

Marian Przemski

ON T_1 -CLIQUISH FUNCTIONS

Let X be a topological space and let \bar{U} be an open cover of X . The cover \bar{U} is called T_2 -open (T_3 -open) [6] if for every $U \in \bar{U}$, the interior of $X \setminus U$ is not empty (there are open sets W and W' such that $W \subset \bar{W} \subset W' \subset X \setminus U$). Throughout this article every open cover will be called T_1 -open cover. Also in [6], K.R. Gentry and H.B. Hoyle have used the concept of T_1 -open cover to define a T_1 -continuous functions as follows:

Definition 1. A function $f: X \rightarrow Y$ is T_1 -continuous if for every T_1 -open cover \bar{U} of Y there exists an open cover \bar{O} of X such that if $0 \in \bar{O}$, then there is a $U \in \bar{U}$ such that $f(0) \in U$ [6].

It is easy to verify that a function $f: X \rightarrow Y$ is T_1 -continuous if and only if for every $x \in X$ and for each T_1 -open cover \bar{U} of Y there exist an open set $W \subset X$ containing x and a $U \in \bar{U}$ such that $f(W) \subset U$.

Definition 2. A function $f: X \rightarrow Y$ is said to be T_1 -cliquish at a point $x \in X$ if for each T_1 -open cover \bar{U} of Y and for every open set $0 \subset X$ containing x there exist an open non-empty set $G \subset 0$ and a $U \in \bar{U}$ such that $f(G) \subset U$. A function f is T_1 -cliquish if it is T_1 -cliquish at every point.

It is easy to see that such functions are natural generalizations of T_1 -continuous functions. The following example shows that the class of T_1 -cliquish functions is greater than the class of T_1 -continuous functions.

E x a m p l e 1. Let R be the space of real numbers with the natural topology. Let $X = [0, \infty) \subset R$ have the usual subspace topology and let $Y = [0, \infty) \subset R$ have the topology generated by $\mathcal{U} = \{\{0\}, [1, \infty)\} \cup \{[1/(n+1), 1/n] : n=1, 2, \dots\}$. We shall demonstrate that the function $f: X \rightarrow Y$ given by $f(x) = x$ for all $x \in X$ is T_1 -cliquish but is not T_3 -continuous. At first let $x = 0 \in X$. Let A be an open cover of Y and let $W \subset X$ be an open set containing x . Then there exist a number n' and $A \in \mathcal{A}$ such that $G = (1/n', 1/(n'-1)) \subset W$ and $f(G) \subset A$; so f is T_1 -cliquish at x . Secondly if $x \in \{1, 1/2, 1/3, \dots\}$ and \mathcal{A} is an open cover of Y , then there exists a number n' and $A \in \mathcal{A}$ such that $f(x) = x = 1/n' \in A$; so $[1/n', 1/(n'-1)) \subset A$ and, for every open set $W \subset X$ containing x there exists an open non-empty set $G \subset W$ ($G = W \cap [1/n', 1/(n'-1))$ such that $f(G) \subset A$. Thus f is T_1 -cliquish at x . We observe that f is continuous at each $x \in X \setminus \{0, 1, 1/2, 1/3, \dots\}$. So the T_1 -cliquishness of f is shown. Clearly, f is not T_3 -continuous at $x = 0$. Indeed, the collection \mathcal{U} is a T_3 -open cover of Y and, for every open set $W \subset X$ containing x we have $f(W) \notin \mathcal{U}$ for any $U \in \mathcal{U}$. Thus, f is not T_3 -continuous. Since any T_1 -continuous (T_i -cliquish) function is T_{i+1} -continuous (T_{i+1} -cliquish), $i = 1, 2$, it follows that the function f is also T_2 -cliquish and T_3 -cliquish; and f is not T_2 -continuous and f is not T_1 -continuous.

D e f i n i t i o n 3. A function $f: X \rightarrow Y$ is quasi-continuous at a point $x \in X$ if for each open set $V \subset Y$ containing $f(x)$ and for every open set $U \subset X$ containing x there exists an open non-empty set $G \subset U$ such that $f(G) \subset V$ [1, 7, 10, 12, 14].

(This types of functions has also been defined by N. Levine [8] who used the term semi-continuous).

