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MULTIREFLECTIONS AND MULTIFACTORIZATION SYSTEMS 

1. Introduction 
In [3], a bisection has been constructed, in suf f ic ient ly 

nice categories, between re f l ec t i ve subcategories and factor-
ization systems for morphisms veri fy ing a certain property of 
maximality. Prom [4], we also obtain a correspondence between 
epiref leot ive subcategories and the factorization systems 

* 

(B,M) for morphisms veri fying a property of minimality and 
such that B is a class of epimorphisms (this result being 
equivalent to one obtained in [6] involving the so-called 
dispersed factorization systems for sources). I t is then na-
tural to ask i f we can define a concept of "multifactorization 
system" which would correspond to the aiultireflective subca-
tegories of Y. Diers. 

In [8] , W. Tholen shows how a "multiconoept" in a cate-
gory C corresponds to a "ooncept" in a related oategory we 
w i l l denote by Pro(D0, C ) . This translation does not preserve 
a l l the properties we need to apply the previous results to 
Pro(BQ, C), but the additional conditions needed on C are 
l ight . The nice behaviour of factorization systems for mor-
phisms in Pro(D0,C) w i l l permit the def init ion of a concept 
of "multifactorization system" for souroes in C which is 
a direct extension of the usi^al notion of factorization syst«m 
for sources, and then to generalize the results stated above 
in a uniform way. Some examples and related questions w i l l be 
considered in the third section. 
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2 M.Hébert 

2. The correspondances 
Recall from [8j that for a class of small categories D 

(containing the terminal one) and a category C, the objects 
of the category Pro(D,C) are the functors XsJDop -*• C , where 
© e D and i t s hom-sets are Pro(D,E)(X,Y) = l im(colim(C(X(d), 
_ de® eeE 
Y ( e ) ) ) . I f D0 is the class of a l l small discrete categories 
( =a l l sets ) , then the set of Pro(DQ, O-morphisms from 
X:I —»• C to Y:J - » C ia TT ( 11 (C(X, ,Y - ))) (where we write 

j e j \ i e l 1 1 / 
X^ for X ( i ) ) . In other words, an object of this category is 
just a set of objects of C and a morphism can be seen as 
a set (possibly empty) of dis joint sources ( in this paper, 
source means set-indexed source unless otherwise spec i f ied ) . 
We then ca l l a morphism in Pro(DQ,C) a multisource in e . 

Sources and multisources in C w i l l be denoted by f , g , 
e t c . . . I f we have to be more precise, we w i l l write ( X , f i ) j 
or (X , f . ) for sources and (X. , f ^ ) J or (X,f* ' ) for multisources. 

J 

I f f = j f * ' } = { f i ( j ) | i s a multi-source, f*' w i l l be referred as 

a source of f and ^ ( j j as a (C- ) morphism of f ^ . Composition 
of multisources is made in the most naive way through composi-
tion of t-morphisms. (X,<p) and (X,<p) w i l l denote the empty 
source and multisouroe respectively. 

In what fol lows, a l l subcategories are assumed to be f u l l 
and isomorphism-closed. 

Any subcategory >ft of C gives r ise to an obvious inclu-
sion functor Pro(D0,U) sPro(DQ,ift) Pro(DQ ,e ) . Theorem 2.4 
of [8] shows that is miiltireflective in C i f and only i f 
Pro(DQ,U) has a l e f t adjoint. In f ac t , one can prove that any 
re f l ect ive subcategory of Pro(D0 ,e) i s of the form Pro(D0 ,A) 
for some re f l ect ive subcategory <ft of C . This can be shown 
directly but it w i l l follow from our resu l ts . 

2.1. D e f i n i t i o n . A multifactorization system 
in a category C consists of two classes of sources E and M 
such that: 

( i ) B and M are both closed for composition with isomor-
phisms ( in Pro(DQ ,C ) ) . 
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Multi factorization systems 3 

( i i ) Bach source in C has an (E,M)-factorization: that i s , 
for each source f = ( X , f i ) j there exists a source g = ( X , g j ) j 

in B and a set ' j e j of> sources in M such that 

h g = f ( in Pro(D0 ,C) ) , where h is the multisource 

( i i i ) C has the (E,M)-diagonalisation property: for each 
commutative square 

f 

Z ' - w 

( in Pro(D . C)) with f eE and h a multisource with a l l i t s o ^ __ 
sources in M, there exists a unique multisource —«• Z such 
that % f = g and h \ = k. 

A multifactorisation system in C for which each source 
in. B is a C-morphism is just a factorizat ion system ( for 
set-indexed sources) in the usual sense of [6], I f B and II 
are classes of C-morphisms, then i t is a factorizat ion system 
for morphisms as defined in [ l ] or [3]. 

