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MULTIREFLECTIONS AND MULTIFACTORIZATION SYSTEMS

1. Introduction

In [3], a bijection has been constructed, in sufficiently
nice categories, between reflective subcategories and factor-
izavion systems for morphisms verifying a certain property of
maximality, From {4], we also obtain a correspondence batween
epirefleotive subcategories and the factorization systems
{E,M) for morphisms verifying sa prope}ty of minimglity and
guoh that E is a class of epimorphisms {this result being
equivalent to one obtained in 3 involving the so-~called
dispersed factorization systems for sources), It is then na-
tural to ask if we can define a concept of "multifactorization
system" which would correspond to the aultireflective subca-~
tegories of Y. Diers.

In (8], W. Tholen shows how a "multiconocept" in a cate-
gory C corresponds to a "ooncept" in a related category we
will denote by Pro(Do, €). This translation does not preserve
all the properties we need to apply .the previous results to
Pro(Do, €), but the additional conditions needed on ' are
light. The nice behaviour of factorization systems for mor-
phisms in Pro(Do,C) will permit the definition of a concept
of "multifactorization system"” for sources in C whioh is
a direct extension of the usual notion of factorization system
for sources, and then to generalize the results stated above
in a uniform way. Some examples and related questions will be
considered in the third section.
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2 M.Hébert

2. The correspondances

Recall from [8)] that for a class of small categories D
(containing the terminal one} and a category C, the objects
of the category Pro(D,t) are the functors X:D°P —»€, where

D ¢ D and its hom-sets are Pro(D,t)(X,Y) = lim(colim(E(X(d),
—_ ded o€k
Y(e)))s If D, is the class of all small discrete categories

{=all sets), then the set of Pro(D,,C)-morphisms from
X:I =€ to Y:J —» € is fTL <JJ; (C(Xi,Yi))) (where we write
X; for X(i))e In other wg;ds,l;; object of this category is
just a set of objects of T and a morphism can be seen as
a set {possibly empty) of disjoint sources (in this paper,
source means set-indexed source unless otherwise specified).
We then call a morphism in Pro(Do,t) a multisource in €,

Sources and multisources in C will be denoted by f,g,
etc.ee If we have %o be more pracise, we will write (X,fi)I
or (X,f;) for sources and (Xj,f‘a)J or (X,fY) for multisources.
1r f = {83}
a source of f and fi(j) as a (C-)morphism of fj. Composition
of multisources is made in the most naive way through composi-
tion of E-morphisms. (X,¢) and (X,e) will denote the empty
source and multisource respsctivelye.

In what follows, all subcategories are assumed to be full
and isomorphism-~closed.

Any subcategory # of € gives rise to an obvious inclu-
sion functor Pro(D ,U):Pro{D ,#) <= Pro(D,,t). Theorsm 2.4
of [8] shows that & is midltireflective in € if and only if
Pro(Do,U) has a left adjoint. In fact, one can prove that any
reflective subcategory of Pro(Do,C) is of the form Pro(Do,ﬁ)
for some reflective subcategory & of T, This oan be shown
directly but it will follow from our results.

2.7« Definition. A multifactorization system
in a category T consists of two classes of sources E and M
such that:

(i) E and M are both closed for composition with isomor-
phisms {in Pro(Do,C)).

{fg(j)} is a multisource, fj will be referred as
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Multifactorization systems 3

{ii) Each source in T has an (,M)=-factorization: that is,
for each source f = (X,fi)I there exists a source g = (X,gj)J

; J T
in B and a set {(Yj’hi(j))}jeJ of sources in M such that

hgs=7=(in Pro(D,,C)), where h is the multisource
j J

J
(iii) T hase the (E,M)-diagonalisation property: for each
commutative square
f
A7

s/

oa |

DN -— bd
|
\

= - <]
=1

e
—_—
h

(in Pro(Do,C)) with fe¢B and h e multisource with all its
sources in M, there exists a unique multisource 2:Y — Z such
that if:éand h1=k.

4 multifactorisation system in C for which each source
in B is a C-morphism is just a factorization system (for
set-indexed sources) in the ususl sense of [(6]. If E and X
are classss of C-morphisms, then it is a factorization system
for morphisms as defined in [1] or [3].

