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IN A CERTAIN CLASS OF HOLOMORPHIC FUNCTION3

Introduction

Iet C be the complex plane and E = {zeC HIR A <1} the
unit disk. Denote by H the class of functions holomorphic in
the disk B, satisfying the condition

(1) Re {(1-22) f‘—:l}zo, z¢§,

gnd such that £(0) = 0, £/(0) =

If the coefficients of the function f satisfying condi-
tion (1) are real, then the function is typically real ",

The class H is then a proper superclass of Tr'

Some results for the class H were established by Hengart-
ner and Schober [4]. The condition (1) can be written in the
form

(2) £(z) = —2—2 plz), =z¢eBE,
1 -2

where pe P, P being the class of functions p holomorphic in E
and such that Re p(z)> 0, for z €B and p(0) =

*) The function f holomorphic in E and such that £(0) =
£°(0) = 1, is said to be ty ically real if it takes the real
values on the segment (=1 ? of the real axis and satisfies
the condition Im z+Im £(z} >0 for zeB\ (-1, 1). The class of
‘typically real functions will be denoted by T,
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2 F.Bogowski, Cz.Burniak

.‘aking use of Herglotz s formula for the function peP
we can write condition (1) in the form

i

~it
(3) £lz) = 21 +2e  au(t)
j; 1-2° 1 = gt e

where p is a real function, non decreasing in the interval
[~7,7 ] end such that

m
f dp(t) = 1.
-

1. The domain of local univalence in the class d
We will determine the domain of local univalence in the

class H., {he method used in order to characterize the boundary
functions and the boundary points in this problem is a modi=-
fication of the method applied by Burstein [2] in the study
of enother problem. This modification required, however, some
more praecise statements.

Let z(f) denote the set of zeros of the derivative of the
fupction f in the disk E, that is

z{f) = {z eE : £'(2) = 0}.

The points of the set z(f) are said to be the critical points
of the function f.

Denote by B the set B = U z{f)., It is obvious that the
feH

set D = E\ B does not contain critical points of the function
f, that is £'(z) # O for any z ¢ D and any function f ¢ H,
Hence,D is the set of local univalsnce in the class H,

The set D is symmetrical with respect to the real axis,
This follows from the fact that if the function f belongs
to the class H, then the function g defined as

g(z) = £(z), =zeBE,
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Domain of local univalence 3

also belongs to the class H, Loreover, Re £'(z)>0 for
z¢(~-1,1), hence D contains the segment (~1,1) of the real
axis. Since the class H is compact, the set B of critical
points is closed in the space E (with respect to the disk E).

Let "= 3BnE, s0o M= 3D nB,

Definition 1., The point z e is said to be
a regular boundary point of the set B, if there exists an
a¢B such that |z - a|>|2, - a| for any 2z €B. If such an a
does not exist, then z, is said to be a singular boundary
point, This definition was introduced by M.Biernacki [1] (see
also Lebedev [6]).

Denote by P c the set of all regular boundary points
of T, It is known (i, Biernacki [1], 13) that r_ is dense
in I, hence in order to find the boundary of " it suffices
to determine the set Fo'

The function f ¢ H such that f;(zo) = 0, where z  is
a boundary point of the set B, is said*to be a boundary func-
tion.

To determine the boundary functions and the boundary
points in this problem we make use of the variational formulas
of Goluzin [3] in the class of functions defined by the struc-
tural formula of the form

b
£(z) = | s(z,t) ap(t),

a
where the funation p is non decreasing in the interval [a, b]
and such that j dp(t) = 1, while s is a function (as function

of the variables z, %) continuous with derivative 8 (z,t)
in the set ¥ x [a,b], and being regular in E for any t e [a,b].
The first variational formulae has the form

t
2
(4) £,(2) = £z) + A | si(z,8)]p(t) - clat,
t
1
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4 F.Bogowski, Cz.Burnisk

where 2e¢[-1,1)], ¢ 1is a constant with respect to t and 2
(depending on the sign of 1) and ty,t,, t, <t,, are arbitrary
numbers from the interval [a,b].

