

Franciszek Bogowski, Czesław Burniak

ON THE DOMAIN OF LOCAL UNIVALENCE AND STARLIKENESS
IN A CERTAIN CLASS OF HOLOMORPHIC FUNCTIONSIntroduction

Let C be the complex plane and $E = \{z \in C : |z| < 1\}$ the unit disk. Denote by H the class of functions holomorphic in the disk E , satisfying the condition

$$(1) \quad \operatorname{Re} \left\{ (1 - z^2) \frac{f(z)}{z} \right\} \geq 0, \quad z \in E,$$

and such that $f(0) = 0$, $f'(0) = 1$.

If the coefficients of the function f satisfying condition (1) are real, then the function is typically real^{*)}.

The class H is then a proper superclass of T_r .

Some results for the class H were established by Hengartner and Schober [4]. The condition (1) can be written in the form

$$(2) \quad f(z) = \frac{z}{1 - z^2} p(z), \quad z \in E,$$

where $p \in P$, P being the class of functions p holomorphic in E and such that $\operatorname{Re} p(z) > 0$ for $z \in E$ and $p(0) = 1$.

^{*)} The function f holomorphic in E and such that $f(0) = 0$, $f'(0) = 1$, is said to be typically real if it takes the real values on the segment $(-1, 1)$ of the real axis and satisfies the condition $\operatorname{Im} z \cdot \operatorname{Im} f(z) > 0$ for $z \in E \setminus (-1, 1)$. The class of typically real functions will be denoted by T_r .

Making use of Herglotz's formula for the function $p \in P$ we can write condition (1) in the form

$$(3) \quad f(z) = \int_{-\pi}^{\pi} \frac{z}{1 - z^2} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t),$$

where μ is a real function, non decreasing in the interval $[-\pi, \pi]$ and such that

$$\int_{-\pi}^{\pi} d\mu(t) = 1.$$

1. The domain of local univalence in the class H

We will determine the domain of local univalence in the class H. The method used in order to characterize the boundary functions and the boundary points in this problem is a modification of the method applied by Burštein [2] in the study of another problem. This modification required, however, some more precise statements.

Let $z(f)$ denote the set of zeros of the derivative of the function f in the disk E , that is

$$z(f) = \{z \in E : f'(z) = 0\}.$$

The points of the set $z(f)$ are said to be the critical points of the function f .

Denote by B the set $B = \bigcup_{f \in H} z(f)$. It is obvious that the set $D = E \setminus B$ does not contain critical points of the function f , that is $f'(z) \neq 0$ for any $z \in D$ and any function $f \in H$. Hence, D is the set of local univalence in the class H .

The set D is symmetrical with respect to the real axis. This follows from the fact that if the function f belongs to the class H , then the function g defined as

$$g(z) = \overline{f(\bar{z})}, \quad z \in E,$$

also belongs to the class H . Moreover, $\operatorname{Re} f'(z) > 0$ for $z \in (-1, 1)$, hence D contains the segment $(-1, 1)$ of the real axis. Since the class H is compact, the set B of critical points is closed in the space E (with respect to the disk E).

Let $\Gamma = \partial B \cap E$, so $\Gamma = \partial D \cap B$.

Definition 1. The point $z_0 \in \Gamma$ is said to be a regular boundary point of the set B , if there exists an $a \notin B$ such that $|z - a| \geq |z_0 - a|$ for any $z \in B$. If such an a does not exist, then z_0 is said to be a singular boundary point. This definition was introduced by M. Biernacki [1] (see also Lebedev [6]).

Denote by $\Gamma_0 \subset \Gamma$ the set of all regular boundary points of Γ . It is known (M. Biernacki [1], 13) that Γ_0 is dense in Γ , hence in order to find the boundary of Γ it suffices to determine the set Γ_0 .

The function $f_0 \in H$ such that $f'_0(z_0) = 0$, where z_0 is a boundary point of the set B , is said to be a boundary function.

To determine the boundary functions and the boundary points in this problem we make use of the variational formulas of Goluzin [3] in the class of functions defined by the structural formula of the form

$$f(z) = \int_a^b s(z, t) d\mu(t),$$

where the function μ is non decreasing in the interval $[a, b]$ and such that $\int_a^b d\mu(t) = 1$, while s is a function (as function of the variables z, t) continuous with derivative $s'_t(z, t)$ in the set $E \times [a, b]$, and being regular in E for any $t \in [a, b]$.