The following diagram illustrates the relations between these classes of functions.

$$\begin{array}{ccc}
 f \text{ is } T_3\text{-continuous} & \implies & f \text{ is } T_3\text{-cliquish} \\
 \uparrow & & \uparrow \\
 f \text{ is } T_2\text{-continuous} & \implies & f \text{ is } T_2\text{-cliquish} \\
 \uparrow & & \uparrow \\
 f \text{ is } T_1\text{-continuous} & \implies & f \text{ is } T_1\text{-cliquish} \\
 \uparrow & & \uparrow \\
 f \text{ is continuous} & \implies & f \text{ is quasi-continuous}
 \end{array}$$

Definition 4. A function f from a topological space Y with a uniformity \mathcal{U} is cliquish at a point $x \in X$ if for every open set $U \subset X$ containing x and for every $V \in \mathcal{U}$ there exists an open non-empty set $G \subset U$ such that $(f(x'), f(x'')) \in V$ for any $x', x'' \in G$. A function f is cliquish if it is cliquish at every point [2,3]. If a uniformity \mathcal{U} is induced by a metric on Y , then the above definition coincides with the well known definition of the cliquishness [1,5,9,12,14].

Let Y be a uniform space with a uniformity \mathcal{U} . Simultaneously we consider Y as a topological space with the topology induced by the uniformity \mathcal{U} .

Proposition 1. Let Y be a uniform space with a uniformity \mathcal{U} . If a function $f: X \rightarrow Y$ is T_3 -cliquish at a point $x \in X$, then f is cliquish at its point.

Proof. Let U be any open set containing x and let $V \in \mathcal{U}$. There exists $W \in \mathcal{U}$ such that $W = W^{-1}$ and $W^2 \subset V$. Since the collection $\{\text{Int}(B(y, W)) : y \in Y\}$ is a T_3 -open cover of the topological space Y with the topology induced by \mathcal{U} , where $B(y, W) = \{s \in Y : (y, s) \in W\}$, there exist an open non-empty set $G \subset U$ and $y' \in Y$ such that $f(G) \subset \text{Int}(B(y', W))$. Then $(f(x'), f(x'')) \in W^2 \subset V$ for any $x', x'' \in G$ and, consequently, f is cliquish at x .

The following example shows that a cliquish function need not be T_3 -cliquish.

Example 2. Let R be the space of real numbers with the natural metric and let $Y = (0, \infty) \subset R$ have the usual subspace topology. Let us consider the set $X = [0, \infty)$ with the topology $T = \{\emptyset, X\} \cup \{(r, \infty) : r > 0\}$. By Q we denote the set

of rational numbers. We denote $a_n = \frac{3n+4}{3(n+1)(n+2)}$ and $b_n = \frac{3n+2}{3n(n+1)}$ for $n = 1, 2, \dots$. Define $f: X \rightarrow Y$ by

$$f(x) = \begin{cases} b_n & \text{if } x \in [n-1, n] \cap \mathbb{Q} \\ a_n & \text{if } x \in [n-1, n] \setminus \mathbb{Q}, n = 1, 2, \dots \end{cases}$$

The function f is clearly cliquish. Note, however, that the collection $\tilde{U} = \{(a_n, b_n): n = 1, 2, \dots\} \cup \{(4/6, \infty)\}$ is a T_3 -open cover of Y and for every non-empty set $G \subset X$ and for every $U \in \tilde{U}$ we have $f(G) \notin U$. Thus, f is not T_3 -cliquish.

Proposition 2. Any cliquish function f from a topological space X into a uniform compact space Y is T_1 -cliquish.

Proof. Let $x \in X$ and let $W \subset X$ be any open set containing x . If \tilde{U} is an open cover of Y , then there exists a $V \in \tilde{U}$ such that if $A \in \tilde{U} = \{B(y, V): y \in Y\}$ then there is a $U \in \tilde{U}$ such that $A \subset U$ since Y is compact. By the cliquishness of f there exists an open non-empty set $G \subset W$ such that $(f(x'), f(x'')) \in V$ for every $x', x'' \in G$. Hence there exists set $A' \in \tilde{U}$ and exists set $U \in \tilde{U}$ such that $f(G) \subset A' \subset U$ and the proof is complete.

The following two results give simple characterization of T_i -continuous and T_i -cliquish functions.

Proposition 3. A function $f: X \rightarrow Y$ is T_i -continuous if and only if for every T_i -open cover U of Y the collection $\{\text{Int } f^{-1}(U): U \in \tilde{U}\}$ covers X .