In what follows we shall make use of (4) in the following

developed form
t

2

(5) £(2) = £(z) + A [ s}(z,0) [p(8) - oy]at,
%
b2

(6) £o(z) = £(z) = 4 [ ef(z,8) |p(5) - cylas,
%

where

¢y = lim p(t), ¢, = lim p(t), Aef0; 1]

tet] t -»t;

and where we assume that lim p(t) = p(a), 1lim p(t) = p(b).
tea” t+b*
The second variational formula has the form

(7) fuu(2) = £(z) + A[s(z,t,) - s(z,t,)] ,

where t1,_t2, a st1 <t2:sb, are discontinuity points of the
function p and 1 is sufficiently small.
Making use of (3), (4),we obtain

.t2

(8)  f£alz) = £J(z) + A { & (8}(z,%)) [p(%) - clat,
t
1
Ac[~-131].
Taking account of (5) and (6),we can write (8) in the form

%5

(9)  £i(z) = £4z) + A [ £ (e}lz,8)) |p(s) - cyfat,
t
! ae051],
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Domain of local univalence

t,
(10)  £4(z) = £/0z) - f S (silz,8)) |p(5) - cylat,
2 o dz 3 2
t,
Ae [();1],
where
d . —4ize~1t 1-z3¢~1%
(11) 3, (8i{z,%)) = - . = .
dz 1] (1_22)? (1-Ze 1t;§

The second variational formula may be written as follows

(12) ﬁ#z):f(z)+2[—-ﬂzt) %:ﬂmty],

where A is sufficiently small and

1422 . 14+z0™ 1% + 2ze'it

(1-22)%  1-z0™1%  (1-22)(1-2¢71%)2

(13) é% (s(z,t)) =

Set F,(2,2) = £4(z); then formula (8) becomes

{14) F;(z,ﬂ) = fé(z) + AA(z,c),

where
%y

(15) azyc) = | £ (s1(z,1)) g (4) - ofat
¥

and é% (s4(z,t)) is given by formula (11).

Let 2z be a single zero of the function fé(z), that is
£,(z;) = 0 and £,(z,) # 0. Denote by z(1) the zero of the
function £,(z,1) which is hearest to zj,» Then we have

a}iyb z(1) = Z g, z{0) = Zge

The function 2(A) has a derivative for A= 0 and

1
f”(z )

0" 0

z2/(0) = - A(zo,o) h(z,c),
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6 F.Bogowski, Cz.Burniak

where A(z,c) is given by formula (15); hence

2% 1= 2(4) = 2 +Ah(z,c) + o(1), where lim old) _ o,
A—=0 A
In view of {(15), we have
t . .
2 -it 3 ~-it
~4iz e 1-2-e
(16) z*:zo+2 ,',1 j °2 5 2 13 |pf (t)-c|dt+o(2).
£,(z,) £ (1-27) (1-2,077") 0

Now, if z** is a zero of the function f;* given by (12},
that is, if £, (2*%) = 0, then applying formula (7) and
proceeding as before, we obtain

* %

(17) 2 =z°+7l

1 d a ..
£7(z_) [ﬁ (alz;0t4)) -4g (5(z°,t2)>] +0(A),

0'"0

where A is sufficiently small, t, and t, are discontinuity
points of the function Ue and -g—z (s(z,t)) is given by (13).
0

Assume now that 2, is a regular boundary point. Then there
exists an a ¢ B such that