The first variational formula has the form

$$(4) \quad f_*(z) = f(z) + \lambda \int_{t_1}^{t_2} s'_t(z, t) |\mu(t) - c| dt,$$

where $\lambda \in [-1,1]$, c is a constant with respect to t and λ (depending on the sign of λ) and t_1, t_2 , $t_1 < t_2$, are arbitrary numbers from the interval $[a,b]$.

In what follows we shall make use of (4) in the following developed form

$$(5) \quad f_1(z) = f(z) + \lambda \int_{t_1}^{t_2} s'_t(z,t) |\mu(t) - c_1| dt,$$

$$(6) \quad f_2(z) = f(z) - \lambda \int_{t_1}^{t_2} s'_t(z,t) |\mu(t) - c_2| dt,$$

where

$$c_1 = \lim_{t \rightarrow t_1^-} \mu(t), \quad c_2 = \lim_{t \rightarrow t_2^+} \mu(t), \quad \lambda \in [0; 1]$$

and where we assume that $\lim_{t \rightarrow a^-} \mu(t) = \mu(a)$, $\lim_{t \rightarrow b^+} \mu(t) = \mu(b)$.

The second variational formula has the form

$$(7) \quad f_{**}(z) = f(z) + \lambda [s(z, t_1) - s(z, t_2)],$$

where $t_1, t_2, a \leq t_1 < t_2 \leq b$, are discontinuity points of the function μ and λ is sufficiently small.

Making use of (3), (4), we obtain

$$(8) \quad f'_*(z) = f'_0(z) + \lambda \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z,t)) |\mu(t) - c| dt,$$

$\lambda \in [-1; 1]$.

Taking account of (5) and (6), we can write (8) in the form

$$(9) \quad f'_1(z) = f'_0(z) + \lambda \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z,t)) |\mu(t) - c_1| dt,$$

$\lambda \in [0; 1]$,

$$(10) \quad f'_2(z) = f'_0(z) - \lambda \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z, t)) |\mu(t) - c_2| dt,$$

$$\lambda \in [0; 1],$$

where

$$(11) \quad \frac{d}{dz} (s'_t(z, t)) = \frac{-4iz e^{-it}}{(1-z^2)^2} \cdot \frac{1-z^3 e^{-it}}{(1-ze^{-it})^3}.$$

The second variational formula may be written as follows

$$(12) \quad f'_{**}(z) = f'_0(z) + \lambda \left[\frac{d}{dz} s(z, t_1) - \frac{d}{dz} s(z, t_2) \right],$$

where λ is sufficiently small and

$$(13) \quad \frac{d}{dz} (s(z, t)) = \frac{1+z^2}{(1-z^2)^2} \cdot \frac{1+ze^{-it}}{1-ze^{-it}} + \frac{2ze^{-it}}{(1-z^2)(1-ze^{-it})^2}.$$

Set $F'_z(z, \lambda) = f'_{**}(z)$; then formula (8) becomes

$$(14) \quad F'_z(z, \lambda) = f'_0(z) + \lambda A(z, c),$$

where

$$(15) \quad A(z, c) = \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z, t)) |\mu_{f_0}(t) - c| dt$$

and $\frac{d}{dz} (s'_t(z, t))$ is given by formula (11).

Let z_0 be a single zero of the function $f'_0(z)$, that is $f'_0(z_0) = 0$ and $f''_0(z_0) \neq 0$. Denote by $z(\lambda)$ the zero of the function $f'_z(z, \lambda)$ which is nearest to z_0 . Then we have

$$\lim_{\lambda \rightarrow 0} z(\lambda) = z_0, \quad z(0) = z_0.$$

The function $z(\lambda)$ has a derivative for $\lambda = 0$ and

$$z'(0) = -\frac{1}{f''_0(z_0)} A(z_0, c) = h(z_0, c),$$

where $A(z, c)$ is given by formula (15); hence

$$z^* := z(\lambda) = z_0 + \lambda h(z_0, c) + o(\lambda), \text{ where } \lim_{\lambda \rightarrow 0} \frac{o(\lambda)}{\lambda} = 0.$$