Proof. Assume that f is T_i -continuous. Let \tilde{U} be an T_i -open cover of Y and let $x \in X$. Then there exist an open set $W \subset X$ containing x and a $U \in \tilde{U}$ such that $f(W) \subset U$. Thus $x \in W \subset \text{Int } f^{-1}(U) \subset \{\text{Int } f^{-1}(U): U \in \tilde{U}\}$.

Conversely, let $x \in X$ and let \tilde{U} be an T_i -open cover of Y . Since the collection $\{\text{Int } f^{-1}(U): U \in \tilde{U}\}$ covers X there exists a $U \in \tilde{U}$ such that $x \in \text{Int } f^{-1}(U)$. Hence $f(\text{Int } f^{-1}(U)) \subset U$ and f is T_i -continuous at x .

Proposition 4. A function $f:X \rightarrow Y$ is T_1 -cliquish if and only if for every T_1 -open cover U of Y we have $\bigcup \{\text{Int } f^{-1}(U): U \in \bar{U}\} = X$.

Proof. Assume that f is T_1 -cliquish. Let \bar{U} be an T_1 -open cover of Y and let $x \in X$. For every open set $W \subset X$ containing x there exist an open non-empty set $G \subset W$ and a $U \in \bar{U}$ such that $f(G) \subset U$. Thus $G \subset \text{Int } f^{-1}(U) \subset \bigcup \{\text{Int } f^{-1}(U): U \in \bar{U}\}$, which implies that $x \in \bigcup \{\text{Int } f^{-1}(U): U \in \bar{U}\}$.

Let us assume now that $\bigcup \{\text{Int } f^{-1}(U): U \in \bar{U}\} = X$ for every T_1 -open cover \bar{U} of Y . If $W \subset X$ is an open set containing $x \in X$, and \bar{U} is an T_1 -open cover of Y , then $W \cap (\bigcup \{\text{Int } f^{-1}(U): U \in \bar{U}\}) \neq \emptyset$. So $\emptyset \neq W \cap \text{Int } f^{-1}(U') \subset W$ for some $U' \in \bar{U}$ and, $f(W \cap \text{Int } f^{-1}(U')) \subset U'$. Hence f is T_1 -cliquish at x and the proof is complete.

For any function $f:X \rightarrow Y$ we will denote by $A_i(f)$ and $C_i(f)$ the set of all T_1 -cliquishness and T_1 -continuity points of f respectively.

Proposition 5. Let $f:X \rightarrow Y$ be an arbitrary function. There exists a family $\{G_s: s \in S\}$ of open subsets of X such that $C_i(f) = \bigcap \{G_s: s \in S\}$ and $A_i(f) = \bigcap \{\bar{G}_s: s \in S\}$.

Proof. For any T_1 -open cover \bar{U} of Y , let $G(\bar{U})$ be the set of all points $x \in X$ at which the following condition is satisfied: there exist an open set $W \subset X$ containing x and a $U \in \bar{U}$ such that $f(W) \subset U$. It is obvious that the set $G(\bar{U})$ is open. We shall prove that $C_i(f) = \bigcap \{G(\bar{U}): \bar{U} \text{ is an } T_1\text{-open cover of } Y\}$.

If f is T_1 -continuous at a point x , then for every T_1 -open cover \bar{U} of Y there exist an open set $W \subset X$ containing x and a $U \in \bar{U}$ such that $f(W) \subset U$; so $x \in G(\bar{U})$ for every T_1 -open cover \bar{U} of Y .

Conversely, if for each T_1 -open cover \bar{U} of Y $x \in G(\bar{U})$, then evidently f is T_1 -continuous at x .

Now we shall prove that

$$A_i(f) = \bigcap \{\overline{G(\bar{U})}: \bar{U} \text{ is an } T_1\text{-open cover of } Y\}.$$

Assume that f is T_1 -cliquish at a point x . Let $W \subset X$ be an open set containing x . If \bar{U} is an T_1 -open cover of Y , then there exist an open non-empty set $G \subset W$ and a $U \in \bar{U}$ such that $f(G) \subset U$. It is obvious that $G \subset G(\bar{U})$. Thus $x \in G(\bar{U})$ for every T_1 -open cover \bar{U} of Y .