(18) lz*-aI2>|z° - a]2,

Further, we have
|z*-a]2 = |z°--a]2 + 2ARe [(Zo - E)h(zo,c)] + o(2),

whence, on account of formulas (9) and (10), we obtain
lzf"-alz = Izo--al2 + 2 ARe [(io-i)h1(z°,c1)] + o(a),
|z;-a|2 = |z°-a|2 - 2ARe [(io-a)hz(zo,ca)] + o(ﬂ),

where 0 <4 <1 and

1 LS 1

Balz ,c.) = - —— Alz_,0.) h,(z_,0,) = = ———

4150194 £.(z,) 0*717* T270?72 £, (2,)
- 524 -~ -
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Domain of local univalence 7

The inequality (18) implies the following ones
Re[(io-a)h1(2°,c1)] <0, Re[(io-a)h2(20,c2)]z o,

which can be written in the form

t
2
(19) f (1) lpf (t) - c1|dt <0,
t, °
tp
(20) J a0 ug (01 - cpfar > o,
¥4
where
(21) 8(¢) = R -4iz°e'it 1-zge'it
21 t = a .
. ” 2 2 —it 3
(zo-a)fo(zo)(1-zo) (1-z°e )

If the equation #(t) = O has no roots in the interval
(t1,t2), then in inequality (19) we have &(t) <0 and the
sign in inequality (20) amust be inverted. Hence,it follows

that

¥

(22) [ o) |vg (81 = epat = o,
By a similar argument,we find that also

¥y

(23) J oot g (80 - oyfan = 0.
0
%
Therefors, He (t) 1s constant in any interval (t1,t2) which
0

does not contain zeros of $(t).
Let. now t1, t2 be discontinuity points of the function yf .

Calculating the expression |z* -a| » 8 4B, applying formula (17)
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8 F,Bogowski, Cz.Burniak

end taking into account the fact that [2*-a|>|z~-a|, we obtain
the condition

1 . d
(z-a)f (2 ) 0z

This means that the function

(24) Re [s(zo,t1) - s(zo,tz)] = 0.

1 d

{25) p(t) = Re ——
(zo-a)fo(zo) dz

(sl(z,,t))

takes on equal values at the discontinuity points Ty s of
the function p, . Hence, the function pp can be discontinuous
0

)
only at points which are roots of the equation &(t) = 0,
t e [-7,7),and for which the function w(t) takes on equal va-
lues., The equation 3(t) = O has the form

=it 3 =it
—4izo . ) (1-z°e )

(26) Re = O,

(zo-a)f;(zo)(1-zg (1-z°e

izo

" 2
(z,-a)f (2z,)(1-27)
in the equivalent form

Setting eit = u and 5 = b we can write (26)

b(u-22) (1-2,0)2 + B(1-32u)(u-z )7 = 0.

It is gasily seen that this equation has at most 4 roots with
respect to u = eit, -Ngt<w, Henceythe function pgp cen have
)

at ‘most 4 discontinuity points in the interval [-m,x).
We shall prove that pg can have at most 2 discontinuity
o

points., For the indirect proof assume that t1, t2, t3,
-srst1 <t2 <t,<¥,; are discontinuity points of the function

pp - Since w(t1) =_w(t2) = w(tB). Q(tk) = 0, k=1,2,3, and

0
&(t) =w(t), there exist points t4e (t1,t2) and tse (t2,t3),
guch that §(t4) = w'(t4) = 0 and Q(ts) = w'(ts) = 0. This
would mean that the dquation 3(t} = 0 has 5 roots in the in-
terval [-7,7) which is impossible.
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Domain of local univalence 9

Let now t1, t2, t3, t4, —m’gt1 <t2 <t3 <t4<m‘, be roots
of the equation #(t) = 0. It should be noted that the points
T, and 1P cannot be at the same time discontinuity points
of pfo. Otherwise the function w(t) would take on equal va-

lues at these points; by w'(t) = &(t}, this would lead to
the conclusion that in the interval (t1,t2) there exists
a root t5 of the equation &(t) = O.