In a category € with products, a factor izat ion system 
for morphisms can always be extended to a factorizat ion sys-
tem for set-indexed sources but not, in general, for class-in-
dexed sources. This is clearly indicated in [6], but can also 
be seen through the fact that the l e t t e r corresponds to epi-
r e f l e c t i v e subcategories while the former corresponds to r e -
f l e c t i v e ones. More precisely, we have the following bisec-
tions ( in suf f ic ient ly nice categories) : 

Dispersed factor izat ion systems 
for class-indexed sources 

J j ( a ) 

Bpiref lect ive subcategories 
S) (b) 

JL-minimal factor izat ion systems 
for morhpisms with E cEpi 
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Reflect ive factor izat ion 
systems for sources 

S j ( c ) 

Ref lect ive subcategories 

s\ (d) 
E-maximal (= re f l ec t i ve ) 
factor izat ion systems for 
morphisms 



4 M.Hébert 

To explain the terminology involved, recall first that 
a factorization system F = (¡¿,M) for sources (respectively for 
morphisms) in a oategory C (respectively with a terminal 
object t) induces a reflective subcategory in C having 
as its class of objects { x e C | (X,cp) ell} (.respectively 
{ x e Z | (X — • t ) e m } ) . TWO distinct factorization systems can 
induce the same reflective subcategory, and F will be called 
B-minimal if for any factorization system p' = (E',M') such 
that Ej, = Cp , we have Ecfi'. Similarly for B-minimality. 
Bpi stands for the class of all epimorphisms. 

The correspondence (a) (with the definition of dispersed 
factorization systems) can be found in [6]; (b) also follows 
from considerations in [6] (but see also Theorem 1 of [4]). 
P is a reflective factorization system for morphisms if fg eE 
and f e E imply g e E. The correspondences (c) and (d) in the 
diagram follow from Corollary 3.4 of [4] . 

Two remarks must be made here. First, the proofs ,'of the 
correspondences on the left and of the ones on the right of 
the diagram are different in their conceptions and require 
distinct hypothesis on C: on the left, what is needed is 
cowell-poweredness and the existence of colimits (plus a ter-
minal object for (b))j on the right, we want finite well-com-
pleteness, that is the existenoe of finite limits and of all 
(class-indexed) intersections of strong monomorphisms. Second-
ly], the correspondences on the right are not extensions of 
those on the left: there is no known bijection between E-maxi-
ihal faotorization systems for class-indexed sources and epi-
reflective subcategories. 

What we want to do here is to generalize these results 
for multireflective subcategories. We will proceed as follow. 
First, we find conditions on C sufficient to establish the 
above correspondences in Pro(D0,C). Then we show how to extract 
a multifactorization system P' in C from a factorization sy-
stem P for morphisms in Pro(DQ,C). Finally, we remark that 
if Cy, is the multireflective subcategory of C induced by 
F', then the reflective subcategory Pro(D0,Pp>) of Pro(D0,C) 
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L lu l t i f a c t o r i za t i on systems 5 

corresponds to F in the b isec t ions above ( t h i s w i l l prove in 
part icu lar that any r e f l e c t i v e subcategory of P r c ( D 0 , t ) i s 
of the form Pro(D0,<ft) f o r some m u l t i r e f l e c t i v e subcategory A 
of e ) . 

By Propos i t i on 1.3 of [ 8 ] , Fro(D0 ,C) always has products, 
Bur even the existence of equa l i ze rs in C does not guarantee 
the i r existence in Pro (D 0 ,C ) . S im i l a r l y , the well-poweredness 
of 6 does not imply the well-poweredness of P r o ( D 0 , t ) . How-
ever , the existence of products in e w i l l be s u f f i c i e n t to 
save the s i tua t i on in both cases. No addi t ional requirements 
w i l l be necessary f o r the dual proper t i es : 

2 .2 . L e m m a . Let t be a category. 
a) I f C i s cowell-powered ( r e spec t i v e l y well-powered and 

has products) , then the same i s true f o r P ro (D 0 ,C ) . 
b) I f C has co l imi ts of type T, then the same i s true 

for P ro (D 0 ,C ) . 
c) I f C is complete, then the saipe i s true for Pro (D0 ,C) . 
P r o o f . a) The result follows from the following 

facts . All sources of an epimorphic (respectively monomorphic) 
multisource are epimorphisms (respectively monomorphisms) of 
Pro(DQ ,C) . Furthermore, a l l C-morphiems of an epimorphic 
source are epimorphisms in C. Final ly, a source { f^sX —<»• Y ^ j 
is a monomorphism in (Pro(D0 ,C) ) i f and only i f the induoed 
C-morphism X —• ie a monomorphism. 