In view of (15), we have

$$(16) \quad z^* = z_0 + \lambda \frac{-1}{f''(z_0)} \int_{t_1}^{t_2} \frac{-4iz_0 e^{-it}}{(1-z_0^2)^2} \cdot \frac{1-z_0^3 e^{-it}}{(1-z_0 e^{-it})^3} |h_{f_0}(t)-c| dt + o(\lambda).$$

Now, if z^{**} is a zero of the function f'_{**} given by (12), that is, if $f'_{**}(z^{**}) = 0$, then applying formula (7) and proceeding as before, we obtain

$$(17) \quad z^{**} = z_0 + \lambda \frac{1}{f''(z_0)} \left[\frac{d}{dz} (s(z_0, t_1)) - \frac{d}{dz} (s(z_0, t_2)) \right] + o(\lambda),$$

where λ is sufficiently small, t_1 and t_2 are discontinuity points of the function h_{f_0} and $\frac{d}{dz} (s(z, t))$ is given by (13).

Assume now that z_0 is a regular boundary point. Then there exists an $a \notin B$ such that

$$(18) \quad |z^* - a|^2 \geq |z_0 - a|^2.$$

Further, we have

$$|z^* - a|^2 = |z_0 - a|^2 + 2\lambda \operatorname{Re} [(\bar{z}_0 - \bar{a})h(z_0, c)] + o(\lambda),$$

whence, on account of formulas (9) and (10), we obtain

$$|z_1^* - a|^2 = |z_0 - a|^2 + 2\lambda \operatorname{Re} [(\bar{z}_0 - \bar{a})h_1(z_0, c_1)] + o(\lambda),$$

$$|z_2^* - a|^2 = |z_0 - a|^2 - 2\lambda \operatorname{Re} [(\bar{z}_0 - \bar{a})h_2(z_0, c_2)] + o(\lambda),$$

where $0 < \lambda < 1$ and

$$h_1(z_0, c_1) = -\frac{1}{f''(z_0)} A(z_0, c_1), \quad h_2(z_0, c_2) = -\frac{1}{f''(z_0)} A(z_0, c_2).$$

The inequality (18) implies the following ones

$$\operatorname{Re} [(\bar{z}_0 - a)h_1(\bar{z}_0, c_1)] \leq 0, \quad \operatorname{Re} [(\bar{z}_0 - a)h_2(\bar{z}_0, c_2)] \geq 0,$$

which can be written in the form

$$(19) \quad \int_{t_1}^{t_2} \Phi(t) |\mu_{f_0}(t) - c_1| dt \leq 0,$$

$$(20) \quad \int_{t_1}^{t_2} \Phi(t) |\mu_{f_0}(t) - c_2| dt \geq 0,$$

where

$$(21) \quad \Phi(t) = \operatorname{Re} \left[\frac{-4iz_0 e^{-it}}{(z_0 - a)f_0''(z_0)(1-z_0^2)^2} \cdot \frac{1-z_0^3 e^{-it}}{(1-z_0 e^{-it})^3} \right].$$

If the equation $\Phi(t) = 0$ has no roots in the interval (t_1, t_2) , then in inequality (19) we have $\Phi(t) < 0$ and the sign in inequality (20) must be inverted. Hence, it follows that

$$(22) \quad \int_{t_1}^{t_2} \Phi(t) |\mu_{f_0}(t) - c_2| dt = 0.$$

By a similar argument, we find that also

$$(23) \quad \int_{t_1}^{t_2} \Phi(t) |\mu_{f_0}(t) - c_1| dt = 0.$$

Therefore, $\mu_{f_0}(t)$ is constant in any interval (t_1, t_2) which does not contain zeros of $\Phi(t)$.

Let now t_1, t_2 be discontinuity points of the function μ_{f_0} . Calculating the expression $|z^* - a|^2$, $a \notin B$, applying formula (17)

and taking into account the fact that $|z^* - a| \geq |z - a|$, we obtain the condition

$$(24) \quad \operatorname{Re} \frac{1}{(z-a)f''_0(z_0)} \frac{d}{dz} [s(z_0, t_1) - s(z_0, t_2)] = 0.$$

