DEMONSTRATIO MATHEMATICA

Vol. XX Mo 3-4 1987

Tadeusz Kowalski, Wawrzyniec Sadkowski

EXISTENCE AND STABILITY OF GLOBAL CLASSICAL SOLUTIONS
FOR A FIRST FOURIER PROBLEM

1. Introduction

Let @ be a bounded domain in the n-dimensional Buclidean
Spacse Rn,-i nz?2, with C® -boundary ., Let & be an uniformly
elliptic operstor of the form

n
- 3 3 - -
4= Z 3-’-(_i.(aia.(x) 3?3-) a(x}, aij(x) = aji(x)
i,j=1
for xeQ, a,a;5¢ C®({Q), 1,3 = 14eeeyn, a(x)> 0, and let

= (<2 9
D—(E gee0y axn)‘o
This paper deals with the existence and the stability of
global bounded classical solutions of the equation

(1) ay - Au = f(t,x,u,Du), (x,t)eQ x {0,0),
with the initiael condition

(2) u(x,0) = ¢(x}), =xeaq,

and the boundary condition

(3) u(x,t) = 0, teR" =<0,0), xer,

J.Havlova {1] has investigated the exiptence of the pe~-
riodic solution for this type problem. She has used a fixed-
-point-theorem to the equivalent system of nonlinear integral
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2 T.Kowalski, W.Sedkowski

eguations, The existence and the stability of solution of
the initial-boundary value problem for the nonlinear hyper-
bolic equations have been proved in [6] and [2].

Our metnod of the proof is similar to [6]. 4t first the
existence of the time global solution for linear problem with
f = f(t,x) will be proven and the Fourier method will be used,
In the case f = f(t,x,u,Du) the Picard iteration method will
be applied,

Let L(@), 0<q <o, and HP(), HJ(R) be Lebesgue and
Sobolev spaces with the norms ".”Lq and H-qu, respectively.

Define the subspace

(4) KH9)={ueHW9L SucH)(2); OSas[%ﬁ],pa1}

of the space Hp(n) which is connected with the boundary con-
dition (3).

It follows from the trace theory, the continuity of the
operator A and the properties of the space HP(@) that kKP(2)
is a Banach space with a norm "."Hp.

Let X be a Banach space with a norm ".HX' We denote by
Cp(R+,X) the space of p~times continuously differentiable

P
mappings u:RY — X and introduce a norm 1;su.lg_’. E);“Diu(t)"x < o
€ o=
(Df is a k-order differential cperator in t). Denote by FP(g)
a space of functions from C°(R*,kP(2)) with the norm || p =

1
= sup [u(t,.)] . and let 6P(a) = N ¢ (r*,kP"21(a)) ve
teRt HP

' d u(t,.)
a space with the norm ju = aup S "
e | "GP teht ko | at

space FP(2) is a Banach space with the norm H-HFP. We remark

HP'2k. The

1
that GP(Q)c iﬂo ci(r*x2) for D= [%] +3 (see [5]).

O.A.Ladysenska [3], [4] has considered the eigenvalues
problem A¢ = ¢ ina, ¢ = 0 on I = 32 and proved that if the
following assumptions hold:
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Existence and stability 3

Al Fecw,a,%jecw(nh 1,3 = 1,e004,n,
A2. a(x)> 0 and A is an uniformly elliptic operator in e,

then
(i) there exists a negative decreasing eigenvalues sequence

{—ﬂﬁ} which has no accumulating point and A, # 0,
(ii) the system {¢k} of the 9orresponding eigenfunctions
is complete and orthonormal in Le(g), each ¢ belongs to
X% (a),
(iii) any Ller(Q), p>1, 1s expanded into the Fourier
py .

series u = 2_ ¢kuk’ converging to u in KP(Q).
k=1

We introduce now in the space KP(Q) the new norm

1
oo .2
e 2p. .2
lal p ¢= (20 a2ru2)
k=1
equivalent to the norm "-H p for ue Kp(n) i.e. there exist
H

positive constants 51, 52 depending on & and such that

p
(5) 51HuﬂHp sIule sézﬂuﬂHp for any uckP(a), p>1.

The solution u .of the problem (1)~(3) is searched in the
space GP(%).

2. The linear case with f = f(t,x)

Let us assume that p> 2 and

A3. £ = £(t,x), £ec’(RY,kP"Y()), sup i2(t,.)| . =

= H <oo, teRt KP~
A4. ¢ ¢ kP(a),

and consider the squation

(17) u, - Au = £(t,x).