Conversely, let $x \in G(\bar{U})$ for every T_1 -open cover \bar{U} of Y . We observe that for every T_1 -open cover \bar{U} of Y the set $G(\bar{U})$ is open, then for every open set $W \subset X$ containing x and for every T_1 -open cover \bar{U} of Y there exists an open non-empty set $G \subset W \cap G(\bar{U})$ such that $G \subset W \cap G(\bar{U})$ and, by the definition of $G(\bar{U})$, there exist an open non-empty set $G' \subset G$ and a $U \in \bar{U}$ such that $f(G') \subset U$. Hence f is T_1 -cliquish at x and the proof is complete.

Corollary 1. For each function f the set $A_1(f)$ is closed.

Corollary 2. If for a function $f: X \rightarrow Y$ the set $C_1(f)$ is dense in X , then f is T_1 -cliquish.

Proof. It follows by: $X = \overline{C_1(f)} =$
 $= \overline{\bigcap \{G(\bar{U}): \bar{U} \text{ is an } T_1\text{-open cover of } Y\}} \subset$
 $\subset \overline{\bigcap \{G(\bar{U}): \bar{U} \text{ is an } T_1\text{-open cover of } Y\}} = A_1(f).$

Corollary 3. If f is a function of a Baire space X with values in a topological space Y and the set $X \setminus C_1(f)$ is of the first category, then f is T_1 -cliquish.

Since any function f of a Baire space X into a metric space is cliquish if and only if the set $X \setminus C(f)$ is of the first category [5,12], where $C(f)$ is the set of all continuity points of f , we have the following corollary:

Corollary 4. Any cliquish function f from a Baire space X into a metric space Y is T_1 -cliquish.

Proof. If f is cliquish, then the set $X \setminus C(f)$ is of the first category and since $C(f) \subset C_1(f)$, the set $X \setminus C_1(f)$ is of the first category. Since X is a Baire space, the set $C_1(f)$ is dense in X . Thus by Corollary 2, f is T_1 -cliquish.

We say that a topological space X has property P_1 if, there exists a sequence $\{U_n: n = 1, 2, \dots\}$ of T_1 -open covers of X such that:

if \ddot{U} is an T_i -open cover of X , then there exists a number n' such that if $U \in \ddot{U}_{n'}$, then there is a $U \in \ddot{U}$ such that $U \subset U$.

Lemma 1. If f is a function into a topological space Y with the property P_1 , then there exists a sequence $\{\ddot{U}_n : n = 1, 2, \dots\}$ of T_i -open covers of Y such that $C_i(f) = \bigcap \{G(\ddot{U}_n) : n = 1, 2, \dots\}$ and $A_i(f) = \bigcap \{\overline{G(\ddot{U}_n)} : n = 1, 2, \dots\}$, where $G(\ddot{U}_n)$ is as in Proposition 5.

Proof. The proof is simple and is thus omitted.

Corollary 5. If f is a function into a topological space with the property P_1 , then the set $C_i(f)$ is G_5 .

Proposition 6. A function f of a Baire space X into a topological space Y with the property P_1 is T_i -cliquish if and only if the set $X \setminus C_i(f)$ is of the first category.

Proof. If f is T_i -cliquish, then by Lemma 1, $X \setminus C_i(f) = \bigcap \{\overline{G(\ddot{U}_n)} : n = 1, 2, \dots\} \setminus \bigcap \{G(\ddot{U}_n) : n = 1, 2, \dots\} \subset \bigcap \{\overline{G(\ddot{U}_n)} \setminus G(\ddot{U}_n) : n = 1, 2, \dots\}$ and since for every number n the set $G(\ddot{U}_n)$ is open, the set $\overline{G(\ddot{U}_n)} \setminus G(\ddot{U}_n)$ is nowhere dense and hence the set $X \setminus C_i(f)$ is of the first category.

Conversely, if the set $X \setminus C_i(f)$ is of the first category, then by Corollary 3, f is T_i -cliquish.

A topological space X is called nearly T_i -space, $i = 1, 2, 3$, if for each point $x \in X$ and for every open set $W \subset X$ containing x there exists a T_i -open cover \ddot{U} of X , $i = 1, 2, 3$, respectively, such that $St(x, \ddot{U}) \subset W$ [13], where $St(x, \ddot{U})$ denotes the star of the point x with respect to \ddot{U} . Clearly, nearly T_i , $i = 1, 2, 3$, is strictly weaker than T_i , $i = 1, 2, 3$, respectively.