This means that the function

$$(25) \quad \psi(t) = \operatorname{Re} \frac{1}{(z_0-a)f''_0(z_0)} \frac{d}{dz} (s(z_0, t))$$

takes on equal values at the discontinuity points t_1, t_2 of the function μ_{f_0} . Hence, the function μ_{f_0} can be discontinuous only at points which are roots of the equation $\Phi(t) = 0$, $t \in [-\pi, \pi]$, and for which the function $\psi(t)$ takes on equal values. The equation $\Phi(t) = 0$ has the form

$$(26) \quad \operatorname{Re} \left[\frac{-4iz_0}{(z_0-a)f''_0(z_0)(1-z_0^2)^2} \cdot \frac{e^{-it}(1-z_0^3 e^{-it})}{(1-z_0 e^{-it})^3} \right] = 0.$$

Setting $e^{it} = u$ and $\frac{iz_0}{(z_0-a)f''_0(z_0)(1-z_0^2)^2} = b$ we can write (26) in the equivalent form

$$b(u-z_0^3)(1-\bar{z}_0 u)^3 + \bar{b}(1-\bar{z}_0^3 u)(u-z_0)^3 = 0.$$

It is easily seen that this equation has at most 4 roots with respect to $u = e^{it}$, $-\pi \leq t < \pi$. Hence, the function μ_{f_0} can have at most 4 discontinuity points in the interval $[-\pi, \pi]$.

We shall prove that μ_{f_0} can have at most 2 discontinuity points. For the indirect proof assume that t_1, t_2, t_3 , $-\pi \leq t_1 < t_2 < t_3 < \pi$, are discontinuity points of the function μ_{f_0} . Since $\psi(t_1) = \psi(t_2) = \psi(t_3)$, $\Phi(t_k) = 0$, $k=1,2,3$, and $\Phi(t) = \psi'(t)$, there exist points $t_4 \in (t_1, t_2)$ and $t_5 \in (t_2, t_3)$ such that $\Phi(t_4) = \psi'(t_4) = 0$ and $\Phi(t_5) = \psi'(t_5) = 0$. This would mean that the equation $\Phi(t) = 0$ has 5 roots in the interval $[-\pi, \pi]$ which is impossible.

Let now $t_1, t_2, t_3, t_4, -\pi \leq t_1 < t_2 < t_3 < t_4 \leq \pi$, be roots of the equation $\Phi(t) = 0$. It should be noted that the points t_1 and t_2 cannot be at the same time discontinuity points of μ_{f_0} . Otherwise the function $\psi(t)$ would take on equal values at these points; by $\psi'(t) = \Phi(t)$, this would lead to the conclusion that in the interval (t_1, t_2) there exists a root t_5 of the equation $\Phi(t) = 0$.

A similar argument shows that the points t_2 and t_3 , resp. t_3 and t_4 , cannot be at the same time discontinuity points of the function μ_{f_0} .

Assume now that the points t_1 and t_3 are discontinuity points of μ_{f_0} . In each of the intervals (t_1, t_2) and (t_2, t_3) , the equation $\Phi(t) = 0$ has no roots. Hence, by virtue of formulas (22) and (23), we have

$$\mu_{f_0}(t) = c_1 = \lim_{t \rightarrow t_1^-} \mu(t) \quad \text{for } t \in (t_1, t_2),$$

$$\mu_{f_0}(t) = c_2 = \lim_{t \rightarrow t_3^+} \mu(t) \quad \text{for } t \in (t_2, t_3).$$

Moreover, since the points t_1 and t_3 are discontinuity points, we have $c_1 \neq c_2$. The point t_2 would then be a discontinuity point which is impossible, inasmuch as the function μ_{f_0} can have at most 2 discontinuity points. An analogous proof shows that the points t_2 and t_4 , resp. t_1 and t_4 , cannot be at the same time discontinuity points of μ_{f_0} .

From the preceding considerations it follows that if z_0 is a regular boundary point such that $f_0''(z_0) \neq 0$, then the corresponding boundary function has the form

$$(27) \quad f_0(z) = \frac{z}{1-z^2} \cdot \frac{1+ze^{-it}}{1-ze^{-it}}, \quad z \in \mathbb{E}, \quad t \in [-\pi, \pi].$$

Let us note that for $t = -\pi$ and $t = \pi$ the boundary function is the same and has the form $f_0(z) = \frac{z}{(1+z)^2}$.

