

Pham ба Trung

COMMON BEHAVIOUR OF SOLUTIONS
OF SOME COLLECTIONS OF SECOND ORDER LINEAR ORDINARY
DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

1. Consider the following collection of equations

$$(1) \quad r'' + a(t) r + [\lambda_n^2 + b(t)] r = 0, \quad n = 1, 2, \dots$$

where $0 < \lambda_1 < \dots < \lambda_n < \dots$, $\lambda_n \rightarrow \infty$ as $n \rightarrow \infty$, $a(t+\pi) = a(t)$, $a \in H^1(0, \pi)$, $a(0) = a(\pi)$ ($a(0)$ and $a(\pi)$ are understood in the sense of trace), $b(t+\pi) = b(t)$ and $b \in L^2(0, \pi)$. As in [2] solutions of (1) are understood in the sense of Carathéodory.

Let

$$\alpha = \frac{1}{2\pi} \int_0^\pi a(t) dt, \quad a_1(t) = \frac{1}{2} \left[\frac{t}{\pi} \int_0^\pi a(t) dt - \int_0^t a(s) ds \right].$$

The equations (1) can be transformed into

$$(2) \quad y'' + [\lambda_n^2 + Q(t)] y = 0, \quad n = 1, 2, \dots$$

by putting

$$(3) \quad y(t) = r(t) \exp [\alpha t - a_1(t)],$$

where

$$(4) \quad Q(t) = b(t) - \frac{1}{2} a'(t) - \frac{1}{4} a^2(t).$$

Let Q be bounded and

$$N = \sup \{ |Q(t)| : t \in (0, \pi) \},$$

$$N_s = \sup \{ Q(t) : t \in (0, \pi) \},$$

$$N_i = \inf \{ Q(t) : t \in (0, \pi) \}.$$

Theorem 1. Let the function Q defined by (4) be bounded and if either

$$(5) \quad \lambda_1^2 + N_s > 0, \quad \frac{1}{2\pi \sqrt{\lambda_1^2 + N_s}} \int_0^\pi (N_s - Q(t)) dt = q_1 < \alpha,$$

or

$$(6) \quad \lambda_1^2 + N_i > 0, \quad \frac{1}{2\pi \sqrt{\lambda_1^2 + N_i}} \int_0^\pi (Q(t) - N_i) dt = q_2 < \alpha,$$

then there exists $D > 0$ independent of n such that the solutions r_{n1}, r_{n2} of the equations (1) satisfying

$$(7) \quad \begin{cases} r_{n1}(0) = 1, & r'_{n1}(0) = 0, \\ r_{n2}(0) = 0, & r'_{n2}(0) = 1 \end{cases}$$

can be estimated as follows

$$(8) \quad \begin{cases} |r_{n1}(t)| \leq D e^{-\epsilon t}, & |r'_{n1}(t)| \leq D \lambda_n e^{-\epsilon t} \\ |r_{n2}(t)| \leq D \lambda_n^{-1} e^{-\epsilon t}, & |r'_{n2}(t)| \leq D e^{-\epsilon t}, \end{cases}$$

with $\epsilon = \alpha - q_1$ (or $\epsilon = \alpha - q_2$).

Proof. Let the function Q satisfy (5) and y_{n1}, y_{n2} be the solutions of (2) satisfying

$$(9) \quad \begin{cases} y_{n1}(0) = 1, & y'_{n1}(0) = 0, \\ y_{n2}(0) = 0, & y'_{n2}(0) = 1. \end{cases}$$

By (3), (4) in [2] we have

$$(10) \quad \begin{cases} |y_{n1}(t)| \leq \exp N \lambda_n^{-1} t, \quad |y'_{n1}(t)| \leq \lambda_n \exp N \lambda_n^{-1} t, \\ |y_{n2}(t)| \leq \lambda_n^{-1} \exp N \lambda_n^{-1} t, \quad |y'_{n2}(t)| \leq \exp N \lambda_n^{-1} t. \end{cases}$$