In a category C with products, a factorization system
for morphisms can always be extended to a factorization sys-
tem for set~-indexed sources but not, in general, for class-in-
dexed sources. This is clearly indicated in [6], but can also
be seen through the fact that the .letter corresponds to epi-
reflective subcategories while the former corresponds to re-
flective ones. More precisely, we have the following bijec-
tions (in sufficiently nice catégories):

Dispersed factorization systems Reflective factorization
for class=-indexed sources systems for sources
i} (a) §} (e)
Bpireflective subcategories Reflective subcategoriaes
s} (v) s} (a)
B-=minimal factorization systems E-maximal (=reflective)
for morhpisms with E cEpi factorization systems for
morphisms
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4 l.Hébert

To explain the terminology involved, recall first that
a factorization system F = (¥,M) for sources (respectively for
morphisms) in a category C (respectively with a terminal
object t) induces a reflective subcategory EF in C having
ag its class of objects {X eel {X,9) € M} (respectively
{xet|(x —t)eu}). Two distinct factorization systems can
induce the sams reflective subcategory, and F will be called
BE-minimal if for any factorization system F' = (B',M’) such
that T, = €, , we have EcE’. Similarly for Z-minimality.

Epil stands for the class of all epimorphisms,

The correspondence (a) (with the definition of dispersed
factorikation systems) can be found in [6]; (b) also follows
from considerations in [6] (but ses also Theorem 1 of {4]).

F is a reflective factorization system for morphisms if fg ¢ B
and feE imply g ¢E. The correspondeices (c¢) and (d) in the
diagram follow from Corollary 3.4 of [4].

Two remarks must be made here. First, the proofs of the
correspondeinces on the left and of the ones on the right of
the diagram sre different in their conceptions and reguire
distinet hypothesis on C: on the left, what is needed is
cowsll-poweredness and the existence of colimits {plus a ter-
minal object for (b)); on the right, we want finite well-com-
plefenese, that is the existence of fini¢e limits and of all
(class=-indexed) intersections of strong monomorphisms, Second-
lﬂ, the correspondences on the right are not extensions of
those on the left: there is no known bijection between E-maxi-
mal factorization systems for class-indexed sources and epi-
reflective subcategories,

What we want to do here i1s to generalize these results
for multireflective suboategories, We will proceed as follow,
First, we find conditions on C sufficient to establish the
above correspondences in Pro(Do,C). Then we show how to extract
a multifactorization system F’ in T from a factorization sy-
stem F for morphisms in Pro(D,,C). Finally, we remark that
if L., is the multireflective supcategory of C induced by

F’
P’, then the reflective subcategory Pro(D,,Cp) of Pro(D,,t)
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ilultifactorization systems 5

corresponds to F ih the bijections above (this will prove in
particular that eny reflective subcategory of Prc(Do,C) is
of the form Pro(Do,ﬂ) for some multireflective subcategory K
of €),

By Proposition 1.3 of (8], Pro(D,,C) elways has products,
Bur even the existence of equalizers in C does not guarantee
their existence in Pro(DD,C). Similarly, the well-powsredness
of € does not imply the well-powerednese of Pro(Do,C). How~
eve’:, the existence of products in € will be sufficient to
save the situstion in both cases. No additional requirements
will be necessary for the dual properties:

2.2, Lemmna, Let T be a category.

a) If € is cowell-powered (respectively well-powsred and
has products), then the same is true for Pro(Do,C).

b) If C has colimits of type T, then the same is true
for Pro(Do,C).

¢) If € is complete, then the sape is true for Pro(Do,C).

Proof. a) The result follows from the following
facts., All sources of an epimorphic (respectively monomorphic)
multisource are epimorphisms (respectively monomorphisms) of
Pro(Do,C). Furthermore, all T ~-morphisms of an epimorphic
source are epimorphisms in C. Finally, s source {fi:x — Yi}I
is a monomorphism in (Pro(Do,t)) if and only if the induced
C -morphism <f;>: X —+'EIY1 is a monomorphism.

b) We construct the coequalizer of f,g:X =% Y, where
x:X +€ and Y:J +€ , as follows. For each jeJ there is
exactly one i = i(j).and one i’ = 1’(j) in I such that there
exist C-morphisms f% X; — Yy and 531: Xy — ¥y in f and g