4 similar ergument shows that the points t2 and t3, respe
t3 and t4, cannot be at the same time discontinuity points
of the function pfo.

dssume now that the points t, and t3 are discontinuity
points of yfo. In each of the intervals (t1,t2) and (t2’t3)’
the equation $ (t) = O has no roots. Hence, by virtue of for-
mulas (22) and (23), we have

pfo(t) =cy = lim- plt) for te (t1,t2),
t -t
(t) = ¢, = lim p(t) for te(t,,t,).
te 2 t*t;l‘ 2°°3

Moreover, since the points t1 and t3 are discontinuity points,
we have c, # ¢, The point %, would then be a discontinuity
point which is impossible, inasmuch as the function e can

)

have at most 2 discontinuity points. An analogous proof shows
that the points t2 and t4, resp. t1 and t4, cannot be at the
same time discontinuity points of g o

)

From the preceding considerations it follows that if z,
is a regular boundary point such that f;(zo) # 0, than the
corresponding boundary function has the form

z . 1+ze-it

1_22 it

— 2eBE, te [-mm).
1-ze

(27) £,(2) =
Let us note that for t = -m and t = 7 the boundary function

is thre same and has the foram fo(z) = __i__§ .
(1+2)
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10 F.Bogowski, Cz.Burniak

Let now 2, be a zero of multiplicity m of the function f;,
P . Y - _ plm) - (m+1)
that is, (fo(zo) = fo(zo) ... = fo (zo) = 0, fo (zo);l(),
mz2, |z0| <1. Dsnote by z* the zero of the function f.; which

is nesrest to z, and belongs to an arbitrary small neighbour-~
hood of z . Proceeding in the same way as in [2],we obtain

(n+1) (m+2)
£ (z,) £ (z5)
flo(z*) = (Z*-Zo)mLfn!ﬁ-+ (Z*-zo)m+1 _o(m)z!_o + cee o

Making use of formulas (9) and (10), we find

’ m 0 ]
£, (2%) = (2%-2 )" ——F7— + oo s

%
2
. (<12 j & (s}(2%,1)) nyo(t)—ckldt,
4
]

k=1,2, Ae [0’1]'

Passing to the limit as A -» 0 and in view of lim z* = Zgs
we obtain A=0
(727 (el i (54(2,,8))|pp (t)=cy|
lim ———— = (-1 f—— 5.(2_,t t)=-cy |dt
Ae0 A folm+1i(z°) ; dz ‘"t'“o? = k1%
1

whence

=

t
2
m .
A C ‘
z*=z°+ ('1)k f(miﬂ(z ) j gz (st(zo'“”Pfo(t)'ckldt"'q(ﬂ
: 0

0

8l=
S

ot
Bl o

where it is assumed that A®>0, Hence

"
Bl

).

|z*-é|2=lz°-a|2+2Re{('z'°-§)(-'1)a ) ¢(z°,t1,t2,m)} + ‘o(i
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Domain of local univalence 11

where

o
d /

?l250%45%p,2) = m+1)( _‘ G (552000 fup (v)-c ot

fo %ol 1, °

o)
Since |z*-a]®3 |zo-a] , we have

k 1
a {(-1)m (EO-E)WVE ¢(zo,t1,t2,m)} + o(ﬂm) > 0O,

m
Dividing the latter inequality by VA and passing to the limit
as A -+ 0, we obtain

(28) Re {(-1)m (E°-§)¢(zo,t1,t2,m)} 2 O,

The inequality (28) implies

(z-2) (p(zo,t1,t2,m) = 0,

Since (Eo-é) # 0 and f£m+1)(zo) # 0, this gives

%)

(29) | & (silz,,1)) pe (8) = cyfat = o,
b

By an argument analogous to the one applied in the case,
where 2, is a simple 2ero of f;(z), we conclude that the boun-
dary functions have the form (27). Hence,.the regular boundary
points 2z, ePo are the solution of the equation fé(zo) = 0 which
belong to the disk E, the function f, being given by formula
(27). The equation fé(z) = 0 has the form