Choose n_0 so that $N \lambda_{n_0}^{-1} < q_1$. Then for $n > n_0$ we have

$$|y_{n1}(t)| \leq \exp q_1 t, \quad |y'_{n1}(t)| \leq \lambda_n \exp q_1 t$$

$$|y_{n2}(t)| \leq \lambda_n^{-1} \exp q_1 t, \quad |y'_{n2}(t)| \leq \exp q_1 t.$$

Let α_n be characteristic exponents of the equations (1). By (5) we get $\operatorname{Re} \alpha_n \leq q_1$ for all n (see [3], p.126). Hence there exist constants D_n such that

$$|y_{n1}(t)| \leq D_n \exp(q_1 t), \quad |y'_{n1}(t)| \leq \lambda_n D_n \exp(q_1 t),$$

$$|y_{n2}(t)| \leq \lambda_n^{-1} D_n \exp(q_1 t), \quad |y'_{n2}(t)| \leq D_n \exp(q_1 t).$$

Putting $D_0 = \max \{1, K_j; j \leq n_0\}$ we have for all n

$$|y_{n1}(t)| \leq D_0 \exp(q_1 t), \quad |y'_{n1}(t)| \leq \lambda_n D_0 \exp(q_1 t),$$

$$|y_{n2}(t)| \leq \lambda_n^{-1} D_0 \exp(q_1 t), \quad |y'_{n2}(t)| \leq D_0 \exp(q_1 t).$$

It is easy to see that

$$(11) \quad \begin{cases} r_{n1}(t) = \exp \left(-\frac{1}{2} \int_0^t a(s) ds \right) \left[y_{n1}(t) + \frac{a(0)}{2} y_{n2}(t) \right], \\ r_{n2}(t) = \exp \left(-\frac{1}{2} \int_0^t a(s) ds \right) y_{n2}(t) \end{cases}$$

are the solutions of (1) satisfying (7). From this we get (8) with $D = D_0 \left(1 + \frac{a(0)}{2\lambda_1} \right) \max \{ \exp a_1(t) : t \in [0, \pi] \}$.

For the function ζ satisfying (6) the proof is similar.

Remark. This theorem is still valid for the case $\lambda_1 = 0$, λ_n in (8) is replaced by $\lambda_n + \lambda_0$ with λ_0 being a positive constant.

2. Consider the following collection of nonhomogeneous equations corresponding to (1)

$$(12) \quad s'' + a(t) s' + [\lambda_n^2 + b(t)] s = c_n(t), \quad n=1,2,\dots,$$

where $c_n(t+\pi) = c_n(t)$ and $c_n(t) \in L^2(0, \pi)$. Put

$$C_n = \int_0^\pi |c_n(t)| dt.$$

Theorem 2. If the functions a, b satisfy the hypotheses of Theorem 1, then there exists a constant $K > 0$ independent of n such that the solutions s_{n0} satisfying

$$(13) \quad s_{n0}(0) = s'_{n0}(0) = 0$$

of the equations (12) can be estimated as follows

$$(14) \quad |s_{n0}(t)| \leq KC_n \lambda_n^{-1}, \quad |s'_{n0}(t)| \leq KC_n.$$

Proof. Since the hypotheses of Theorem 1 are satisfied, the corresponding homogeneous equations (1) have no periodic solutions with period π . Therefore, for each n (12) has the unique solution s_n periodic with period π (see [1], p.251). Denote by r_{n1}, r_{n2} the solutions of (1) satisfying (7) and by y_{n1}, y_{n2} the solutions of (2) satisfying (9). Put

$$R_n(t) = \begin{bmatrix} r_{n1}(t) & r_{n2}(t) \\ r'_{n1}(t) & r'_{n2}(t) \end{bmatrix}, \quad c_n^*(t) = \begin{bmatrix} 0 \\ c_n(t) \end{bmatrix}.$$

