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;Etroduction

In finite slement methode, evaluation of a solution of
initial-boundary value problem necessitates the use of nume-
rical integretion of inner products, which introduced additio~
nal errors,

The main subject of this paper is to investigate the effect
of numerical integration on the error estimates, It is proved
that a suitable choice of the gquadrature scheme leads to the
optimal L2~ and H'-convergence rates.

The types of finite element spaces used, and the assump-
tions on the guadrature formulae follow [7], where a corresm
ponding problem for quasilinear elliptic eguations has been
analﬁged.

The analogous problem in the case of linear parabolio
equations was considered by Raviart [9] and Fix [6]. In the
case of nonlinear pasrabolic equations Douglas and Dupont [4]
d?esented an alternative method of approximdting the integrals
by interpolating the coeffioients and evaluafing the integrals
by exact formulae,

Pinally we consider the problem of stiffness of a system
of ordinary differential equations which arises in the semi=-
~discretization with numerical integration,
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1. The guasilinear parabolic problem

Let 2 be a bounded, open set in Euclidian space RP with
a sufficiently smooth boundary P and J = (0,7]cR'. Consider
the following nonlinear parabolic problem

n
F%%_ 5:{—1 (ai(x,u) gTui) + ao(x,u) = 0 for (x,t)eqxd,
i=1
{(1.1) {4 u(x,t) = 0 for {x,t)ermxJd,
| u{x,0) = uo(x) for xeQ.

We shell assume the following regularity of the coeffi-
clents and the ellipticity condition

(R1) ay(x,u)y 1 = 0y1y0..,n, are k-times continuously
differentiable functions on 2 xR,

(R2) for any C> 0 there exist constants CO’ C1 such that

0<Cqys< aylx,u) < c,

for any i = 1,...,0 and any (x,u) cq x [~C,C] and

n
-9% ao(x,u‘) - Z (g—l; ay (x,ud g:—i)z(ai(x,u))-1? o
i=1
{here and in the following C, Cys Cqaeee denote gensric po-
sitive constants not necessarily the same in each two for-
nulae),
For simplifying the problem, we assume all functions a4,
1 =041yeeeyn,t0 be autonomous,
Let W°*9(q), for any integer m3 O and any number
ge [1,+], be the Sobolev space with the norm || ,q,e ond
the semi~-norm l"m,q,g’ For q = 2 we abbrezigt:e I|-|m'2d19 by
I-ﬂm’g and """(),2,9 by ll* and we denote W'*<(2) by HR(a).

The space Wg’q(g) denotes the closure of 08(9) in the norm

ﬂol]m q,a° The inner product on 12(e) = Ho(n) we denote by
b Al ]
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{eys) and we extend (.,.) to the duality pairing bezween
H(2) and its cual H'1(Q).

If (x(a),l. H is a Banach space, then,for any
pell,+o], Lp(J,X( )) denotes the Banach space of Tunctions
unsd —» %{Q) such that

1

= b at )P oo
1P(J,x(2)) <§ e a o) <

llul

with the usual modification for p = +w, Furthermore, let
un
axi ’ .

The weak form of (1.1) is to find u.eLa(J,HO(Q)) such that
d.u e L2 (J,H ")) and

diu = y 1 =1,000yn, and 3.u = %% .

(atu,y) + (a{u)Vo,%y) + (ao(u),y) = 0
(1.2)
{ul.,0),y) = (110’}’)

for any y eH () and a.e. t €J, where

n
(a(u)vu,vy) = E;% (ag(eyn)u,3,5), (a,lu),y) = (a,le,ul,5).

For error estimates of the numerical metnod we are going
to present, we assume sufficient regularity of the unique
solution of the problem (1.2), namely:

(1.3) we L™ (3,71 (g) 0 W)™ (a)
(for regularity results, see [8]).

2. The semi-discrete Galerkin method

To approximate (1.2), we construct for h>0 a family of
triangulations T of 2, (see [1]), i.6., we consider a fi-
nite partition of 2 into disjoint subsets {e- 8 € Th} such

that @ = U @ and h = sup diam(e) approaches zero, all
eeTh eeJh

- 569 =~



4 T.JeJanik

tne finite elements e € Ih are affine-equivalent to a single
reference finite element E through the invertible affine
nepping.

with Th we associate Sy, 8 finite~-dimensional subspace

of CU(Q)n H&(Q). We make the following hypotheses about S,

(&41) if Ip €S, and e € Th, then yhle ePk(e) for some in-
teger k2> 1, where Pk(e) denotes space of all polynomials in
XqseeesXy of degree not greater than k,

(42) the approximation property:
for any inteper m = 2,...,k+1, any real aumber ge [2,+o] and
eny h there exists a bounded linear operztor ﬂh:Wm’q(Q) n
n Wg’q(n) — Sh’ such that

1

g .
g B =3 :
( ZT "Trhy-y"J,q’e) £ Ch “y“m’q’g if g<+ o,
ee€
h

gl%};h My =31 0,6 < Chm-j”y“m,m,g i 9 = +o
for all ye Wm’q(ﬂ)r1W8’q(9) and j = 0,1,e¢e.,m, Where the
constant C is independent of y and h,

(43) the inverse inequality:
for any integer 0 < J ¢m there exists a constant C independent
of h such that

1 1
I , 2
(2 (omla,e) <™ (2 juul5e) -
eeTy eeT),
gxgh |yh|m’m’e < chs~® l:gh lyhlj,w,e for all 3, €Sp.