b) We construot the ooequalizer of f , g :X Y, where 
x:X C and YsJ C , as fo l lows. For each j eJ there is 
exactly one i = i ( j ) and one i ' =' i ' ( j ) in I such that there 

<> d i ' - -
exist c-morphisms f ̂  s X^ —• Y^ and g^ : X^—» Y^ in f and g 

respectively. Define j = { j e j | i ( j ) = i ' ( j ) } and Z : J — C 
i i ' by Zj = codomain of coeq i f^g^ ) . Then one proves easily that 

h:Y -*• Z, defined by hJ = c o e q ( f j , g j ) , i s the coequalizer 

of f and g ( i f J i s empty, set h = (Y,<p)). The coproduct 
of a set { x ^ l j e j } of Pro(D0 ,C) -objects, where X^ = {x^|i e f ^ } , 

is the objeot Y consisting of a l l possible coproducts J _ L X^ 
3eJ ^ 
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6 ï»i. Hébert 

i n t (with the obvious morphisms) i n which exact ly one i 
from each I . appears. 

J 
c) By a remark above, i t s u f f i c e s to provide a construct ion 

for the equal izers of couples f , g : X =fc Y i n Pro(DQ ,e ) . Con-
s ider the diagram in C formed by the morphisms in f and g . 
i'hen i t i s readi ly v e r i f i e d that the set of a l l l imi t objects 
( in C) of the connected components of t h i s diagram, together 
with the l i m i t morphisms to the ^ - o b j e c t s in X, i s the equa-
l i z e r of f and g . n 

We w i l l need some addit ional notat ions: 
I f S i s a c l a s s of morphisms in a category C , then St 

i s the c l a s s of a l l morphisms r such that for any commutative 
sq uare 

( 1 ) K 
/ 

* 

h 

in C with s e S , there e x i s t s a unique % such that Ar = g 
and s% = h. I f S i s a c l a s s of sources in C , then, depending 
of the context , S* i s e i t h e r the c l a s s of a l l morphisms or 
the c l a s s of a l l sources r having the above property (with (1) 
being now in Pro(D Q , e ) ) . 

I f H i s a c l a s s of motphisms, then, depending of the 
context., R* i s e i ther the c l a s s of a l l morphisms or the c l a s s 
of a l l •'Sources s such that for any commutative square (1) with 

/ 

r eR, tnere e x i s t s a unique A such that Ar = g and sA = h. 
I f R i s a c l a s s of sources, R* i s the c l a s s of a l l sources 
s having the s imi lar property with respect to R. 

Recal l that in any f a c t o r i z a t i o n system (3,13) for mor-
phisms or f o r sources , E* = I>I and M* = E. I t is1 easy to see 
that the same i s true for mul t i f ac tor i za t ion Systems. 

2 . 3 . L e m m a . l e t C be a category, 
a) Let C be cocomplete and cowell-powered, and l e t B be 

an e p i r e f l e c t i v e subcategory of Pro(D0 ,C). Then ([7]** , [9]*) 
i s a f a c t o r i z a t i o n system for morphisms in Pro(DQ ,C), where ij> 
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Ivlultifactorization systmes 7 

is the unit of the adjunction and [r?] = I X ePro(D0 ,e )|. 
Furthermore, [¡7]** c Bpi. 

b) Let C be complete and well-powered, and le t 35 be a re-
f l e c t i v e subcategory of Pro(D0,C). Then is a ref lec-
t ive factor izat ion system for morphisms in Pro(D0,C), where R 
is the re f l ec t i on functor and = ( f |R ( f ) is an isomorphism}. 

P r o o f . a) By Lemma 2.2, Pro(DQ,C) is also cocouple-
te and cowell-powered. By [5], Section 34, i t is then an 
(Eri,Extremal mono) category. This implies that Bpi* f= ¿pi. 
[ip] being a class of epimorphisms, we have [ 7 ] c iipi** = 3pi. 
The cowell-poweredness of Pro(D0 , t ) then allows the applica-
tion of Theorem 3.1 of [1] to conclude that ([rp]*1 , [?]*) is 
a factor izat ion system for morphisms. 

b) By Lemma 2.2, Pro(DQ,C) is also oomplete and well-po-
wered. This implies in particular that i t is f i n i t e l y well-com-
plete, and we can apply ¡Corollary 3.4 of [3] . 

2.4. L e m m a . Let (E,M) be a factor izat ion system 
for"morphisms in Pro(D0,C). Let B' (respectively M') be the 
class of a l l sources of multisourceB in E (respectively &). 
Then (E ' ,M' ) is a multifactorization system in C . 

