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Introduction 
In f i n i t e element methods, evaluation of a solution of 

initial-boundary value problem necessitates the use of nume-
r i c a l integrat ion of inner products, which introduced addit io-
nal errors . 

The main subject of t h i s paper i s to invest igate the e f f e c t 
of numerical integration on the error estimates. I t i s proved 
that a suitable choice of the quadrature scheme leads to the 

2 1 
optimal L - and H -convergence r a t e s . 

The types of f i n i t e element spaces use.d, and the assump-
tions on the quadrature formulae follow [7], where a corresr-
ponding problem f o r quasi l inear e l l i p t i c equations has been 
analysed. 

The analogous problem in the case of l i n e a r parabolic 
equations was considered by Raviart [9] and Fix [6]. In the 
case of nonlinear parabolic equations Douglas and Dupont [4] 
tjreBented an al ternative method of approximating the integra ls 
by interpolat ing the c o e f f i c i e n t s and evaluating the integra ls 
t>y exaot formulae* 

Final ly we oonsider the problem of s t i f f n e s s of a system 
of ordinary d i f f e r e n t i a l equations which ar ises in the semi-
- d i s c r e t i z a t i o n with numerical integrat ion. 
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2 T.J.Janik 

1. The quasilinear parabolic problem 
Let a be a bounded, open set in Euclidian space Rn with 

a sufficiently smooth boundary r and J = (0!,T]cH1. Consider 
the following nonlinear parabolic problem 

n 

' t - Z 5 7 I t ) + - 0 for (M)eaxj, 
i=1 1 1 

(1.1) • u(x11) = 0 for (x , t ) e r x J, 

u(x,0) = UQ(x) for x e a . 

We shell assume the following regularity of the coe f f i -
cients and the e l l ip t i c i ty condition 

(K1) a^fx.u), i = 0 ,1 , . . . ,n , are k-times continuously 
differentiable functions on £ * R, 

(R2) for any C>0 there exist constants CQ, Ĉ  such that 

0 < C0s a^x.u) $ C1 

for any i = 1 n and any (x,u) ea * [-C,C] and 

n 2 

¿ a 0 ( x , u ) - J ] (fiT a i < x ' u i It ) (s^(x,u) )~1 £ 0 
i=1 1 

(here and in the following C, CQ, C ^ . . . denote generic po-
sit ive constants not necessarily the same in each two f o r -
mulae ) . 

For simplifying the problem, we assume a l l functions a^, 
i = 0,1, . . . ,n , to be autonomous. 

Let i/^'^fa), for any integer mjO and any number 
qe [ l , + oo], be the Sobolev space with the norm ||*||_ q and 
the semi-norm |»|m Q . For q = 2 we abbreviate || • I I 2 ft 
'•"m,Q and M I o , 2 ; 'I'" a n d w e d e n o t e Wn '2 (a) by 'llfyft). 
The space w " » q ( f i ) denotes the closure of CQ(g) in the norm 
|«|| a n . The inner product on L (o) = H (ft) we denote by 
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E f f e c t of numerical i n t e g r a t i o n 

( . , . ) and we extend ( . , . ) to the dual i ty pa i r ing between 
hJ(S2) and i t s dual H~1(£2). 

I f (X(ft) , || • j ) i s a Banach space, then, f o r any 

p € [ l , + oo ] , L p ( J ,X ( i 2 ) ) denotes the Banach space of funct ions 

u:J —»-X(fi ) such that 

i l P { J , 2 ( 0 ) ) - (J i » t t . i ï ( a ) « Y 
< + oo "A I J 

' j 

w i th the usual mod i f i ca t i on f o r p = +00. Furthermore, l e t 

8 i u = f ^ ' 1 = 1 » ' " » n » a n d 8 t u = I f ' 

The weak form of ( 1 .1 ) i s to f ind u e L ( ) ) such that 
3 t u e L 2 ( J , H " 1 ( n ) ) and 

(1.2) 
( 3 t u , y ) + ( a( u) Vu, Vy ) + ( a n ( u ) , y ) = Ü 

( u ( . , 0 ) , y ) = (u 0 , y ) 
•1 

fo r any y eH^fffl] and a.e. t e j , where 
n (a(u)Vu,Vy) = Z Z ( a i ( . , u ) 3 i u , 3 i y ) , ( a 0 ( u ) , y ) = ( a 0 ( . , u ) , y ) . 