These properties are satisfied by the finite element
space introduced in [7].

The Galerkin problem takes now the form:
let {§S(x)}§=1 be a basis of S, we seek u ¢ L2(J,Sh) of the
form
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L
w(x,8) = D u (6)E (x)

s5=1

such that

(3 up,y,) + (&l )Vu,vy,.) + (ay(w,),y,) = 0,
(2.1)
uh(O)e Sy

for any y, €S, and a.e. teJ, Problem (2.1) is an initial
problam for a nonlinear system of ordinary differential equa-
tions of first order., It has been extensivelv studied; e.g.,
see [ ] and [10], where, under suitable assumptions on the
smoothness of n, optimal estlmates of the error a=uy, in the
8paces 12 (d, a1 (2)) and 1% (J, 12 (@)) are derived, namely

< C (u)hk+1

[l s (5, 22¢0)) * Pl i2(s 1a)) S

k+1

"at( Cy(ulh

=y 12(3,12(2))

whers

c,(u) = ¢ d
pah=ethal oo gy * 1Belia g et )]

In [2] the uniform error estimate is derived
k+1 o(n)

- < C,(u)h lin h
[ty (g, 10 () < ©2 e

where

Cylu) = ¢ 3
> u ("u"Lco (J,Wk+1'°° (2)) + " tuuLoo (J’wk+1’°°(g)))'

and ¢(n) = (n/2)+2.

The regularity of Galerkin solution follows from the above
estimates and properties (A2) and (A3):
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Lowmae 241, Tet uel®d, w1 a)aw)(e)) be

the soluntior of {1.2) such that g ue L°°(J',Wk+1 **(@)). Then
Tor a solution u, of (2,1) the following estimates hold

nex [ ,m,e < Caluls

eeTh
1
2 2
( - "uh“k,e) < G4 (u),
eeffh
3
(Z Hatuh“i’e) s61(u) for a.e. t€Jd.

eef]'h

Proof. We shall prove the first estimate. From the
triangle inequality we gevw

(2.2) ot Maliee € lulk e, o * e, 1=l k yoo, e €

d%mmg+§iuwﬁwm%e+gﬁ"%%%h@ﬂ~

Using the property .(A2), we have for the second term on the
right-hand side of (2.2)

:gﬂ;h fueTpll o o < OBHuN41 00 00
The third term on the right-hand side is estimated by

-k
T, e . £ - 3
el RN R R LI
~k ‘
¢ KTl o g + [5mtlo 0! <
sthfufyq o0 Cyluln [1n hl,C(n)’
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where we have first used the inverse inequality (43) and then
the approximation property (A2) and the uniform error estimate
of the Galerkin method. Combining the previous lnequalities

we obtain

st oo, €O,

whers
Colu) = Clflufly g o 0 * 186%kit,m,0!

dnalogously, we can prove the second and third estimates of
Lemma 2.1.

3. The effect of gquedrature errors

Since it is either too costly or impossible to calculate
exactly the values of integrals over @ which appear in {2.1),
we nust take into account the fact that numerical integration
is used for evaluating these integrsls. Thus, for any finite
element e ejh, we introduce a guadrature formula over e:

L
j f(x)dx 1is approximated by ;E; wl,ef(bl,e)
8 =

for some specified points bl,e e o and weights Wl,e> e,
1l =1"1y000yLe

In view of affine-sguivalence, we see that the gi:drature
scheme over the set E automatically induces a guadrui.re
scheme over the set e, namely lat

(301)_ . FezEaﬁ—bx=Fe(5\{)=Ge§(+geea

bs the invertible affine mapping which maps B onto e. Then

L
[ 23005 ~ 37 4,805y,
E 1=1



8 T.J.Janik
A A A A .
where f{x) = f(X) for all x = Fe(x), xe E, and
- n N
(3.2) LT |det G, |, e = Felby)y  1=1,...,L.

By using the quadrature formulaes, we replace the semi-dis-
crete problem (2.1) by the following one:
find a function Uy e LZ(J,sh) of the form

M

Up(x,8) = D U (t)E (x)

s=1

such that

(3.3)