P r o o f . E = M4 and M = E* imply that a multisource 
is in B (respectively M) i f and only i f each one of i t s i s ; 
for example, i f f :Z U = • [ f1 :Z ± —•> U 1 } 1 is a multisource 
in U and 

& 

i s a commutative square with g e B, consider then the square 

X' » Y ' 

E - l [ i ' 

z — u 
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8 1,1.Hébert 

where X' = X u f z J ^ . , T = Yu { z .} ^ g ' = I ^ Z - } . ^ ' 

h' = h u j l z | and k' = ^ u j f ^ } This diagram c lear ly 

commutes and i t is easy to check that g e E and E = Li* imply 
that g'e E. Then there must exist V :Y' —» Z such that k' = f A ' 
and A ' g ' = h ' . But any source of ji' having one of the Z. with 

3 
j ji i in i t s codomain must be 1 z » and then there exists 

A: Y —• Z^ such that Ag = h and = k. The unicity i s c lear . 
Hence E ' ( respect ive ly M') is the class of a l l sources in 

E (respect ive ly M). (B ' ,M ' ) i s then a mult i factor izat ion 
system in C . Q.E.D. 

A mult i r e f i e c t i v e subcategory of C such that f o r each 
X e t the mul t i re f l ec t ion —•> Y i s an episource, that i s 
an epimorphism in Pro(DQ,C), w i l l be called an ep imul t i re f i ec -
t i ve subcategory. This must not be confused with the weaker 
notion of mul t iep i re f lec t ive subcategory of [7] (see 3 . 5 ) . 

A mult i factor izat ion system (E,M) w i l l be cal led r e f l e c -
t i ve i f f o r any source f and any multisource g such that g f 
is in E and a l l sources of g are in E, f i s in E. 

2.5« i> h e o r e m . For a mult i factor izat ion system 
F = (E,M) in a category C , consider the subcategory of C 
having as objects the class of a l l X in t such that ( X , f ) eM. 
ihen, 

a) i f t i s cocomplete and cowe11-powered, the correspon-
dence F 1—• Cp r e s t r i c t s to a bisect ion from the class of E-mi-
nimal mult i factor izat ion systems with EcEpisource into the 
class of ep imul t i re f i ec t i ve subcategories} 

b) i f C i s complete and well-powered, then the correspon-
dence F t—• Cj, r e s t r i c t s to a bisect ion from the class of 
E-maximal ( = r e f l e c t i v e ) mult i factor izat ion systems into the 
class of mul t i r e f l ec t i ve subcategories* 

-

P r o o f . Let XeC and X — Y -»• cp be the F-mult i fao-
tor i za t ion of (X,<p). I t i s straightforward to v e r i f y that p 
i s the "multiunit" def ining the mul t i re f l ec t i ve subcategory Cj,. 

a) I f i s ep imul t i re f l ec t i ve in C , then Pro(D0,<ft) i s 
ep i r e f l e c t i v e in Pro(D0 ,C) , and i f ip i s the unit of this 
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adjunction, then 
( [ ? ] * * . [ ? ] * ) i s a factor izat ion system fo r 

morphisms in Fro(D0,C) with c Epi by Lemma 2.3a). This 
induces a multi factorization system F' = (E',I.l ' ) in t , by 
Lemma 2.4. I t is easily seen that E' = [9'] , where 9' is the 
multiunit of the mult iref lect ion, and that E' is a class of 
episources. 

I f F " = (E",M") is a multi factorization system such that 
EP„ = e p , f then [9'] cE" , SO that [i?']** c ( E " ) m = E". Hence 
F' is E-minimalo 

Also, = A because an object X of C is in A i f and 
only i f (X,<j>)e [9]* . Conversely, i f F = (E,M) i s an E-minimal 
multi factorization system with EcEpisource, then E must be 
[?' ] ** » where q' i s the multiunit for because [9'] c E 
and = E imply [r>']4i c E. This insures that the stated 
correspondence is b i j e c t i v e . 

b) The proof is analogous to the one of part a ) , using 
this time part b) of Lemma 2.3. I f F' i s the multi factoriza-
tion system ( E g , ( E g ) ' ) obtained from a factor izat ion system 
( E g , E g ) for morphisms in Pro(DQ , t ) , as in Lemma 2.4, f o r 
some re f l ec t i on functor R to a r e f l e c t i v e subcategory Pru(D0,ift) 
then for any multifactorization system F = (E,M) such that 
tp = Cp/,R(f) must be an isomorphism ( in Pro(D ,€ ) ) for any 
f eE. This shows that ( E g , ( E g ) ' ) is E-maximal. 