Then we have

$$(15) \quad \begin{bmatrix} s_n(t) \\ s'_n(t) \end{bmatrix} = R_n(t) \begin{bmatrix} s_n(0) \\ s'_n(0) \end{bmatrix} + \int_0^t R_n(t) R_n^{-1}(s) c_n^*(s) ds,$$

where

$$(16) \quad \begin{bmatrix} s_n(0) \\ s'_n(0) \end{bmatrix} = [E - R_n(\pi)]^{-1} R_n(\pi) \int_0^\pi R_n^{-1}(t) c_n^*(t) dt.$$

Choose n_1 so that $\exp(N \lambda_{n_1}^{-1} \pi) < \text{ch} \alpha \pi$. Then for $n \geq n_1$ by (10), (11) we get

$$|y_{n1}(\pi) + y'_{n2}(\pi)| \leq 2 \exp(N \lambda_{n_1}^{-1} \pi),$$

$$|r_{n1}(\pi) + r'_{n2}(\pi)| \leq 2 \exp[(N \lambda_{n_1}^{-1} - \alpha) \pi],$$

$$\begin{aligned} \det[E - R_n(\pi)] &= 1 - [r_{n1}(\pi) + r'_{n2}(\pi)] + \det R_n(\pi) \geq \\ &\geq 2 \exp(-\alpha \pi) [\text{ch} \alpha \pi - \exp(N \lambda_{n_1}^{-1} \pi)] = d > 0. \end{aligned}$$

By (16) we obtain

$$\begin{aligned} s_n(0) &= \frac{1}{\det[E - R_n(\pi)]} \left[(r_{n1}(\pi) - e^{-2\alpha\pi}) \int_0^\pi (-\exp \int_0^t a(s) ds) r_{n2}(t) c_n(t) dt + \right. \\ &\quad \left. + r_{n2}(\pi) \int_0^\pi \left(\exp \int_0^t a(s) ds \right) r_{n1}(t) c_n(t) dt. \right] \end{aligned}$$

Putting $H = \frac{1}{d} \max \left\{ \exp \int_0^t a(s) ds : t \in [0, \pi] \right\}$ together with (8) give

$$(17) \quad |s_n(0)| \leq H D (2D+1) C_n \lambda_n^{-1}.$$

Analogously, we have

$$(18) \quad |s'_n(0)| \leq H D (2D+1) C_n.$$

The periodicity of s_n and (8), (15)-(18) assure

$$|s_n(t)| \leq 2HD^2(2D+1+d) C_L \lambda_n^{-1},$$

$$|s'_n(t)| \leq 2HD^2(2D+1+d) C_n.$$

On the other hand, for each n there exists K_n such that

$$|s_n(t)| \leq K_n C_n \lambda_n^{-1}, \quad |s'_n(t)| \leq K_n C_n.$$

Hence, with $K_0 = \max\{2HD^2(2D+1+d), K_n : n \leq n_1\}$ we have for all $n \in \mathbb{N}$

$$(19) \quad |s_n(t)| \leq K_0 C_n \lambda_n^{-1}, \quad |s'_n(t)| \leq K_0 C_n.$$

It is easy to see that

$$s_{n_0}(t) = s_n(t) - s_n(0)r_{n1}(t) - s'_n(0)r_{n2}(t)$$

is the solution of (12) satisfying (13), By (8), (17)-(19) we get (14) with $K = K_0(2D+1)$.

REFERENCES

- [1] B.P. Demidowicz : Matematyczna teoria stabilności. Warszawa 1972.
- [2] Pham ba Trung : Common behaviour of solutions of some collections of Hill's equations. Demonstratio Math. 19 (1986) 1095-1109.
- [3] B.A. Yakubovich, B.M. Starzhinsky : Lineinyye differentsial'nye uravneniya s periodicheskimi koefitsientami i ikh prilozheniya. Moscow 1972.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA
Received February 3, 1986; revised version September 1, 1986.