(atUhyyh); + (a(Uh)VUh,Vyh)h + (aO(Uh)'yh)h = 0,

Uh(()) €Sy will be defined later on,

for any Jp € Sl_1 and a.e. t ed, where for Zp 23 eShl

(3.4) <

eeIh 1=1

(a(zl,l)Vzh,Vyh)h =
n

L*
r %* * * ¥*
(842p,7p)p = 20 D0 Y 4842n(8] o)up(b] o)s

L
= 20 2. Y1 [Z a3(b) g12,(0y o)) x

eeJ’h 1=1 i=1

x aizh(bi,e’aiyh(bl,e’] ’
I

(aglzp)syply = 25 2. %

eeTh 1=1
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iffect of numerical integration

Here we use two kinds of guadrature formulae:
{(¢1) ®;> 0, Sle £, 1 = 1,44.,0L", are the weights and the
nodes,respectively, of such quadrature formula of degree 2k-2

L' A
that the urion (J {bi} contains a Pk(E)—unisolvent subset,
1=1

(¢2) ®1> 0, ﬁle B, 1 = 1,e4.4,1, are the weights and the
nodes, respectively, of a gusdrature formula of degree 2k-2.

In [7] ihe following properties of the forms (3.4) were
derived:

(P1) the consistency properties on the Galerkin solution
Wy i.e. there exists C depending only on the coefficients
and solution of paraebolic problem suck that

| (aluy,) vy, 03,0 = (alug)9u,, 99,0, | < oy | g,
l(ao(uh)’yh) nd (aU(uh)’yh)h ’ $Chk|yh|1,99
| (8g3y,3) - (3guy03n )| < 0B% [y |4 g

for any y, € Sy,
(P2) the uniform Sp-coercivity, i.e.
there exists a constant o«> 0 independent of Sh such that

(a(yh)Vyh,V(yh-zh))h - (a(zh)VZh.V(yh-zh))h +

+ (84(3) 5372 )y = (ay(zy),3p-2p)p 2o |3y-2,] 5 o
for all Ipr2p € Spe
Now we prove the next property of form (.,.);.

L Ay
Lemma 3.1. Let the union () {bl} contain
1=1

a Pk(E)—unisolvent subset and let %;> 0, 1= 1,...,L*. Then
the mapping

N
N[

L*
= ( fi: :Z: w;,e 3§‘53,e))

eeTh 1=1

Ip — [9pln = (Ops94)h)
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is a norm over Sh and there exists a constant D> 0 independent
of h such that

(3.5) D-1|lyh1|$|yhlh

Proof. Using the strict positivity of the weights,
we find that
L*
if DePy(E) and ’v‘v’l*ﬁz(bi)zo, then B(bY) = 0 for 1=1,...,1%.
1=1
Thus, by the unisolvency assumption, we have D=0. As the
consequence, the mapping

)
*
-

B (2 w1 8269

'_J

1]

-
ot

defines a norm over P, (E), since (:Z: w Xl) defines a norm

*
over RL . Since the spacse Pk(E) is finite dimensionsal, there
Fa) Pal
exists constants D1,D2> 0 such that

~oaM2 A*A2 ooy 2
(3.6) Dy [°16,5 Z WIB%(b) < D, BIG, e

Let y,|g = P, and let Se € P, (E) be the polynomial associa-
ted with Pg through the usual correspondence (3.1), i.e.
Py = ﬁe-F;1. We aan write, using (3.2) and (3.6},
L*

2 ARAD
Zwleh(ble) ’Z‘”l o2Mb] ) = D7 [det o |#7B] (53)>
1=1

A ~ 2 o —1 2
> Dy|det G| ]pe]O'E = D, |det G| |det 50 Ipelo’e,

where we have also used the formula of change of variables
in multiple integrals, Hence,
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|7n|h > Z ", RACINEI A T

eeJh 1=1

which implies the left part of (3.5), the right one can be
derived analogously.

We can now turn to the error estimates for the guadra-
ture-Galerkin method {3.3). Let us write

u - Uh = 0=+ - Uh =u -~ ou o+ Zh’

where u is the solution of the differential problsu (1.2},
a, is the solution of the Gglerkin approximation (2.1), and
U, is the solution of the quadrature~Galerkin method (3.3},
The estimates of u-u, are known, so we have to estimate Zh eSh.

Let us begin defining the initiasl function Uh(o)e S+ We
.assume that Uh(O) is the projection of the given function uy,
on the subspace Sh with regard to the discrete inner product
(eselpys 1ee.

L*
(3.7) 22 2 Wy, uy=Up(0))(®] )y (b] ) =0
eeTh 1=1

for any yhesh.