We f ina l l y show that a multifactorization system F = (E,M) 
i s r e f l e c t i v e i f and onl̂ r i f i t is of the type ( E ' R , ( E g ) ' ) . 
I f g f :X —• Y —»Z is in Eg and g has a l l i t s sources in E g , 
then R ( f ) = H ( g ) " 1 , S ( g f ) and is then also an isomoprhism, 
so that f e Eg . Conversely, i f F = (E,M) is r e f l e c t i v e and R 
is the r e f l e c t i v e functor f o r Pro(D0,Cp), then, for f :X —• Y 
in E g , Vy ' f = i n B because i?'x i s in E and 
R ( f ) is an isomorphism; 9y havi*^ each of i t s sources in E, 
f must be in S; hence Eg c E. ""he other inclusion holding in 
any case, we have Eg = E. '¡.E.D. 

2.6. R e m a r k s . a) As in [6] , one can show that 
in a cowell-powered category C multi factorization systems 

- 509 -



10 M.Hébert 

(E,M) with B c Episource extend to multifaotorization systems 
for class-indexed sources. Part a) of Theorem 2.5 can be 
reformulated accordingly. 

b) Let U be the inclusion functor for a mult iref iect ive 
subcategory <ft of t and le t R be the r e f l e c t i on functor at 
the Pro-D0-level. I f S is the class of a l l C-morphisms which 
are diagonally universal for U in the sense of 2.0 of [2] , 
then a morphism of C is in S i f and only i f i t is in some 
source in E g . One can also show that i f I 4 <p, then a source 

{ f i l l ! x - * { Y i } l i s i n = i f and only i f each f ± 

and the induced morphism : X - » T T ¥j are in S*. I t I X j 
fol lows that any morphism in t has a unique (S ,S* ) - f ac to r i -
zation. What prevents (S,S*) to be a factor izat ion system 
in E ( f o r morphisms) is that S**t S in general. In f ac t , i t 
is a factor izat ion system i f and only i f ¡ft is r e f l e x i v e . 
Prom what fol lows, i t is readily seen that this w i l l be the 
case precisely when (S,S*) = 

We can express Theorem 2.5 as a generalization of the 
correspondances a) and c) above: we show that any multifacto-
r i zat ion system F = (E,M) in C such that Cj, i s r e f l e c t i v e 
in t i s such that a l l sources in E are C-morphisms. 

If C has a terminal object t , then we can see this as 
a consequence of the easily verified fact that a multireflec-
tive subcategory of C is reflective i f and only i f it ioon-
tains t (compare this to Theorem 2.3 of [ s ] ) : Cp is then re-
flective i f and onl̂ f i f (t,<p) e l l , and for (X, f ) e E, the fact 
that 

f 
X • Y 

i I 
t 

is always commutative implies, if (t,<p)eM, that there is onl^ 
one Pro(D0,C)-morphism Â:T —»t ; this insures that f e e , and 
then that f is a morphism in t , 
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In the g e n e r a l c a se , one remarks f i r s t t h a t E c E g , where 
ft i s the r e f l e c t i o n f u n c t o r t o P r o ( D 0 , t p ) , and then t h a t f o r 
any source f :X —» Y, the f a c t t h a t R(X) e C when lSp i s r e -
f l e c t i v e imp l i e s t h a t R ( f ) can be an isomorphism only i f Y e C. 

We have then proved the f o l l o w i n g : 
2 . 7 . T h e o r e m . Any m u l t i f a c t o r i z a t i o n system P 

i n a ca tegory C such t h a t i s r e f l e c t i v e i n C i s a f a c t o -
r i z a t i o n system f o r s o u r c e s . Hence the cor respondences of 
Theorem 2.5 reduce t o ones between f a c t o r i z a t i o n systems f o r 
sources (wi th the p r o p e r t i e s mentioned) and ( e p i ) r e f l e c t i v e 
s u b c a t e g o r i e s . Q.E.D. 

3. Examples and problems 
3 . 1 . E x a m p l e . P a r t i a l l y ordered s e t s . 
Let C be a p a r t i a l l y ordered se t (cons idered as a c a t e -

gory i n the usual way) and l e t A be a f u l l subcategory of C 
v e r i f y i n g the fo l l owing p r o p e r t y : f o r each XeC and each 
A E A such t h a t X ^A, the s e t {A'E A | X $ A' $ A} has a s m a l l e s t 
e l ement . As remarked by H. H e r r l i c h (see [ 7 ] ) , t h i s proper ty 
c h a r a c t e r i z e s the m u l t i r e f l e c t i v e s u b c a t e g o r i e s of C (among 
the f u l l o n e s ) . I f R i s the r e f l e c t i o n f u n c t o r from Pro(D0 ,C) 
t o Pro(D 0 ,A) , t hen one v e r i f i e s t h a t 

= j x - ^ j Y ^ j | f o r a l l AeA wi th X<A, t h e r e e x i s t s 
e x a c t l y one i e l such t h a t A $ Y j j . 