Theorem 1, If the assumptions A1 - A4 hold,
then the problem (1), (2), (3) has & unigque global classical
solution ueGP(2) satisfying
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1 .
(6) sup flult,.)] . <cal]e + = sup [J£(t,.)] .
teR+ hule, IHP °(| “Hp 4] tent | 9‘1)

Proof. By 43 =nd (iii), the function f csn be
exparded into the Fourier serias

o0

(7) £(t,.) = p. £,(t)0,
k=1

whicn converge in Kp"1(9) with respect to t e RT and has a norm
given by

(7) EENILATEDS a2(e=1g2¢),
k=1

Similarly, by 44 and (iii), for the function ¢ we have the
series

(8) ¢ = E:: pk@k
k=1

converging in KP(Q) and with norm given by

. 2 < ,2p.2
(8") oxlyp = 2 A
k=1

We set up a solution u in a formal Fourier series u(t,.) =
o

=22 uk(t)¢k and at first we show that this formal series
k=1
converges in FP(Q). Next, we prove that ue GP(e), substituting

(7), (8) into (17), (2) and taking an inner product with &,
in 1° (@), due to the property {ii) of eigenfunctions, we
obtain an infinite ordinary differential system

(9) + aiuk = fk(t). k=1’2,.oo,

with the initial conditions
(10) , (0)

it

pk, k=1,2,'otn
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Existence and stability 5

The solution u, of the problem (9), (10) has a form

225 Y 221t
(11) u (t) = pge k™, j e K fy(t)ar,
0

teRY, k= 1,2,000

Then the formal solution of the problem (17), (2), (3) is

(12)  alx,t) = >, fk(T)dZ] o, ().

2 t 2
oo [ -th J. -Zk(t—T)
Pyc® + e
k=1

0

In order to show that uce Fp(n) we must examine the convergence
of the following series

>

k=1

2 t 2
oo [ -ﬂkt § —Ak(t-—'()
Py® + e
0

fk(i)dz].

By applying the Schwarz inequality,it is easy to obtain the
estimate

2 % 2
=225t ~Az(t-7)
(13) wl(e) <2{ple ¥ 4+l f o K fﬁ(z)d1}~
A 0
Thus, by (i), we have
n
(14) > ud()a8P ¢
=1
- o 2 m i
. =215t AT {t=-1) -
€2 ZE: piﬂip e 14 :E: § a | Aﬁp 2 fi(z)di] =
Lk=1 k=1 0
- 2 m t m 2
-2A5% _ —AS(t-7)
2| o2 | (3D A2PR g2(e))e )u}.
L k=1 0 k=1

Since ¢ ¢ KP(2) and fe C°(R*,kP~Y(R)), the right-hand side
of (14) tends to zero uniformly in teR*, as m,1 - oo . This
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(=]
means that the series > . Zipui(t) converges uniformly in

t e RY. Due to (7) (71){=1
. ] 9

2 1 2
~2151t =AS(t=-1)
[e T e ! dzJ .

/

(8), (87), it follows from (14) that

) : 2 2
(15) Jale,.)|2) <2 o2, + | Iete,02 e

0

Using the equivalence of the norms "'" p? l'l p and the in-
H K
equality (5), we have the desire estimate

(157) latt, 017, <
2 t 2
~2A5% -As{t~-1)
2 1 2 2 1
< col} ol Zp + i 1£Ce, 01 oy @ dr] ,

28
52 . From (15’) we obtain the inequality {(6).
1

In order to show that ue C1(R+,Kp'2(9)) it is enough to

with Co =

m
prove that 2> Ai(p'2’(uk(t))2 converges uniformly to zero,
k=1 ’

as 1,m —» oo » From the equation (9), after some calculations,
we have

m 11} . m
> AR <2 [ 80 o o 3 g
k=1 k=1 k=1

By the assumptions A3, 44, the right-hand side of the previous
inequality tends to zero uniformly for t ¢RY and this implies
that & ¢ C(R*,kP~2(2)). Thus

. 2 . 2 2
|u(t,.)|Kp_2 <2 [|f(t..»Kp_2 + |u(t.-)|KpJ.