For error estimates of the numerical method we are going 
to present, we assume suf f ic ient regular ity of the unique 
solution of the problem (1..2), namely: 

( 1 . 3 ) u e L M ( j / + 1 » w ( a ) n V/J'°° ( n ) ) 

( for regularity results, see [8]).. 

2. The semi-discrete Galerkin method 
To approximate ( 1 .2 ) , we construct f o r h > 0 a family of 

triangulationa of a , (see [ l ] ) , i . e . , we consider a f i -
nite partit ion of a into d is jo int subsets j e : e 6 T^j such 

that S = U e and h = sup diam(e) approaches z e r o . A l l 
ecJh eeJh 
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4 T . J . J a n i k 

the f i n i t e elements e e X^ are a f f ine - equ iva l en t to a s ing l e 
reference f i n i t e element E through the i n v e r t i b l e a f f i n e 
mapping. 

V.'ith T^ we assoc ia te S^, a f in i te-dimen&ional subspace 

of C°(fl)n H^(fl). We make the fol lowing hypotheses about S^: 
(A1) i f y h e S^ and e e X^, then y h | e e P k (e ) for some i n -

teger 1, where P j J e ) denotes space of a l l polynomials in 
of degree not g r ea t e r than k, 

(A2) the approximation property : 
for any in teger m = 2 k+1, any r e a l .lumber qe [2 , + oo] and 
any h there e x i s t s a bounded l i n e a r operstor TT :̂i,'01»^ (q ) n 

n V/y'q(a) —"• S h , such that 
1 

( E \ \ \ y - y \ \ ] , q J ^h-3||y||m i q > f l if q<.+ oo , 
eeTh 

max l l V ^ H ^ o o . e < a i f q = 
9 h 

for a l l y e l f M ( f i ) n l j J , , ( 8 ) and j = 0 , 1 , . . . , m , where the 
constant C i s independent of y and h , 

(A3) the inverse i n e q u a l i t y ; 
for any in t ege r 0 $ j p there e x i s t s a constant C independent 
of h such that 

1 1 

£ W m . e f | ^ h | ! , e ) 2 ' 
ee7h e c J h 

m a* K !m,oo , e max \yh\A f « all 
h e e h 

iihese properties are s a t i s f i e d by the f i n i t e element 
space introduced in [7] . 

The Galerkin problem takes now the form: 
let { ^ s ( x ) } g _ 1 be a basis of we seek u h e l 2 ( J , S h ) of the 
form 
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¡Sffeet of numerical i n t e g r a t i o n 

u h ( x , t ) = U ( t ) U : 
s=1 

such t h a t 

( 2 . 1 ) 
u h ( ü ) c S h 

f o r any y^ e S^ and a . e . t e J . Problem (2 .1) i s an i n i t i a l 
problem f o r a non l inea r system of ordinary d i f f e r e n t i a l equa-
t i o n s of f i r s t o rde r . I t has been ex tens ive l - ' s t u d i e d ; e . g . , 
see [3] and [10] , where, under s u i t a b l e assumptions on the 
smoothness of u, optimal e s t i m a t e s of the e r r o r u-u^ in the 
spaces L 2 ( J ,H 1 ( f l ) ) and L°° ( J , L 2 ( f t ) ) are d e r i v e d , namely 

lu-u.ll „ + h| |u-uh | | 
I " L°° ( J , L ( ß ) ) Il 

« 1 $ C . . ( u ) h k + 1 , 
L ( J ,H (ft) ) 1 

where 

C1 ( u) = C(||u|| 
"I00 ( J , H k + 1 ( a ) ) 