One can f i n d examples where ( E ' r , ( E ^ ) ' ) i s not a m u l t i -
f a c t o r i z a t i o n system: suppose t h e r e e x i s t X,Y1 ,Y2 i n C \ A 
and A e ft such t h a t X < Y i < A , i = 1 ,2 , Y., 4 Y2 and t h e r e i s 
no Y i n C such t h a t X <Y <Y i f i = 1 , 2 ; then X —» {Y1 »Y2} 0 0 0 8 

not n e c e s s a r i l y have a ( E g , ( E ^ ) ' ) - m u l t i f a c t o r i z a t i o n . On 
the o the r hand, i f C i s comple te , then X = Y1 * Y2 and 
X —» ,Y2} i s i t s e l f i n ( E g ) ' . In f a c t ( E ' H , ( E ^ ) ' ) i s 
a m u l t i f a c t o r i z a t i o n system i n t h i s case by Theorem 2 . 5 . 
Remark t h a t A i s m u l t i e p i r e f l e c t i v e but not e p i m u l t i r e f l e c t i -
ve i n C . 
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12 ¿.Hébert 

3.2. i x a m p 1 e . ? i e lds in commutative r ings . 
The f u l l subcategory £ of (commutative) f i e l d s i s mult i-

r e f l e c t i v e in the category tJUnj. of commutative r ings with 
unity (see f o r example [ 2 ] ) . Let A be the r e f l e c i o n functor 
from i r o (D o , tftcTigJ to P r o ( D 0 , i ) . By Theorem 2.5, ( £ ¿ , ( 2 ^ ) ' ) 
i s a mul t i fac tor i za t ion system in fftiTi^. '.7e w i l l construct 
in an e f f e c t i v e way the mul t i fac tor i za t ion of sources having 
an Artin r ing as domain. 

Consider any source f = { f - jJ jsX —» Y = in "Cftmĉ  . 
~ _ _ 

Denote by 7X:X —»X and q^'.Y —• Y the r e f l e c t i o n s ; then 

?X = X X ( c c ) I ^eSpec(X)} 
and 

i?Y = { { ' ? l 5 i : Y i — » Y i ( P } l P - e S p e c ^ ) } ! 

where Spec(X), the spectrum of X, is the set of a l l prime 
X 

ideals of X and p a is the canonical homomorphism into the re -
sidual f ie ld of the ring of fractions X a (similarly for 
Spec(Y i) and Also R ( f ) : X —» Y is the multisource 

{ { f 0 : X ( f J 1 { p ) ) — Y ^ P ) | (3eSpec(Y i ) } | i e l j . 

Denote by Spec(Y) the disjoint union U Spec(Y^) and by 
I 

Spec(f) the function from Spec(Y) to Spec(X) defined by 
Spec(f) ((3) = f^1((3) (where |3 e Spec ( Y ± ) ) . Then it is easily 
verif ied that f is in £ g i f and onl^ i f the two following 
properties are sat is f ied: 

i ) For each i e l , MSpec fY^ and.y,y' in Y ^ (b , there 
exist x ,x ' in X\f^1(|5) such that y t ± ( x ) y ' . f ^ x ' ) is in (i. 

i i ) Speo(f) is bi jective. 
Remark also that a particular f^sX Yĵ  in f is d ia -

gonally universal (see 2.6) for the inclusion functor i f and 
only i f s 
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i ) ' For each PeSpecfY^) and y , y ' in Y i \ 3 , there exist 
x ,x ' in X\f {(3) such that y f ^ x ) - y ^ f ^ x ' ) i s in (3 and 

i i ) ' Spec( f i ) i s infect ive . 
We want to show that in some cases, the multifactorization 

can be obtained through the pullback ( in 
Pro(DQ,lC^mj )) of R(f) along r?y. For this we have to look 
more closely at i t s construction. 

Consider the smallest equivalence re la t ion or the set 
K = IuSpec(X) such that i in I i s equivalent to ot in Spec(X) 
i f = tx for some (SeSpeciY^). For each equivalence 
c lass [k ] , denote by p[k] the subring 

y . 
{{x a , y i |x a eX(a) , y ^ Y i f cc.i e [k]}| f& ;x a . . 