Having |f“"’|xp-2‘°1 |2(,.)
stant C1, we get

p=1 for some positlve con-
kP

~

¥ 2 : 2 2
fu(t.o)lxp-g € 02 [If(t")le_1 + Iu(t'°)ij]’
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kxistence and stability 7

Uniqueness follows from (6). Thue Theorem 1 has been
proved. For p = [g] + 3, due to Sobolev’'s imbedding theory,

u 1is s classical solution i.e., ue C1(R+x Q) and Uy € C(rTx @)

3. The nonlineer cease
Due to iloser’s theorem (see [6] 4ppendix), the following

lemma holds,

Lenunma Te Let function f(t,x,a), a= (a1,a%,...,ag)e
€ Rnf1, be defined on R¥x @ an+1. Let f ©be of the class
¢®*1 in (x,a) and (Dleaf)(t,x,a), 0'<k+l < s+1, be continuous

in te¢R*, Let B(\) be any bounded domain in K™ of the form

B(Q) = {a: a€Rn+1; ]ai[ sca., i = 1,2, 82:(83,...,82)}.7

Set

%(ﬂ = max _ sup (DH%H(LX@L
Osk+lgs+1 xef,aeB(¢)

and denote

FQ={u:ueFﬂ9h NJ&Q,I%p

€G, p = 1,...,n}.

Then the following assertions hold:
(I) For any function u eFQ we have

“f(t,..u(t,.),Du(t,.))HHssC‘th(»t) ("u(t,.)HHs . 1),

where C1 is a constant depending on f, Q and n.
{(II) For any functions ug e F, satisfying "uj(t,.)" g €1y
j = 1,2, with soms constant I, it holds H

H£(t, 0 u,(t,00,Du,(5,.)) —fﬁ,uugtn)dmdtw)”%sn <
< Cth(t)llu1(t,') - uz(t)')"Hs’

where 02 is a constant depending on f, ¢, M and n., Both C1, 02
nonotonically increase as Q does,

Now, assume that:

a1, g satisfies the assumptions of Lemma 1,

~ 595 -



8 T.Kowalski, W.Sadkowski

42, for any ueFP(Q) the function glt,eyu{t,.),Dul{t,.))
belongs to CO(R+,Kp-1(9)),

43. sup hy(t) = H for every 4> 0,

__ teRt

44, % ekP(a).

Consider the eguation

(1”) u, - Au = eg(t,x,u(t,x),bult,x))

with the conditions (2) and (3},

Theorem 2, If the essumptions 41 - 44 are sa-
tisfied, then for any M>C,L (C, being the constant from
Theorem 1) and L = "¢”Hp there exists a positive constant

(M ~ ¢,.L) (A 24]8
o) 1441 [24] ), 6 <g <.

~

() €, := min ( -~
6] . ’
C,HC, {M+1) C,CoH

such that for any € ¢ (0,€,), the problem (1), (2}, (3) has
a unique bounded cléssical solution in GP(g@) satisfying

||u(t,.)||Hp<M for teR* and p = [5] + 3.

Proof, Following [6], we will apply the Picard
iteration method. The sequsnce {un(t,.) is constructed by
an iteration scheme in the following way

(16)  u, - duy =€g(t,e,u, ((t,.),Duy ((t,e)), n=1,2,..0,

{(17) by - Auy = €8(t,.,0,0)

with the .initial conditions

{18) un(O) =0, B=0,1,2,0e00,

and the boundary conditions

(19) w(t,x)| = 0 for teR", n=0,1,2,0.. .

By the assumption a1 - Ki, it follows from the Theorsm 1
that the problem (16)~(19) has a solution u_e Gp(gl,
n = 0,1,.-- .

n
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Existence and stability 9

We must show now that{un}converges to u in GP(e) and

lall p"‘“‘ Boundedness of u, will be proved by induction. For

n =01t follows from the equation (17) and Theorem 1 that
"uO”Fp <M, Assume that "unHFp.sM for n = 1,2,..4,kes Applying

Theorem 1 to (16) for n = k+1 and using the estimate (6) we
have

(20) ERICRRT IS
<C []M] + € sup [lalt,e,u(t,.),Du(t,.))] ]
o "gp [A1] teRr+ Tk S R

Since "uk" ps M, by the Sobolev inequality, it follows that
F 3u, (t
|uk(t,x)|s C(p)u, ‘——kgia——
the Sobolev constants. Let Q = C(p)M. From Lemma 1, the assump-
tion A3 and induction assumption uuk“ <M we obtain
FP

< C(p-1)¥, where C(p),C(p~1) eare

(21) "g(t,.,uk(t,-),Duk\t.o”an_1 <

< hQ(t)C.I([Iuk(t,.)lIHp + 1) < He, (ue1),

The inequalities (20), (21) and the essumption ad imply the
desired estimate

||uk+1" [L + lﬂ | eHC1(M+1)] <

for e e (0,€,) with €, given by (*). Thus "unnppsm for any

n = 0,1,.0' .