Let now z_0 be a zero of multiplicity m of the function f'_0 , that is, $(f'_0(z_0) = f''_0(z_0) = \dots = f^{(m)}_0(z_0) = 0$, $f^{(m+1)}_0(z_0) \neq 0$, $m \geq 2$, $|z_0| < 1$. Denote by z^* the zero of the function f'_* which is nearest to z_0 and belongs to an arbitrary small neighbourhood of z_0 . Proceeding in the same way as in [2], we obtain

$$f'_0(z^*) = (z^* - z_0)^m \frac{f^{(m+1)}_0(z_0)}{m!} + (z^* - z_0)^{m+1} \frac{f^{(m+2)}_0(z_0)}{(m+1)!} + \dots .$$

Making use of formulas (9) and (10), we find

$$\begin{aligned} f'_*(z^*) &= (z^* - z_0)^m \frac{f^{(m+1)}_0(z_0)}{m!} + \dots + \\ &+ (-1)^{k+1} \lambda \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z^*, t)) |\mu_{f'_0}(t) - c_k| dt, \\ &\quad k=1, 2, \lambda \in [0, 1]. \end{aligned}$$

Passing to the limit as $\lambda \rightarrow 0$ and in view of $\lim_{\lambda \rightarrow 0} z^* = z_0$, we obtain

$$\lim_{\lambda \rightarrow 0} \frac{(z^* - z_0)^m}{\lambda} = (-1)^k \frac{m!}{f^{(m+1)}_0(z_0)} \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z_0, t)) |\mu_{f'_0}(t) - c_k| dt,$$

whence

$$z^* = z_0 + \sqrt[m]{(-1)^k \frac{m! \lambda}{f^{(m+1)}_0(z_0)} \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z_0, t)) |\mu_{f'_0}(t) - c_k| dt + o(\lambda^{\frac{1}{m}})},$$

where it is assumed that $\lambda^{\frac{1}{m}} > 0$. Hence

$$|z^* - a|^2 = |z_0 - a|^2 + 2\operatorname{Re} \left\{ (\bar{z}_0 - \bar{a}) (-1)^{\frac{k}{m}} \sqrt[m]{\lambda} \varphi(z_0, t_1, t_2, m) \right\} + o(\lambda^{\frac{1}{m}}),$$

where

$$\varphi(z_0, t_1, t_2, m) = \sqrt[m]{\frac{m!}{f_0^{(m+1)}(z_0)} \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z_0, t)) |\mu_{f_0}(t) - c_k| dt}.$$

Since $|z^* - a|^2 \geq |z_0 - a|^2$, we have

$$\operatorname{Re} \left\{ (-1)^{\frac{k}{m}} (\bar{z}_0 - \bar{a})^m \sqrt[m]{\lambda} \varphi(z_0, t_1, t_2, m) \right\} + o(\lambda^{\frac{1}{m}}) \geq 0.$$

Dividing the latter inequality by $\sqrt[m]{\lambda}$ and passing to the limit as $\lambda \rightarrow 0$, we obtain

$$(28) \quad \operatorname{Re} \left\{ (-1)^{\frac{k}{m}} (\bar{z}_0 - \bar{a}) \varphi(z_0, t_1, t_2, m) \right\} \geq 0.$$

The inequality (28) implies

$$(\bar{z} - \bar{a}) \varphi(z_0, t_1, t_2, m) = 0.$$

Since $(\bar{z}_0 - \bar{a}) \neq 0$ and $f_0^{(m+1)}(z_0) \neq 0$, this gives

$$(29) \quad \int_{t_1}^{t_2} \frac{d}{dz} (s'_t(z_0, t)) |\mu_{f_0}(t) - c_k| dt = 0.$$

By an argument analogous to the one applied in the case, where z_0 is a simple zero of $f'_0(z)$, we conclude that the boundary functions have the form (27). Hence, the regular boundary points $z_0 \in \Gamma_0$ are the solution of the equation $f'_0(z_0) = 0$ which belong to the disk E , the function f_0 being given by formula (27). The equation $f'_0(z) = 0$ has the form

$$(30) \quad \frac{1+z^2}{(1-z^2)^2} \cdot \frac{1+ze^{-it}}{1-ze^{-it}} + \frac{2ze^{-it}}{(1-z^2)(1-ze^{-it})^2} = 0,$$

$$z = z(t), \quad t \in [-\pi, \pi].$$

After some transformations we get

$$(31) \quad e^{-2it} z^4 + 2e^{-it} z^3 + (e^{-2it} - 1) z^2 - 2e^{-it} z - 1 = 0.$$