when a = f^1(|3) } 

of TT X(o<.) x "TT Y4. 
aetk l ie [kl 1 

Then P = {P[k] | keK}, with the obvious projections, i s 
the pullback of R(f) along We then obtain a factorizat ion 
of f in Pro(DQ,C3iiTi^) through the induced source from X to Ps 

f 
X • Y 

R(f) 
I t follows from the standard properties of factorizat ion 

systems ( in Pro(D0,C!Rm^)) that t i s in (see for example 
[ l ] ) , and then i t s sources are in ( E g ) ' . We show f i r s t that 
i f each [k] i s f i n i t e and each prime ideal of X i s maximal 
( in part icular i f X i s an Artin ring and I i s f i n i t e ) , then 
a i s in S g (and then t I i s the ( 2 g , ( 2 g ) ' ) - m u l t i f a c t o r i -
zation of f ) . 
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Denote by s [ k ] : X —»P[k] the [k]-component of s . Then 

s [ k ] ( x ) = { f + I «-»i 6 [ k ] } « where t ; a i s the maximal 
i d e a l of X a . 

For otQ e [k] nSpec(X) , i t i s e a s i l y v e r i f i e d t h a t the sub-
se t a.'0 = 11x

tx»3 '±} I Xa = 0 1 of P[k] i s a prime i d e a l . Obviously 
-1 o J 

s [k ]~ (c*.̂ ) = CXq, and then the induced homomorphism 

s [ k J a : X(cxo) — • p [ k ] ( a ^ ) (component of K ( s [ k ] ) ) i s an i s o -
o 

morphism because i t has an i n f e c t i v e l e f t i n v e r s e , namely the 
(unique) homomorphism % such t h a t 

p[k] • p [ k ] ( « ; ) 

X ( a 0 ) ' 

commute (where r i s the r e l e v a n t component of r ) . We show 
° o 

next t ha t Spec(P[k]) = { a ' | oc e [k] n Spec(X)}. Let ^ e Spec(P [k] ) . 

I f [ k ]nSpec (X) = • [ a 1 , . . . , a m }, cons ide r an element •[x^,y^J 
of M > M . n a ' , The f a c t t h a t = 0 f o r each a i n [k] impl i e s i m 
t h a t each y^ belongs to each prime i d e a l of Y^, and i s then 
n i l p o t e n t . I n [k] being f i n i t e , i s a l B 0 n i l p o t e n t 
and then i s an element of p . Hence <xj n . . . n c*^ c p , and t h i s 
impl i e s t h a t <xj c p f o r some j . Fur thermore , pc a;j u . . . u a ^ 
because i f { x ^ y . ^ } e p[k] i s such t h a t x a 4 0 f o r eachoe, 
then y i i s i n v e r t i b l e f o r each i e [k] n l and t h e n i s 
i n v e r t i b l a . Hence p e a ' f o r some n . But the i n c l u s i o n s 
cx.j £ s [k]" (p) £ a n imply t h a t j = n because a l l prime i d e a l s 
of X are maximal, and than 9 = This shows t h a t each s [k] 
i s d iagona l ly u n i v e r s a l f o r the i n c l u s i o n f u n c t o r . By the 
very d e f i n i t i o n of the equivalence r e l a t i o n , we conclude 
t h a t i i s i n E g . 

We mention t h a t i n the absence of any r e s t r i c t i o n on f , 
the source s obtained above i s not n e c e s s a r i l y i n E g (and 
hence R i s not a simple r e f l e x i o n , i n the terminology of [ 3 ] ) : 
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f o r example, one can e a s i l y f ind f : X —• Y such tha t [k] n I i s 
i n f i n i t e f o r some k e K and where there e x i s t s an element 
{ x ^ y j of r [kj with each y^ n i l p o t e n t but not i t s e l f n i l p o -
t e n t . Such an element i s n e c e s s a r i l y in each a^ but there must 
e x i s t a prime i d e a l q of p [k] such tha t Hence 

p 4 <x\ f o r a l l a . e [k] a S p e c ( X ) , and S p e c ( s ) i s not b i j e c t i v e , 
' J J — 

I f X i s an Ar t in r i n g , t h e n , whatever i s f , there .is only 
a f i n i t e number of equiva lence c l a s s e s i n K, and two a p p l i c a -
t i o n s of the above procedure l e a d s t o the ( E g , ( E g ) ' ) - n i u i t i -
f s c t o r i z a t i o n of f : indeed, s : X — • P v e r i f i e s the hypothes i s 
mentioned above f o r f and t h e n , i f u v i s i t s f a c t o r i z a t i o n 
through the pul lback of R ( s ) along rjip, v i s i n E g and t u 
in E ^ . 

In the g e n e r a l c a s e , the ( E g , ( E g ) ' ) - m u l t i f a c t o r i z a t i o n 
of f can be obtained through the ( M * , I i I ) - f a c t o r i s a t i o n of s 
in P r o ( D Q , C ) , where M = ( E g ) ' n Siion, Stoon the c l a s s of s t rong 
monomorphisms i n P r o ( D 0 , e ) ( s e e the proof of Theorem 3 . 3 i n 
[ 3 ] ) j no e f f e c t i v e way to o b t a i n t h i s f a c t o r i z a t i o n i s known 
t o us. 

