DEMONSTRATIO MATHEMATICA

Vol XX No 3-4 1987

Pham ba Trung

COMMON BEHAVIOUR OF SOLUTIONS
OF SOME COLLECTIONS OF SECOND ORDER LINEAR ORDINARY
DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

1. Consider the following collection of eguations

{1) r“ +a(t) r + [2§+b(t)]r=0, n=1,2,000

where 0</’l1< cee <2.n<..., an —+» 0o @S h —» 00 , a{t+7) = a{t),

aeH1(U,5r), a(0) = a(w) (a(0) and a(sm) are understood in thae
sense of trace), b{t+m = b(t) and b€L2(O,:n'). As in [2] so-
lutions of (1) are understood in the sense of Carathéodory.
Let

16 L t
o = %'!, a(t)ds, e.(t) = 15 ,%f a{t}dt -f a(B)GS} .
0 0

The equations {1) can be transformed into

(2) 3"+ [Rﬁ + Q(t)]y =0, n=1,2,04s
by putting

(3) 3(t) = o(t) exp [at - a (t)] ,
where

(4) Q(t) = b(t) - 3 a’(t) - } &2(t).
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Let ¢ be bounded and

R

sup {l¢(t)] + te(0,m},
sup { ¢(t) & tel(o,m},
inf { «{t) : te(0,m}.

Ny

Ny

it

Theorem 1. Let the function ¢ defined by (4)
be bounded and if either

. n
(5) 4%+ W,>o0, —_%——j (Ng - G())d% = qq<cx,
271'\//".1 + Ng 0
or
W
(6) a2+ W;>0, ——=—=] (a(t) - N )dt = g <u,

\/2 -
2n a1+1\io

then there exists D>0 independent of n such that the solu-
tions T 4, T, of the equations (1) satisfying

rn1(0) 1, rn1(0) = 0,

(1) nt" > =
0, rn2(0) =1

rn2(0)
can be estimated as follows

|z,4(t)| <D e"f%, |zl (t)] <D ay o~ b

(8)
| ool t)] <D Ay o€, | 7pp(t) | €D o EY,

with € = a0 = g4 (ore=oc-q2).
Proof . Let the function ¢ satisfy (5) and y,q4, 5
be the solutions of {2) satisfying

Y100 = 1, y}'ﬂ(()) = 0,

(9) .
ynz(o) = 0, yéz(o) = 1.
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Common behaviour of solutions

By (3), (4) in [2] we have

|ym(t)lsexpN}l;1t, |y’ (t)lsﬂ exp H 1;11‘5,
{10)

‘ynZ(t)l sﬁ;‘ exp K 7\;1’6, iyn2(t)| <exp k 2.;115.

Choose n_ so that Kk A;1 <qq. Then for n>n_ we have
0

|75, (81| gexp aqt, {704 (8)] € 4, exp q,3

1

|7nal 8| €57 exp agt, [3,(0)] < exp ayt.

Let x be characteristic exponents of th: 2guations {1).
By (5) we get re o <Gq for all n (see [3], p.126). Hencas
there exist constants 2 such that

Iyn1(t)| SDn eXD(Qﬂ?)s ly;l1(t)l$lnDn eXP(%t)s

=1 ’
ynz(t)lsﬁ.n D, exp(q1t), |yn2(t)|sDn exp(q.It).

Putting D = max {1, X.; jsno} we ‘have for all n

|79 (t)] <D, expla,t), |701(8)] < 2., explgqt),
-1 ’
lyn2(t)| s}‘n Do exp(q1t), lyn2(t)| sDo exp(q1t).

It is easy to see that

t
rm(t) = exp (- %5 a(s) ds) [ym(t) + a—(%l ynz(t)] .
(11) to
rn?_(t) = exp (- %!) a(s) ds)ynz(t)

are the solutions of (1) satisfying (7). From this we get (8)
. 0
with D = D (1 + & 1)max {exp aj(t) : te[0,m]}.
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For the function ¢ satisfying (6} the proof is similar,

Remark. This theorem is still valid for the case
21 = 0, A&, in (8) is replaced by Ap + Ay with A, being a po-
sitive constant,

2. Consider the following collection of nonhomogeneous
equations corresponding to (1)

(12) s” + a(t) 8’ + [zg +0(t)]e = e (t), n=1,2,...,

where cn(t+ﬂ) = cn(t) and cn(t)e L2(0,ﬂ). Put

9z
c, = | e (8] at.
0

Theorem 2. If the functions a, b satisfy the
hypotheses of Theorem 1, then there exists a constant K> 0

independent of n such that the solutions 8o satisfying

(13) 8,,(0) = 8/.(0) = 0

of the equations {12) can be estimated as follows

(14) lsp(t)]| s xC AT

nn? eno(t)|S KCn'

Proof., Since the hypotheses of Theorem 1 are sa-
tisfied, the qorresponding homogeneous equations (1) have
no periodic solutions with period ., Therefore, for sach n
(12) has the unique solution C peripdic with period  (see
(1], p.251). Denote by r,,, r,, the solutions of (1) satisfying
(7) and by ¥4, ¥,, the solutions of (2) satisfying (9). Put

t) t) 0
R (%) = [rf“( r’}"‘( ] cplt) = [ }
g (%) (1)
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Common behaviour of solutions 5

“hen we hove

t) (0)
{15) *nl =1 (t) ®n +
sp (%) n s, (0)

where

1
5 Rn(t) R;1(s) c;(s) ds,
0]

ar

s (0)
(16) n = [ - g M)} (M f #218) eX(v)as.
sp(0) 0

Choose,n1 so that exp R 2;1ﬂ'<ch&xﬂ. Then for n: n, by
(10), (11) we get 1

, o g1
|9 09 (™) + 3000m)] < 2 exp(s Aoy

-1

Irn1(M) + réz(ﬂ)|< 2 exp [(N an1 - a)Jd,

det[E - Rn(ar),_] =1 - [,rm(’” + rr/xz(””] + det R (M) >

d> 0,

2z 2 exp(~o) [choc:lr - exp(N Z.;::JT)]

By (16) we obtain

. t
..2ocﬂT)j' (-expf a(s)da)rnz(t)cn(t)dt +
0 0

1
8p(0)= 303 [B-R, ()] [(rm (r)-e

T t

+ rnz(ﬂ) £ (exp g a(s)ds) rn1(t) cn(t)dt.

t
Putting H = % max {exp é a{s)ds : te [O,ﬂ]} together
with (8) give
-1
(17) |8, (0)] <H D (2D+41) cpazt.
dnalogously, we have

{18) |sp(0)] < D (2D+1) Cp.
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The periodicity of s, end (8}, (15)~{18) assure

2 -1
|sn(t)| < 2HDS(2D+14d) C AL,

s (t)] <28D%(2D41+d) C .

On the other hand, for each n there exists Kn such that

Isn(t)l $ Kncn;{;1 ' ls;z(t) l $KpCpe

Hence, with X = max{2HD2(

for gl1l neN

2D+1+4d), K, :n sn1} we have

(19) Isn(t” sKocna':' lsé(t” <Kocn’

It is easy to see that
sno(t) = sn(t)—sn(o)rn1(t)-sﬁ(o)rne(t)

is the solution of (12} satisfying (13}, By {(8), (17)-(19)
we get (14) with K = Ko(2D+1).
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