From the fact that any T_i -continuous function, $i = 1, 2, 3$, into a nearly T_i -space, $i = 1, 2, 3$, respectively, is continuous [13], we obtain the following result:

Corollary 6. A function f of a Baire space X into a nearly T_i -space Y with the property P_1 is T_i -cliquish if and only if the set $X \setminus C_i(f)$ is of the first category.

P r o o f. It follows immediately from Proposition 6.

A function $f:X \rightarrow Y$ is barely continuous, if for every non-empty closed set $M \subset X$ the restriction f/M has at least one point of the continuity [11].

The following result improves Theorem 1.1 of [3].

P r o p o s i t i o n 7. Any barely continuous function $f:X \rightarrow Y$ is T_1 -cliquish.

P r o o f. Let $x \in X$ and let \bar{U} be an open cover of Y . If $0 \subset X$ is an open set containing x , then by the barely continuity of f there exists a point $x' \in \bar{0}$ of the continuity of $f/\bar{0}$ and, consequently, $f/\bar{0}$ is T_1 -continuous at x' . Then there exists an open set $W \subset X$ containing x' such that $f(W \cap 0) \subset U'$ for some $U' \in \bar{U}$. Thus $G = W \cap 0 \subset 0$ is an open non-empty set such that $f(G) \subset U'$. This means that f is T_1 -cliquish at x and the proof is complete.

A topological space X is said to be a Baire space in the narrow sense, if every closed subspace of X is a Baire space [4].

P r o p o s i t i o n 8. A function f of a Baire space in the narrow sense X into a nearly T_1 -space Y with the property P_1 is barely continuous if and only if for every non-empty closed set $M \subset X$ a function f/M is T_1 -cliquish.

P r o o f. If f is barely continuous and $M \subset X$ is a closed non-empty set, then f/M is clearly barely continuous; so by Proposition 7 the function f/M is T_1 -cliquish.

Conversely, if the restriction f/M is T_1 -cliquish for any closed non-empty set $M \subset X$, then by Corollary 6, the set $C(f/M)$ is dense in M . It follows that $C(f/M) \neq \emptyset$ so that f is barely continuous.

REFERENCES

[1] W. Bledsoe: Neighbourly functions, Proc. Amer. Math. Soc. 3 (1952), 114-115.

- [2] J. Ewert : On quasi-continuous and cliquish maps with values in uniform spaces, *Bull. Acad. Polon. Sci. Sér. Math.* 32 (1984), 81-88.
- [3] J. Ewert : On barely continuous and cliquish maps, *Demonstratio Math.* 17 (1984), 331-338.
- [4] Z. Frolík : Baire space and some generalizations of complete metric spaces, *Czechoslovak Math. J.* 86 (1961) 237-248.
- [5] L.A. Fuadali : On cliquish functions on product spaces, *Math. Slovaca*, 33 (1983).
- [6] K.R. Gentry, H.B. Hoyle : T_i -continuous functions and separation axioms, *Glasnik Mat.* 17 (1982), 139-141.
- [7] S. Kempisty : Sur les fonctions quasicontinues, *Fund. Math.* 19 (1932), 184-197.
- [8] N.L. Levine : Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly* 70 (1963), 36-41.
- [9] J.S. Lipiński, T. Salat : On the points of quasicontinuity and cliquishness of functions, *Czechoslovak Math. J.* 21 (1971), 484-489.
- [10] S. Marcus : Sur les fonctions quasicontinues au sens de S. Kempisty, *Colloq. Math.* 8 (1961), 47-53.
- [11] E. Michael, I. Namiooka : Barely continuous functions, *Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys.* 24 (1976), 889-892.
- [12] A. Neubrunnova : On quasi-continuous and cliquish functions, *Časopis Pěst. Math.* 99 (1974), 109-114.
- [13] M. Przemski : Nearly T_i -continuous functions and some separation axioms, *Glasnik Mat.*, 21 (1986), 431-435.
- [14] H.P. Thielman : Types of functions, *Amer. Math. Monthly*, 60 (1953), 156-161.

AUTHOR'S ADDRESS: ul. AKACJOWA 8/1, 18-314 ZAWADY, POLAND
Received January 15, 1986.