.
.
~

respectively. Define J = {J ed|i(j) = i'(J)} and Z : J — ©

/
by ZJ = codomain of coeq(f%,gg ). Then one proves easily that
h:Y — Z, defined by hY = coeq(f;,gg ), 18 the coequalizer

of £ and g (if J is empty, set b = (Y,9)). The coproduct
of a set {ijlje J} of Pro(D,,C)-objects, where Xd= {xglie Ij},

is the object Y consisting of all possible coproducts 1l Xi
Jed
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6 l.Hébert

in € (wita the obvious morphisms) in which exactly one i
from each I, appears,

¢) By a remark above, it suffices to provide a construction
for the equalizers of couples f,g:f =Y in Pro(Do,C). Con~-
sider the diagram in € formed by the morphisms in f and g.
ihen it is readily verified that the set of all limit objects
(in T) of the connected components of this diagram, together
with the limit morphisms to the CT-objects in.i, is the equa-
lizer of f and .,

We will need some additional notations:

If S is a class of morphisms in a category T, then St
is the class of all morphisms r such that for any commutative

sguare
r
s———=o
e
(1) gl 2// lh
»”
o ———o 0
8

in € with s eS, thers exists a unique A such that Ar = g

and sA = h, If S is a class of sources in C , then, depending
of the context, St is either the class of all morphisms or

the class of all sources r having the above property (with (1)
being now in Pro(D,%)).

If R is a class of morphisms, then, depending of the
contéxt, RY is either the class of all morphisms or the class
of all %ources s such that for any commutative square (1) with
r eR, there exists a unifue A such that Ar = gvand si = h.

If R is a class of sources, RY is the class of all sources
s having the similer property with respect to R.

Recall that in any factorization system (E,M) for mor=-
phisms or for sources, E' = Il and Mt = E. It is easy to see
that the same is trus for multifactorization 8ystems.

2.3, Lemma. Let T be a category.

a) Let C be cocomplete and cowell-powered, and let B be
an epireflective subcategory of Pro(D_,%). Then ([5]", [3]%)
ie a factorization system for morphisms in Pro(Do,C), where 7
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Multifactorization systmes 7

is the unit of the adjunction and [p] = {6i| X ePro(Do,C)}.
Furthermore, [7]* c Epi.

b) Let C be complete and well-powered, and let % be a re-
flective subcategory of Pro(Do,C). Then (E:R,Ela) is a reflec-
tive factorization system for morphisms in Pro(D,C), where R
is the reflection functor and X = {f|r(f) is an isomorphism},

Proof. a) By Lemma 2.2, Pro(D ,C) is also cocomple-
te and cowell-powered. By [5], Section 34, it is then an
(Bpi,Extremal mono) category. This implies that Epi": Spi.
[?] veing a class of epimorphisms, we have [5]“
The cowell-powersdness of Pro(D ,€) then allows the apwllCa-
tion of Theorem 3.1 of [1] to cpnclude that ([ ]” ,[9] ) is
a factorization system for morphisms,

b) By Lemma 2.2, Pro(Do,C) is also complete and well-po-
wered. This implies in particular that it is finitely well-com-
plete, and we can apply Corollary 3.4 of [3].

2.4, Lemma. Let (E,iM) be a factorization system
for morphisms in Pro(D_,€). Let E’ (respsctively M’) be the
c¢lass of all sources of multisources in E (respectively k).
Then (E',M’) is a multifactorization system in T,

Proof. E=24"and U = BY imply that a multisource
is in B (respectively M) if and only if each one of its is;
for example, if £iZ2 — U = {f 2y — Ui}I is e multisource
in M and

C L’pi" = HEpi.



8 . Hébert

where X’ = XLJ{Zj}j#i, Y = YlJ{Zj}j#i, g’ = él){1zj}
-, -

i’ =h U{sz}j#i :
commutes and it ie easy to check that geE and E = ' imply
that g’¢ E. Then there must exist 4’ :Y’ — Z such that k' =T}’
and A’g’ = h’. But any source of A’ having one of the Zy with
J #1 in its codomain must be 15 » and then there exists

9
_ . J#1
and k' = kk){fa}j%i. This diagram clearly
!

A: Y — 2; such that 1g = h and i1 = K. The unicity is clear.