+ 9 t U lc+1 11 ' nL°° (J,H (n) ) 

In [2] the uniform e r r o r e s t ima te i s der ived 

l u - a j $ C ? ( u ) h k + 1 l l n h | 0 ( n ) 
1 ^ " i , 0 0 (J ,L°° ( a ) ) 2 

where 

C ? (u) = C(||u|| . , + II 8*1x0 ) , 
2 L°° (J,ff , c o (Q)) 11 * ( J , W k + 1 ' ° ° (ft)) 

and c(n) = (n /2 )+2 . 
The r & g u l a r i t y of Gale rk in s o l u t i o n fo l lows from the above 

e s t i m a t e s and p r o p e r t i e s (A2) and (A3): 

- 571 t 



6 T.J . Jan ik 

I, s m -i! a 2 .1. Let u e L°°( J,Wk+1 '°°(fl) n wj'°°(a) ) be 

the solut ion of "(1.2)'such that 9 tu e L°°( J,Wk+1,0°{a) ) . -Then 
fo r a solut ion Uj.. of (2.1) the following estimates hold 

ffi |Uh|k,oo,e ^ 2 ( u ) , 
h 

1 

( S Ihhllk.ef « ^ ( u ) . 
h 

1 

( S ll9tuhllk,e) 
ee3-h 

P r o o f . We sha l l prove the f i r s t es t imate. Prom the 
t r i ang le inequal i ty we get 

(2.2) ®ax | |uh | |kf00>6 « N l k f 0 0 > a + max ||u-uh | |k>oo>e * 

il Ĵ  

+ J J J llu-\ullk,oo,e + J « l l \u-uhllk,T O ,e-
Using the property (A2), we have f o r the second term on the 
right-ihand side of (2.2) 

max^ || a""11hu|lk,oo,e « c h H k + 1 ,oo,fl-

The th i rd term on the right-|hand side i s estimated by 

max |lV-uhHk,oo,e « c h " k I I V ^ I I o , « , , a i eeJ^ ' ' 

$ 0h-k(||TThu-u||0fOOfffi + | |u-uh | |0 t 0 0 t f i) S 

« Ch-k(hk + 1 | |u | |k + 1 > c o t f t + C2 tu)hk + 1 | l n h |°(Q>) * 

• ^ M k f W + I i n h l ' W . 
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¿ f f e c t of numerical in tegra t ion 7 

where we have f i r s t used the inverse inequa l i ty (A3) and then 
the approximation property (A2) and the uniform error est imate 
of the Galerkin method. Combining the previous i n e q u a l i t i e s 
we obtain 

j « N i k , 
h 

where 

C 2 U ) = C(| |u| |k + 1 > 0 O f £ J + | | 3 t u | | k + 1 f 0 0 > f i ) . 

Analogously, we can prove the second and third es t imates of 
Lemma 2 .1 . 

3. Tl;e e f f e c t of quadrature e r ror s 
Since i t i s e i ther too c o s t l y or impossible to ca l cu l a te 

exact ly the values of i n t e g r a l s over a which appear in ( 2 . 1 ) , 
we must take into account the f a c t that numerical in tegra t ion 
i s used f o r eva luat ing these i n t e g r a l s . Thus, f o r any f i n i t e 
element e e T^, we introduce a quadrature formula over e : 

L 
j f ( x ) d x i s approximated by ^ w^ g f i b j e ) 
e 1=1 

f o r some s p e c i f i e d points b, e e and weights w, > C, 
X , Q 1 , D 

1 = 1 , . . . , L. 
In view of a f f i n e —equivalence, we see that the >5aydr&titre 

scheme over the se t E automatical ly induces a quadra?ore 
scheme over the set e , namely l e t 

( 3 . 1 ) . Pe » S a x — x = P e ( x ) = Gflx + g e e g 

be the i n v e r t i b l e a f f i n e mapping which maps E onto e . Then 

. L 
1 A , A , A ^ 1 A A A 

J f ( x ) d x ~ W ^ b - ^ , 
E 1=1 
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T . J . J a n i k 

where f ( x ) = f ( x ) for a l l x = P . ( x ) , xe E, and 
€ 

(3 .2) w i , e = l d e t G e l " l ' b l , e = V V ' 1 - 1 , . . . , ! . 