Let us now set $z = re^{i\theta}$, $r = r(\theta) \geq 0$, $\theta = \theta(t)$, $\theta \in [0, 2\pi]$, $t \in [-\pi, \pi]$ in equation (31) and separate the real and imaginary parts; we obtain the system of equations

$$(32) \quad \begin{cases} \left(r - \frac{1}{r}\right) \left[\left(r + \frac{1}{r}\right) \cos(2\theta - t) + 2\cos\theta\right] = 0, \\ \left(r^2 + \frac{1}{r^2}\right) \sin(2\theta - t) + 2\left(r + \frac{1}{r}\right) \sin\theta - 2\sin t = 0. \end{cases}$$

From the first equation it follows that either

$$\left(r + \frac{1}{r}\right) \cos(2\theta - t) + 2\cos\theta = 0$$

or $r = 1$ for any $t \in [-\pi, \pi]$.

Consider the first case. Then, setting $R = r + \frac{1}{r}$ and taking into account the fact that $r \leq 1$, we can write the system (32) in the form

$$\begin{cases} R \cos 2\theta \cos t + R \sin 2\theta \sin t = -2\cos\theta, \\ (R^2 - 2)\sin 2\theta \cos t - [(R^2 - 2) \cos 2\theta + 2]\sin t = -2R \sin\theta, \end{cases}$$

where $R \geq 2$.

Eliminating t from this system we get the following equation

$$(33) \quad (16R^2 + 64)\sin^4\theta - (8R^4 + 64)\sin^2\theta + R^6 - 4R^4 = 0,$$

whence

$$(34) \quad \sin^2\theta = \frac{R^4 + 8 - 4\sqrt{2R^4 + 4}}{4R^2 + 16}$$

or

$$(35) \quad \sin^2\theta = \frac{R^4 + 8 + 4\sqrt{2R^4 + 4}}{4R^2 + 16}.$$

Since the right-hand side of (35) is greater than 1 for $R \geq 2$, it suffices to consider the equation (34).

Let

$$M(R) = \frac{R^4 + 8 - 4\sqrt{2R^4 + 4}}{4R^2 + 16}.$$

A short calculation gives

$$M'(R) = \frac{1}{(4R^2+16)^2} \left[\left(4R^3 - \frac{16R^3}{\sqrt{2R^4+4}} \right) (4R^2+16) - 8R(R^4+8-4\sqrt{2R^2+4}) \right] \geq 0$$

for $R \geq 2$, whence it follows that $M(R)$ is an increasing function for $R \geq 2$. Moreover, we have $M(2) = 0$ and $M(1+\sqrt{5}) = 1$. Hence, the formula (34) holds for $R \in [2, 1+\sqrt{5}]$. Since the domain D and its boundary Γ_0 are symmetrical with respect to the real axis, we have merely to restrict ourselves to the case of $0 < \theta < \pi$.

For $\theta \in [0, \frac{\pi}{2}]$ and $\theta \in [\frac{\pi}{2}, \pi]$ there exists functions $R = R_1(\theta)$ and $R = R_2(\theta)$, respectively, inverse to the function $M(R)$, where $R_1(\theta)$ is increasing for $\theta \in [0, \frac{\pi}{2}]$ and $R_2(\theta)$ is decreasing for $\theta \in [\frac{\pi}{2}, \pi]$. This proves, in view of the relation $R = r + \frac{1}{r}$, $0 < r \leq 1$, that the function $r = r(\theta)$, which represents in polar coordinates the boundary Γ_0 , is decreasing from 1 to $r_0 = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}}$ for $\theta \in [0, \frac{\pi}{2}]$ and increasing from $r_0 = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}}$ to 1 for $\theta \in [\frac{\pi}{2}, \pi]$.

From the first equation of the system (32) it follows that $r = 1$ for any $t \in [-\pi, \pi]$. In this case the second equation of the system (32) takes on the form

$$\sin(\theta - t) = -\operatorname{tg} \theta, \quad t \in [-\pi, \pi].$$

Hence, it follows that the solutions of equation (30) are also the points $z = e^{i\theta(t)}$ of the unit disk such that $-\frac{\pi}{4} \leq \arg z \leq \frac{\pi}{4}$ and $\frac{3\pi}{4} \leq \arg z \leq \frac{5\pi}{4}$. This, however, is not essential for our considerations, since our task was to find solutions of the equation (30) in the unit disk E .