(30) 1+2° 1+ze’it + 220”1t =0
- - = ’
(1-22)2  1-ze™Y* * (1-22)(1-2671F)2

z=2(t), % e[-m, 0],

After some transformations we get

(31) e~21%,4 2e~1%;3 (e'ait-ﬂz2 -2e~tt 4 . 0.
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12 F.Bogowski, Cz.Burniak

Let us now set z = re>®, r = r(6)>0, 6= 0(t), 8¢ [0,27],

t e [-m ] in equation (31) and separate the real and imaginary
parts; we obtaln the system of equations

( - %) [(r + %) cos{26 - t) + 2cos e] = 0,
(32)
(r2 +-i§) sin(26-t) + 2(r + %) sin 8 = 28in t = O,

From the first equation it follows that either

(r + % )cos(ze—t) + 2008 6 = 0

orr =1 for any te [-%,7].

Consider the first case., Then, setting R = r + % and
taking into account the fact that r <1, we can write the
system (32) in the form

R cos 28 cos t + R 8in 28 sin t = -2cos 8,
2 ; 2 .
(R°-2)sin 26 cos t =~ [(R -2) cos 26+ 2]sin t = -2R 8in 8,

where R 2.
Eliminating t from this system we get the following equation

(33)  (16R%+64)sin%e - (8R4+64)s1n%6 + R® - 4% = 0,
whence
4 \’ 4

(34) Bin29 = R + 8 f24 2R” + 4

4R + 16
or
(35) | sin®e = R* + 8 ir 4 Vor% + 4

5 .
4R i+ 16

Since the right-hand side of (35) is greater than 1 for R2 2,
it suffices to consider the equation (34).
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Domain of local univalence 13

Let

M(R)___R4+8—4V2R4+4'

4R72 + 16

A short calculation gives

M'(R) = m [(41?3——16—5&)(4R2+16)-8R(R4+8-4 \/2R2+4)] >0

Vor4+4

for Rz 2, whence it follows that M{(R) is an increasing function
for R 2. Moreover, we have li(2) = 0 and L(1+V5) = 1. Hencs,
the formula (34) holds for Re [2, 1+\/§']. Since the domaih D
and its boundary r, are symmetrical with respect to the real
axis, we have merely to restrict ourselves to the case of
Og<e<m,

For 8¢ [0, g] and Be[%r ,5’(] there exists functions

R = R1(e) and R = Rz(e), respectively, inverse to the func-
tion M(R), where R1(8) is increasing for ee [0, g] and R2(e)

is decreasing for E)e[!z-T R ST] « This proves, in view of the re-

lation R = r + %, O<r g1, that the function r = r(0}, which
represents in polar coordinates the boundary Fo, is decreasing

from 1 tor, = %V—g— —1126 for B¢ [0, g] and increasing from

B E3 AR YAES i
r,=—5 3 to1foree[2,3r].

From the first equation of the system (32) it follows
that r = 1 for any te [~m,x]. In this case the second equa-
tion of the system (32) takes on the form

sin(® - t) = -tg8, te [-mw].

Hence, it follows that the solutions of equetion (30) ere also
the points z = eie(t) of the unit disk such that -%sargzs%
and %ﬂ g arg 2z s%'ﬂ o« This, however, is not essential for our
considerations, since our task was to find solutions of the
equation (30) in the unit disk E,
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14 F.Bogowski, Cz.Burniak

From the preceding considerations it follows that the
boundary I, of the domain D satisfies the equation (34) for

Ke[2, 14+V5)], where R = R(r) = r + % = R(l).

Fig,.1

This equation represents a system of curves, as is shown

in fig.1; each of them has the polar equation r = r(8)., We

are concerned with the boundary oo composed of curve segments
contained in & (in fig.1 the domaein D is hatched). Thus we
obtain the following theorem.