By using the quadrature formulae, we replace the semi-di s-
crete problem (2 .1) by the fol lowing one: 
f ind a function U^e L 2 ( J , S h ) of the form 

U h ( x , t ) = u s ( t K a ( x ) 
s=1 

such that 

(3 .3) 
< 8 t L W h + ^ V ' V ^ h + ( a 0 ( U h ) f y h ) h = 0, 

Uh(0) e S ^ w i l l be defined l a t e r on, 

for any e S^ and a . e . t e J , where for z ^ y ^ e S^ 

e e J h 1=1 

( a ( z h ) V z h , 7 y h ) h = 

L r n 

" Z Z w l , e Z a i ( b l t e » z h ( b l , e , , x 

(3 .4 ) e e J h 1=1 L1=1 

( « o t ' h ^ A - Z Z w l , e a 0 ^ b l , e , z h ^ b l , e ^ e ' ' 
e e J h 1-1 

- 574 -



i i f f ec t of numerical integrat ion 9 

Here we use two kinds of quadrature formulae: 

(<«1) w^>0, e St 1 = 1 , . . . , L * , are the weights and the 
nodes,respect ively,of such quadrature formula of degree 2k-2 jj* 

that the union |J j b ^ j contains a P^iEj-unisolvent subset, 

A A 

(Q2) w 1 > 0 , b-̂  £ B, 1 = 1 , . . . , L , are the weights and the 
nodes, respect i ve ly , of a quadrature formula of degree 2k-2. 

In [7] ¿he fol lowing properties of the forms (3.4) were 
derived: 

(?1) the consistency properties on the Galerkin solution 
u^, i . e . there exists C depending only on the coe f f i c i en t s 
and solution of parabolic problem such that 

|(a(uh )Vuh,Vyh ) - (a (uh )Vuh ,Vyh )h| * Chk |yh| 1 , 

| ( a 0 (u h ) , y h ) - ( a 0 ( u h ) , y h ) h | $ Chk|yh| 1 j f l f 

| O t V y h ) " O t ' W h l < C h k | y h | l , f l 

f o r any y h e Sh , 
(?2) the uniform Sh~coerc iv i ty , i . e . 

there exists a constant cx> 0 independent of S^ such that 

( a ( y h ) V y h , V ( y h - z h ) ) h - ( a ( z h )V z h ,V ( y h - z h ) ) h + 

+ U 0 ( y h ) , y h - z h ) h - ( a 0 ( z h ) , y h - z h ) h ^ « | y h - z h | ^ f l 

f o r a l l Sh< 

Now we prove the next property of form 
T * 
L I A *1 L e m m a 3.1. Let the union (J l b , j contain 

1=1 ± 

a Pj^Ej-unisolvent subset and l e t w ^ O , 1 = . Then 
the mapping 

1 L* 1 

I 'h ih = K » * h > h ) 2 - ( E S » 1 , . » h ^ l , . ) ) 2 

eeJh 1=1 
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10 T. J.Janik 

i s a norm over S^ and there ex is ts a constant D>0 independent 
of h such that 

(3.5) D ~ > h b N h « D I M I -

P r o o f . Using the s t r i c t pos i t i v i t y of the weights, 
we find that 

L* 
i f p eP k (E ) and w*p2(b£) = 0, then p(b£) = 0 f o r 1=1, . . . ,L* 

1=1 
Thus, by the unisolvency assumption, we have p = 0 . As the 
consequence, the mapping 

1 
L* 2 

1=1 
r * 

P — w i p ( b i } 

L* _ 0v2 
def ines a norm over P k (E ) , since [lEIZ ) defines a norm 

over R . Since the space Pi,(B) i s f i n i t e dimensional, there 
/•N /\ K 

exists constants D1 ,D2>0 such that 

(3.6) S j p l ^ « ^ ( f i j , <S 2 |$|g f S . 