From the preceding considerations it follows that the boundary Γ_0 of the domain D satisfies the equation (34) for $R \in [2, 1+\sqrt{5}]$, where $R = R(r) = r + \frac{1}{r} = R(\frac{1}{r})$.

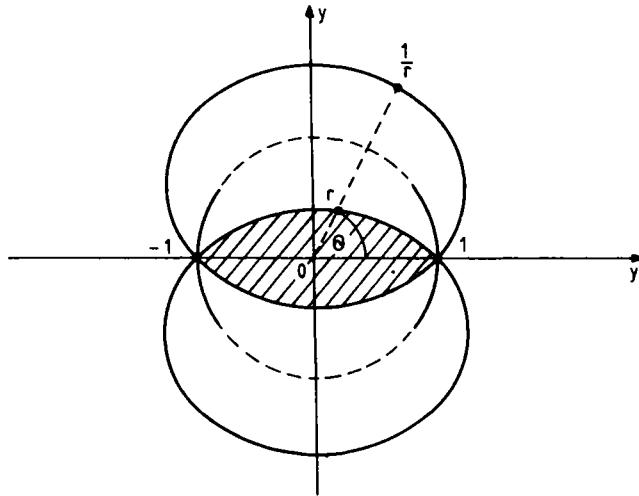


Fig.1

This equation represents a system of curves, as is shown in fig.1; each of them has the polar equation $r = r(\theta)$. We are concerned with the boundary Γ_0 , composed of curve segments contained in E (in fig.1 the domain D is hatched). Thus we obtain the following theorem.

Theorem 1. The set of local univalence in the class H is a domain starlike with respect to the origin; the boundary of this domain is a curve whose polar equation is $r = r(\theta)$, $\theta \in [0, 2\pi]$, where $r \in (0, 1]$ satisfies the equation

$$\sin^2 \theta = \frac{R^4 + 8 - 4 \sqrt{2R^4 + 4}}{4R^2 + 16} \quad \text{with} \quad R = r + \frac{1}{r}.$$

Remark. For $f \in H$ we have

$$f'(z) = \int_{-\pi}^{\pi} \frac{dz}{dz} \left(\frac{z}{1 - z^2} \cdot \frac{1 + ze^{-it}}{1 - ze^{-it}} \right) d\mu(t).$$

From a known result of Asnevič-Ulina it follows that the domain D of local univalence is the set of the points $z \in E$ such that the convex hull of the curve

$$(35') \quad w = w(t) = \frac{d}{dz} \left(\frac{z}{1-z^2} \cdot \frac{1+ze^{-it}}{1-ze^{-it}} \right), \quad t \in (-\pi, \pi),$$

does not contain the origin.

The determination of the domain D by investigating the convex hull of the curve (35') turns to be more complicated than the presented proof.

2. The set of starlikeness in the class H

The set

$$(36) \quad D^* = \left\{ z \in E : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0 \text{ for any function } f \in H \right\},$$

is said to be the set of starlikeness in the class H . From (2) it follows that

$$\frac{zf'(z)}{f(z)} - \frac{1+z^2}{1-z^2} = \frac{zp'(z)}{p(z)},$$

where $p \in P$. Making use of the exact estimate

$$\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{2|z|}{1-|z|^2} \quad \text{for } p \in P,$$

we obtain

$$(37) \quad \left| \frac{zf'(z)}{f(z)} - \frac{1+z^2}{1-z^2} \right| \leq \frac{2|z|}{1-|z|^2}.$$

From (37) it follows that the inequality

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0$$

will be satisfied provided that

$$\operatorname{Re} \frac{1+z^2}{1-z^2} > \frac{2|z|}{1-|z|^2}.$$

Denote

$$\tilde{D} = \left\{ z \in E : \operatorname{Re} \frac{1 + |z|^2}{1 - |z|^2} > \frac{2|z|}{1 - |z|^2} \right\}.$$

From the preceding argument it follows that $\tilde{D} \subset D^*$. Let us observe that if $z \in \tilde{D}$, then also $(-z) \in \tilde{D}$, $\bar{z} \in \tilde{D}$ and the segment $(-1, 1)$ of the real axis belongs to \tilde{D} . Therefore, the set \tilde{D} is symmetrical with respect to the real axis and to the point $z = 0$.