Theorem 1. The set of local univalence in the
class H is a domain starlike with respect to the origin; the
boundery of this domain is a curve whose polar equation is
r = r(8), B¢ [O, 2ﬂ], where r € (0,1] sgtisfies the equation

. ! ‘/ 4
29 - R +8 - 4 V2R" + 4 with R

. 1
sin = T + = .
4R° + 16 r
Remarrk. For feH we have
big
~-it
4 d 2 1 + ze
£ {z) = ——( . : )d(t).
- dz2 \y _ ;2 4 _ ge-it ¢
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Domain of local univalehce 15

- LV .Y . . .
From a known result of &4snevic-Ulina it follows thet the

-

domain I of local univalence in the set of the points ze =
such that the convex hull of the curve

-it
(357) '»'-J=W(t)=g—z(1z 2-1+Ze_it), te(=9,7>,

- 2 i - ze

does not contain the origin,

The determination of the domain D by investigating the
convex hull of the curve {35°) turns to be more complicated
than the presented proof,

2+ The set of starlikeness in the class H
The seft

(36) D" = {Z€ E: Re E%Té%l > 0 for any function fe H},

is said to be the set of starlikenessvin the class Y. From (2)

it follows that
é_fLEijz_i _1+32° _zp'(z)
f(z 1 - z2 - plz)

where p € P, Making use of the exact estimate

z2p’(z) < 21zl for
< pebP
| plz) 1 - 1212 ’
we obtain
e 2
£f'(z 1+ 2 2|zl
(37) 2 - < G .
Tz 1-22{ 1=z

will be satisfied provided that

1 + 22 S 2lzl

Re 2 .
1-2° 1-121°
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16 F.Bogowski, Cz.Burniak

Denote

From the preceding argument it follows that Dc D*. Let us
observe that if z e D, then also (-z) e D, Ze D and the segment
(-1,1) of the real axis belongs to D. Therefore, the set )
is symmetrical with respect to the real exis.and.to the point
z = 0O,

The boundary of D is given by the equation

2
(38) Re 1.+ 2_ _ 21z

2 €8,
1-2.2 1-1212

Setting z = 1.'0:“6 in equation (38) and performing some trans-

formations we obtain

(39) 1 - r4 - 2r .
1 - 2r2cos 26 + r4 1 --r2
Setting © + % =R, R322, we can write equation (39) in the
form
(40) sin’e = 1 (R - 2)% (R + 2),

Since the domain D, as well as its boundary ar‘e symmetri-
cal with respect ‘to tha real axie, we may restrict the argu~-
nent to the -case of O<8s<W, Henoe, the formula (40) holds for
¢ [2; 1+V5). The function ¢(R) = — (R-2) (R+2) is increasing
in this interval. This leads, in view of the relation R= r+-%,
to the conellusion that for 8¢ o0, %T] and 6e€ [’5 ,sr] there
exist functions r = r,(6) and r = rz(s)) respactively, inverse
to the function r(R)' = 81n%8. The function r =‘r1(e) is de~

creasing for ¢ O, g] and we have r1(0) =1, r1(g) =
= %ﬁ - Vl#g-, while r = r,(6) -is increasing for 6e [g ,sr]

and we have rz(g) = l%g - -1—%? R rz(ﬂ) = 1., The set D thus
determined is not the &ull set of starlikeness of the class H,

- 534 -



‘Domain of local univalence 17

The preceding considerations enable us to state the
following theorsm.

Theorean 2. The set D is a set starlike with
respect to the origini its boundary is given by the polar
equation ¥ = r(8),8¢ [0, 27], where r e (0;1] satisfies the
equation '

sine = 1 (R-2)% (R+2) with R =1+ 1.

Remark. The above determined domains D and D con-
tain the disk of univalence Kr = {ze C: Iz|<<rH} in the

¢lass H; the number Ty ——¥: \/ has been determined by

L.Koczan in paper [5].
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