1=1 

Let y^|g = p0 and l e t pQ eP k (E ) be the polynomial associa-

ted with p through the usual correspondence ( 3 .1 ) , i . e . 

P« = We oan wr i t e , using (3.2) and (3 .6 ) , 6 3 8 

L* L* L* 

E "'l.e*h<*le> = X WI,ePe2^,e> = S- « . l ^ l » 
1=1 1=1 1=1 

» D ^ d e t Ge| |pe|g(B - fijdet Ge| | det G j - 1 | p j ^ , 

where we have also used the formula of change of Variables 
in multiple integrals. Hence, 
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Effect of numerical integration 11 

eeJ h 1=1 

which implies the l e f t part of (3 .5 ) , the right one can be 
derived analogously. 

We can now turn to the error estimates for the quadra-
ture-Galerkin method (3 .3 ) . Let us write 

u - Uh = u - uh + uh - Uh = u - uh + Zh , 

where u i s the solution of the d i f f e ren t i a l problem (1 .2 ) , 
u^ i s the solution of the Galerkin approximation (2 .1 ) , and 
U^ i s the solution of the quadrature-Galerkin method (3 .3 ) . 
The estimates of u-u^ are known, so we have to estimate Z^ e S^, 

Let us begin defining the i n i t i a l function U^iO)e S^. We 
assume that 11^(0) i s the projection of the given function u^ 
on the subspace S^ with regard to the discrete inner product 
( • * « i . e . 

L* 
(3.7) £ £ " i , 0 U o - U h ( O ) ) ( b ^ e ) y h ( b ^ 9 ) = 0 

eeTh 1*1 

for any y h e Sh > 

L e m m a 3.2 . Let U^(0) be the projection of 
Uqe H k + 1 (n )n H^(a) on S h defined in (3.7) and l e t uh(0) be 
the projection of Uq on S^ with regard to the inner produot 
on L 2 ( a ) . Then 

||zh(o)|| = ||uh(o)-uh(o)|| < c h k | | B 0 | k + 1 i f l . 

P r o o f . By the assumption, (u^^U^CO) » 
= ( 1 ^ - 1 ^ ( 0 ) ^ ) for any Thus 

(u h (0 )-U h (0 ) ,y h ) J < 1 ( 1 ^ ( 0 ) ^ ) l. ( u o - ^ i O i ^ i J I 
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12 T.J.Janik 

f o r any y ^ e S ^ . Prom Lemma 3.1 and the " loca l " quadrature 
e r r o r est imate (see [7]) we g e t , with y^ = 11^(0)-11^(0) e S^, 
the est imate 

1 

D - 1 | | u h ( 0 ) - U h ( 0 ) | | 2 S C h | K - U h ( 0 ) | | 2 t e ) 2 | u h ( 0 ) . U h ( 0 ) | 1 t f l . 
eeTh 

In [5] i s shown that 

l " o - » h ( o ) I ^ k + 1 K l k + i f f t 

and thus , in the way analogous to the proof of Lemma 2 .1 , we 

1 
2 

obtain ^ 

( E I k - V ^ l l k . e ) 

Prom (A3) 

eeTh 

| u h (0 ) -U h (0 ) | 1 f f l $ Ch- 1 | | u h (0 ) -U h (0 ) | | . 

Combining 1 a l l previous inequa l i t i e s , we get the proposition 
of Lemma 3*2. 

We are now in a posit ion to estimate the error of the 
quadrature-Galerkin method (3*3). 

T h e 0 r e m 3.1 . Let the unique solut ion u of the 
problem (1.2) s a t i s f y the oondition (1 .3 ) . Then under the 
assumption (R1), (R2), (A1), (A2), (A3), and (Q1), (Q2) the 
following error estimates hold 

II u-Uh II 9 + I ' l - U j p , « c(u)h k , 
II h | lL0 8(J,L2(a)) " L (J,H (fl)) 

i t t - U h l L 2 ( J f H r ( f l ) ) r - O o r r - 1 . 

