h e o r e m 3. If the assumptions A1 - A4 are f u l -
f i l l e d , then for any M > C()L there exists a positive constant 
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/(M-C,.L) I/L I IAJS IA-1 \ 
{ * * ) e = min „ 0 ' 11 , - L l L . , - L l i ) , 0 < 8 < 1 , 

1 N̂ CqHĈ  ( M+1 ) C0C2H C0C2H J 

such that any solution of the problem ( l " ) , ( 2 ) , (3) for any 
E = (0 ,e 1 ) i s stable and asymptotically stable i . e . for any 
two solutions u l£ and u^ of the problem ( l " ) , ( 2 ) , (3) with 
the i n i t i a l data <t>1 and <t>2» respect ively, the following e s t i -
mate holds for t e®+ 

(23) | « i £ ( t . . > " "2e<* . -> lHp.* 

* c o 11*1 - ^ l l H P a x p ( - 1 - S2«2cgc|) t ) . 

P r o o f . The assumptions A1 - A4 guarantee the ex i -
stence, and uniqueness of a solution of the problem (1 " ) , ( 2 ) , 
( 3 ) . In virtue of the estimate ( 15 ' ) , we have for the d i f f e -
rence of two solutions u1g , u2g of the problem (1 " ) , ( 2 ) , (3) 
the following estimate 

0 H 

By the Gronwall inequality, i t follows 

|u1e (t, . ) - U2e (t,., l |Hp 
A?t 12 - 1 e $ 

* - 02||2p expl ie^CgH) 2* ) . 

Heno«, we obtain the estimate 

h i e - " 2 £ | h P « c o I - *2\r9 *** [ - 5 - g 2 M . 
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12 T.Kowalski, W.Sadkowski 

which implies s t a b i l i t y and asymptotical s t a b i l i t y of any 
so lu t ion of the problem ( 1 " ) , ( 2 ) , (3 ) . 

R e m a r k 1. I f the assumptions A1, A2, A4 and 
besides 

oo 
A3', f = f ( t , x ) , f e C ° ( H + , K p - 1 ( a ) ) , f | f ( t , . ) | dt = H 

0 K 

hold , then the problem ( 1 ' ) , ( 2 ) , (3) has a unique g lobal 
so lu t ion ue Gpi(fi). 

R e m a r k 2. If the assumptions A1, A2, A4 and 
besides 

oo 
A3'. j h ^ t i d t = H f o r every Q > 0 

0 
hold , then the problem (1" ) , ( 2 ) , (3) has a unique' g loba l so -
l u t i o n u c G p ( a ) . 

R e m a r k 3. For the boundary condi t ion of the 
th i rd type i . e . 

( 3 / j + h ( x ) u ( x , t ) ) | r = 0 , t e R+ , 

s imi l a r ly as i n [2] we can construot the'Banach space Kp(a) 
i n the fol lowing way 

Kp = | u e Hp , ^ - + h A ° ' u | r = 0, 0 Sec < , p> 2 } . 

In the space Gp(fi) = f) C i (R + ,K p " 2 i ( f t ) ) we can prove the 
i=0 

exis tenoe and s t a b i l i t y of s o l u t i o n s of the problem (1) , 
( 2 ) , ( 3 / ) . 
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