3 . 3 . D - p r o - f a c t o r i z a t i o n s 
'."hat we did f o r D = DQ can be done f o r any c l a s s of c a t e -

g o r i e s D, l e a d i n g t o a concept of " D - p r o - f a c t o r i z a t i o n s y s -
tem" and t o the analogous correspondences invo lv ing the 
D - p r o - ( e p i ) r e f l e c t i v e s u b c a t e g o r i e s . However, i t seems to us 
t h a t i n g e n e r a l the h y p o t h e s i s needed on Pro(D,C) t o apply 
the method of s e c t i o n 2 do not t r a n s l a t e n i c e l y enough i n t o 
c o n d i t i o n s on C to make such a r e s u l t very i n t e r e s t i n g . I t 
remains t o see to what e x t e n t these h y p o t h e s i s are n e c e s s a r y , 

3 . 4 . M u l t i r e f l e c t i v e h u l l s 

^ I^oc '^ocOa 8 c ^ - a s s B u l t i f a c t o r i z a t i o n systems 
in a ca tegory C which i s cocomplete and cowell-powered and 
B a c B p i s o u r c e f o r each cxeA, then one can prove t h a t 
( ( 0 M )̂ fl Ha) i s a lso a m u l t i f a c t o r i z a t i o n system, by 

oteA ote A 
applying the analogous r e s u l t f o r f a c t o r i z a t i o n systesm f o r 
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morphisms ( s e e Theorem 2 of [ 4 ] ) to F r o ( D 0 , C ) . Prom t h i s and 
Theorem 2 . 5 a ) , one concludes t h a t the i n t e r s e c t i o n of e p i -
m u l t i r e f l e c t i v e s u b c a t e g o r i e s i s an e p i m u l t i r e f l e c t i v e sub-
c a t e g o r y . The problem of the e x i s t e n c e of a ( g e n e r a l ) m u l t i -
r e f l e c t i v e h u l l remains the same than i n the r e f l e c t i v e c a s e : 
we do not know i f ( ( D H i s always a m u l t i f a c t o -

cxeA oceA j^l 
r i z a t i o n system when one of the B^ c o n t a i n s non-epi s o u r c e s . 

3 . 5 . t l u l t i e p i r e f l e c t i v e s u b c a t e g o r i e s 
R e c a l l from [7] t h a t i f A i s a mult i r e f i e c t i v e subcategory 

of C with 7 the unit of the a d j u n c t i o n at the P r o ( D 0 , t ) - l e -
v e l , we c a l l <ft m u l t i e p i r e f l e c t i v e i n t i f each i s what 
we w i l l c a l l a weak e p i s p u r e e , t h a t i s , each of i t s C - m o r -
phisms i s an epimorphism. This concept might be more i n t e r e s t -
ing than e p i m u l t i r e f l e c t i v i t y which i s a b u s i v e l y s t r o n g . 

I f we r e p l a c e , i n part a) of Theorem 2 . 5 , " e p i m u l t i r e f l e c -
t i v e " by " m u l t i e p i r e f l e c t i v e " and " S p i s o u r c e " by "Weak e p i s o u r -
c e " , then the r e s u l t i s s t i l l t r u e . The proof f o l l o w s the same 
l i n e s , except t h a t we cannot use Lemma 2 . 3 . Vie have here t o 
prove d i r e c t l y t h a t ( [ 7 ] 1 * , [7]*) i s a f a c t o r i z a t i o n system 
f o r morphisms i n Pro(D , 6 ) . But i t i s not d i f f i c u l t to v e r i f y 1» - 0 
t h a t [7'] Q Weak ' s p i s o u r c e , from which i t f o l l o w s t h a t f o r 
each X e P r o ( D 0 , e ) , the c l a s s of a l l morphisms i n with 
domain X has a r e p r e s e n t a t i v e s e t (by the cowej l -poweredness 
of C ) . This permits again the u t i l i z a t i o n of Theorem 3 . 1 
o f [ i j . 

(*) 
J.Adamek and J . R o s i c k y r e c e n t l y showed by a counterexample 

tha t even in o a t e g o r i e s which are w e l l - and cowell-poweted, 
complete and cocomplete, the s u b c a t e g o r i e s do not always have 
r e f l e c t i v e h u l l s : see [ K e l l y , G.M., On the ordered s a t of 
r e f l e c t i v e s u b c a t e g o r i e s , Sydney Cat . Sam. Hep. , Ai&usf 1 9 8 6 ] , 
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