In order to prove the convergence of {un} to u in
Banach space FP(@), we must show that {un} is a Cauchy se-
quence. Setting v, = w, , - up, from (16}, (17), (19) we have

W'In - Av,n = C[B(tﬂsun(tr-)vpun(t")) =

- &(tya,u,_q(%,.),Du,_,(%,.))],
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v (0) =0, v |p=0 for tekt, n=1,2,... .

Applying Theorem 1 and Lemma 1 to the above problems and
using the assuamption Z\_a, we obtain the estimate

”vn”Hp STZ:_]COCZhQ(t)IIun(t”) - un-1(t")

The above estimate guarantees, by (%), that {un} is a Cauchy
sequence in FP(Q) with 0e{0,1), i.0.

o <7 ot

- u Se”un" for n = 1,2’000-

u u

” n+1 n"Fs n=1 "Fs
Now we will prove that {u } converges to u in GP(a).

Using the triangle inequality of the norm and the propsrties

of the operator A and of the Sobiolev space Hp(sz), px2, we

obtain, by (16},

”l'lm(t,o) - ﬁn(tyﬁ)

IHp'2 <const {" up(tye) = un(t,.)"Hp +

re |t 0,y ,(t,. ),Dum_1(t,.))-f(t..,un_1(t,.),bum(t,.nﬂﬂﬁ}s

sconst\{”um(t,.)-un(t,.) Hp+t—:02hQ(t)“um_1(t,.)-un_1(t,.)

+ eczﬁﬂum_1(t.,)-un_1(t,o)

sconst{"um(t,.)-un(t,.) b I p-1}"
H H

The right-hand side tends ito zero uniformly in te R+, as

m,n —+» co » This means that {un} converges in CO(R*,KP"Z(Q)).

1 R
Hence upe GP(2) converges in inO Cl(R"',Kp"zi(sz)) to some sle~

ment u, satisfying fjuj , <M and being a solution of the prob~
F

lem (1“), (2), (3). Similarly as in [6] and [2] we can prove
that u is a unigue solution of the problem (17), (2), (3)
in GP(e).

Theorem 3. If the assumptions A1 - A4 are ful-
filled, then for amy M >C,L there exlets a positive constant
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Existence and stability 11

/(u-C . L) |2 Al ® A
(%) e1=m1n'< NO il ’[ﬂ?, l1l , 0<8<1,
COHC1(M+1) COCQH C0C2H

such that any solution of the problam (1”), (2), (3) for any
E = (0,51) is stable and asymptotically stable i.s. for any
two solutions n,, and u, of the problem (1), (2), (3) with
the initial data 4, and boy respectively, the following esti~
mate holds for t ¢Rt

(23) "111E(t1') - uze(tpt)“Hp.s
<Cqy &g = &5 o OXP (-3 (af - #2%ched) ¢).
H

Proof. The assumptions Al - a4 guarantee the exi-
stence and uniqueness of a solution of the problem (17}, {2),
(3)e In virtus of the estimate {15°), we have for the diffe=-
rence of two solutions Uze» Uy, Of the problea (17), (2), (3)
the following estimate
222

2 v :
|Hp <cge e, - ¢2"§p +

luage (5500 = uye(%,0)
t 2 2
~ A -2

+ Cgszcgﬁa (g "u18 - u2e"§p e 1 dt )e 1t.

By the Gronwall inequality, it follows
2

[y (E0ed = wp (8,0) :p o | <

2 2 o
€ Cy “°1 - °2"Hp OXP((ECOCZH)zt).
Henoce, we obtain the estimate

' 1 (22 2,222
| o - “25“Hp Col ® - ¢2“HP exp [‘.g (25 - e%cgosh )t] ,
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which implies stability and asymptotical stability of any
solution of the problem (1”), (2), (3},

Remark Te If the assumptions A1, A2, A4 and
besides

(o <]
a3, £ = £(t,x), £ecO&*,kP" (o)), | lf(t,.)]Kp_1dt = H
0
hold, then the problem (1’), (2), (3) has a unique global
solution ue G®(a).
Remark 2, If the assumptions A—1, A—2, 44 and
besides

[ <]
a3’ { ho(t)at = § for every Q>0
0

hold, then the problem (1”), (2), {3) has a uniqué global so-
lution u e GP(Q),

Remark 3. For the boundary condition of the
third type 1i.e.

(37) g%%‘-ﬂ+h(x)u(x,'c))|p= 0, teRY,

similarly as in [2] we can construct the *Banach space kP(a)
in the following way

(3 o
KP = {uer, i\éT“+ ha ulr. = 03 Osas[ﬁ'f—], p> 2}.

]
In the space GP(R) = N ct(r*,kP"?1(2)) we can prove the
i=0

existence and stability of solutions of the problem (1),
(2), (37).
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