Lemma 3.2 Let Uh(o) be the projection of
u e B (a) nH)(2) on s, defined in (3.7) and let u(0) be
the projection of u, on Sh with regard to the inner product
on 12 (2). Then

“Zh(O)" = "uh(o)-Uh(O)“ S-Chk““o"k+1’g-

Proof. By the assumption, (udgbh(O),yh); =
= (uo-ﬂh(O),‘.?h) for any yhe Sho Thus

(uh(o)-uh(o)'yh); < l(u()-uh(o)’yh) o (%'“h(o)’yh)m
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for any yh'esh. From Lemma 3,1 and the "local" guadrature
error estimate (see [7]) we get, with y, = u,(0)-U,(0) € S,
the estimate
1
D™ ||uy, (0)~Up (0)[|2 < ca®( D> |u,-0,(0)|E 2 lu, (0)-U, (0)]
h h *(Iu‘()h k,e)h"h 1,9°
ee
h

In [5] is shown that

ugmag (0] € e gy, 0

and thus, in the way analogous to the proof of Lemma 2.1, -We
obtain 1

2
( Z """O'Uh(o)uﬁ,e) gCh""‘()“kﬂ,ﬂ'
eeﬂ'h
From (A3)

(010, (0)] 5 g 00~ [uy(0)-up 0]
Combiniﬁg +all previous inequalities, we get the proposition
of Lemma 3.2.

We are now in a position to estimate the error of the
guadrature~Galerkin method (3.3).

Theorem 3.1, Let the unique solution u of the
problem (1.2) satisfy the condition (1.3). Then under the
assumption (R1), (R2), (A1), (A2), (A3), and (Q1), (Q2) the
following error estimates hold

.- < clu)sk,
[ u Uh“Lm(J.Lz(g” + |n Uhlle(J’Hug” < o{u)h

k+1=-2 1
u-U €C(u)h with r=0 or r=1,
“ hﬂn"‘(a.n?mn

Proof, Since u and U, are the solutions of the
‘Galerkin and the quadrature-Galerkin problem,reapectively,
_we have
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(34w ,3y,) + (aluy)va,,vy,) + (ag(u,),3,) =
for any Ip e Sh’ whioh implies
(8,2,,3, )% + (aluy)va, vy, )y - (a(Uy)V0,,%5,), +
+ aglun)ugy)y = (ag(Up)sTp)y = (Bgupaaply = (8guy,3y) +
+ (a(uh) Vuh.Vyh)h- (a(uh)Vuh,Vyh) +(30('1h) .yh)h - (-ao(uh).yh).

Using the properties (P1), (P2) and Lemma 3.1, with Tp = Zps
we get the estimate

% I2l? + 2palzy| ?.sz < 26(“’th|zh|1,sz'

Applying the €-inequality (with € = oD), we find

8
l2,(0)]2 + oo § |2,06)]3 g as < 22 EP(w)n?* + [z, (0)]2,
o

for 0< 8 ¢T. This, together with Lemma 3.2 and error estimates
for the Galerkin solution (2.1), implies the proposition of
the theorea.

Remark. Let us consider the following problem:
whether numerical integration has a negative influence on
-8t1ffness of a system of ordinary differential equations

duy
My g% + K= 1)

which arises in the semi-discretizationi(2.1) of a linear para-
bolic equation?

Both matrices M, and Kh are symmetric and it is well-~known
that the stiffness ratio
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T T
w K u uKhu

®h = (i=$?l.{,M ai): (1=[1n;1?,M ai) ) (mﬁx uTMiu ): ( e uli,u )

is of the order h"2, where }{i, i=1,...,M, are the eigenvalues
of - 'K, . If

Q.
=

U ~ ~
3 +KhUh=fh

|

Wy,

Q.

is the perturbated by numerical integration system (3.3),
then the stiffness ratio is

uTI'zhu qu{'hu
8 = (max T ): ( min T ):
u u Mhu n oo Mhu

since both matrices ﬁh and f{'h are also symmetric.
Let us first observe that

T T

u K, un u K, u
h _Chk+1 P h ;+Chk+1
T 1 u K u T 1
1 __uu uu 2
r (n) = < = £ = r-(u),
h T T
uwMu . u"M u M u
h k+1 h h k+1
T._-|-02h T —02
uu un

pince in limear case the consistency properties (P1) are valid
with (k+1)-order of accuracy (see Fix [6]).

Henoce
e T
uwkK u uw K u
Eh = (max T~h )z ( nin -,.—h ) < (max rﬁ(u))‘ : (min r;(u)).
u uMau u uMa u u
h h
Putting
uT|h uT u
vy = max » = ain T ’
uouw Mhu 1 ) Mhu
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we get

. (1400, ) (g 40,05 Ny )

s

h = k+1 k+1 -1
(1-Cob™ o H(1-C12™ a7y )

Let us now assume that

uTK u

¥, = min
h n ou mhu
is constart (the typical case in finite element met.ods).
Then, gh does not exceed Sp» if k »>n, since Hh is of the

order h™%,
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