The boundary of \tilde{D} is given by the equation

$$(38) \quad \operatorname{Re} \frac{1 + z^2}{1 - z^2} = \frac{2|z|}{1 - |z|^2}, \quad z \in E.$$

Setting $z = re^{i\theta}$ in equation (38) and performing some transformations we obtain

$$(39) \quad \frac{1 - r^4}{1 - 2r^2 \cos 2\theta + r^4} = \frac{2r}{1 - r^2}.$$

Setting $r + \frac{1}{r} = R$, $R \geq 2$, we can write equation (39) in the form

$$(40) \quad \sin^2 \theta = \frac{1}{8} (R - 2)^2 (R + 2).$$

Since the domain \tilde{D} , as well as its boundary are symmetrical with respect to the real axis, we may restrict the argument to the case of $0 \leq \theta \leq \pi$. Hence, the formula (40) holds for $R \in [2; 1+\sqrt{5}]$. The function $\varphi(R) = \frac{1}{8} (R-2)^2 (R+2)$ is increasing in this interval. This leads, in view of the relation $R = r + \frac{1}{r}$, to the conclusion that for $\theta \in [0, \frac{\pi}{2}]$ and $\theta \in [\frac{\pi}{2}, \pi]$ there exist functions $r = r_1(\theta)$ and $r = r_2(\theta)$, respectively, inverse to the function $\varphi(R) = \sin^2 \theta$. The function $r = r_1(\theta)$ is decreasing for $\theta \in [0, \frac{\pi}{2}]$ and we have $r_1(0) = 1$, $r_1(\frac{\pi}{2}) = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}}$, while $r = r_2(\theta)$ is increasing for $\theta \in [\frac{\pi}{2}, \pi]$ and we have $r_2(\frac{\pi}{2}) = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}}$, $r_2(\pi) = 1$. The set \tilde{D} thus determined is not the full set of starlikeness of the class H .

The preceding considerations enable us to state the following theorem.

Theorem 2. The set \tilde{D} is a set starlike with respect to the origin; its boundary is given by the polar equation $r = r(\theta)$, $\theta \in [0, 2\pi]$, where $r \in (0; 1]$ satisfies the equation

$$\sin^2 \theta = \frac{1}{8} (R-2)^2 (R+2) \quad \text{with} \quad R = r + \frac{1}{r}.$$

Remark. The above determined domains D and \tilde{D} contain the disk of univalence $K_{r_H} = \{z \in \mathbb{C} : |z| < r_H\}$ in the

class H ; the number $r_H = \frac{1+\sqrt{5}}{2} - \sqrt{\frac{1+\sqrt{5}}{2}}$ has been determined by L.Koczan in paper [5].

REFERENCES

- [1] M. B i e r n a c k i : Sur la représentation conforme des domaines linéairement accessibles, Prace Matematyczno-Fizyczne, 44 (1936), 293-314.
- [2] Л.Х. Б у р ш т е й н : О корнях уравнения $f(z) = \alpha \cdot f(a)$ для функций представимых с помощью интеграла Стильтеса, Vestnik Leningrad. Univ. Math. 13 (1969), 7-19.
- [3] Г.М. Г о л у з и н : Об одном методе вариаций в теории аналитических функций, Учен. Zap. Leningrad. Gos. Univ. 144 (1952), 85-101.
- [4] W. H e n g a r t n e r , G. S c h o b e r : A remark on level curves for domains convex in one direction, Applicable Anal. 3 (1973), 101-106.
- [5] L. K o c z a n : Promienie jednolistności w pewnych klasach wypukłych funkcji holomorficznych, Prace Instytutu Matematyki, Fizyki i Chemii Politechniki Lubelskiej, Seria C Nr 1 (1979) 25-28.

[6] Н.А. Лебедев: Мажорантная область для выражения
 $I = \ln \left| \frac{z^\lambda f'(z)^{1-\lambda}}{f(z)} \right|$ в классе S , Vestnik Lenigrad. Univ. Math. 8 (1955), 29-41.

INSTITUTE OF APPLIED MATHEMATICS, M.CURIE-SKŁODOWSKA UNIVERSITY,
20-031 LUBLIN, POLAND

Received December 27, 1985.