P r o o f * Since u^ and U^ are the solutions of the 
Qalerkin and the q uadrat ure-Galerkin problem^respectively, 
wa have 
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Effect of numerical integration 

(3 t u h ,y h ) + (a(uh)Vuh,Vyh) + (a 0 (u h ) ,y h ) = 

- ' a t U h ' ï h ' h + ^ V ^ h ' ^ A + 

for any e S^» which implies 

^ t W h + ^ ( » h J ^ h ' ^ h ^ - { a ( U h , V U h» 7 7h'h + 

+ ( a 0 ( i h ) » 7 h ) h - (a 0 (U h ) f y h ) h = O t V ^ h - ( V h ^ + 

+ (a (u h )Vu h ,Vy h ) h - (a (u h )7u h , 7y h )+ (a 0 (u h ) ,y h ) h - ( a 0 ( u h ) , y h ) . 

Using the properties (P1), (P2) and Lemma 3.1 , with = Z^, 
we get the estimate 

h l l zhll2 + 2 D « l z h l i , a < 2 C ( u ) D h k | z h | 1 f f l . 

Applying the £-inequality (with E » ocD), we find 

s 
||zh{s)||2 + « D j | z h ( t ) | 2 f f i d t < g c 2 ( u ) h 2 k + | | z h ( 0 ) | | 2 , 

0* 
for 0< s This, together with Lemma 3*2 and error estimates 
for the Galerkin solution (2 .1 ) , implies the proposition of 
the theorem. 

R e m a r k . Let us consider the following problemt 
whether numerical integration has a negative influence on 
st i f fness of a system of ordinary differential equations 

Mh + *h uh " *h 

which arises in the seoi-disoretlzationi (2.1 j of a linear para-
bolic equation? 

Both matrioes U^ and K^ are symmetric and i t is well-kno^rn 
that the s t i f fness rat io 
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14 T. J . Janik 

T T a K. u . u K^u 
s. = ( max X. ): ( min ) = (max -m ): ( min ) 

n \ i=1, . ,M 1 / \ i=1, . ,M x> \ u u M û ' V u a M û > 

i s of the order h~2 , where i =1 , . . . ,M, are the eigenvalues 
of -M^1Kh. I f 

~ dUh „ 
\ IT + Kh Uh " f h 

i s the perturbated by numerical integration system (3.3) f 

then the s t i f f n e s s ra t io i s 

mN m 
/ u K.u \ f u Khu \ 

s h = max ) : ( min — ) , 
n x u uiMfau ' N u ualihu ' 

IV M 
since both matrices M̂  and K^ are also symmetric. 

Let us f i r s t observe that 

P2(U) - - P - r j ( a ) , 
U M ^ U + C h ^ ' U M ^ U c h k + 1 

—ST7- + Cph m - V/pil 
U U * UAU 

since in linear oase the consistency properties (P1) are valid 
with (k+1)-order of accuracy (see Fix [6]) . 

Hence 

m m m 
, u K. u . , u K. u . 0 « , 

s h = (max - n x r - : ( min U (max r£(u)> « (min r^ (u) ) . 
h v u uTMhu ' v u uxMhu ' u n u 

Putting 
T|h ^ I L u 

» max - p - , in = min > 
h u uTMhu n u uiMhu 
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Effect of numerical integration 15 

we get 

< ( l + C 2 h k + 1 , h ) ( s h + C l h k + \ h ^ 1 ) 

3 h x d - c ^ V t i d - c y ^ h i - ' h i 

Let us now assume that 

T u \ u 
2Th = mm 

U, U h^U 

is constant (the typical case in f i n i t e element methods). 
Then, s^ does not exceed s^, i f k £ n, since ¿ĵ  is of the 

order h~n. 
Acknowledgement. The author is especially indebted to 
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