Hence E’ (respectively I’} is the class of all sources in
E (respectively M). (B’,ll’') is then a multifactorization
system in €. (.E.D.

4 multireflective -subcategory of € such that for each
X €T the multireflection pDy:X —= Y is an episource, that is
an epimorphism in Pro(Do,C), will be called en epimultireflec~
tive subcategory. This must not be confused with the weaker
notion of multiepireflective subcategory of [7] (see 3.5).

A multifactorization system (E,M) will be called reflec-
tive if for any source f and any multisource g such that g f
is in E and all sources of g are in E, f is in E.

2.5¢ Y heoren, For a multifactorization system
F = (E,M) in a category T, consider the subcategory €, of C
having as objects the class of all X in € such that (X,¢) e M.
Then,

a) if T 1is cocomplete and cowsell-powered, the correspon-
dence F F*-fF restricts to a bijection from the class of E-mi-
nimal multifactorization systems with E ¢ Episource into the
olass of epimultireflective subcategories;

b) if T is complete and well-powered, then the correspon~-
dence F +» CF restricts to a bijection from the class of
E-maximal (=reflective) multifactorization systems into the
class of multireflective subcategories.

Proof. Let XeC and X —ZX-"f»cp be the F-multifac-
torization of (X,p). It is straightforward to verify that p
is the "multiunit" defining the multireflective subcategory CF'
a) If & is epimultireflective in T, then Pro(Do,&) is
epireflective in Pro(Do,C), and if » is the unit of this
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Multifactorization systems 9

edjunction, then ([7]',[7]*) is a factorization system for
morphisms in Pro(Do,E) with [5]*’c Epi by Lemma 2.3a). This
induces a multifactorization system F' = (B',ll’) in €, by
Lemma 2.4, It is easily seen that B = [5’]“ , where 7' is the
multiunit of the multireflection, and that E' is a class of
episources.

If P’ = (B",M") is a multifactorization system such that
Can = Cpsy then [§'] cE”, so that (51" < ()" = E". Hence
F’ is E-minimal,

Also, GF' = #f because an object X of ¥ is in & if and

only if (X,¢)e[§]*. Converssly, if F = (E,M) is an E-minimal
multifactorization system with B c Episource, then E must be
[@ﬂ" » where 7' is the multiunit for €y, because [j']c E

and E¥ = B imply [5’]*" ¢ B. This insures that the stated
correspondence is bijective,

b) The proof is analogous to the one of part a), using
this time part b) of Lemma 2.3. If F’ is the multifactoriza-
tion system (EJR,(ZJ )’ ) obtained from a factorization system
(EJR,E] ) for morphisms in Pro(D,,t), as in Lemma 2.4, for
some reflection functor R to a reflective‘subcategory Pru(Do,&)
then for any multifactorization system F = (E,M) such that
CF = CF’ R(f) must be an isomorphlsm (in Pro(D »€)) for any
f eE. This shows that (ZIR,(Z: )') is E—max1mal.

We finally show that a multifactorization system F = (E,M)
is reflective if and only if it is of the type (23%,(23*)').
If g £:X —Y —=2 is in ZR and g has all its sources in Z‘.R,
then E(f) = R(g)'1-R(g:f) and is then also an isomoprhism,
so that f e 2 . Conversely, if F = (B,M) is reflective and R
is the reflectlve functor for Pro(D »Cp), then, for f:1X —=Y
in E]R, Q—-f = R(Ef)] x 5 inE because 7% 1is in ¥ and
R(f) is an isomorphism; §§ having each of its sources in E,

f must be in §; hencs 23§th. “he other inclusion holding in
any case, we have Ei{ = B, ‘7eBeDa

2.6 Remarks. a)as in [6], one can show that
in a cowell-powered category T multifactorization systems
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10 M. Hébert

(B,M) with E c Episource extand to multifactorization systems
for class-indexed sources, Part a) of Theorem 2.5 can be
reformulated accordingly.

b) Let U be the inclusion functor for a multireflective
subcategory & of T and let R be the reflection functor at
the Pro-D _-level. If S is the class of all C-morphisms which
are diagonally universal for U in the sense of 2,0 of [2] ,
then a morphism of € is in S if and only if it is in some
source in EI/{‘ One can also show that if I # ¢, then a source

{£;};t x—= {x;}; 18 10 (Z4)*(=5$)") 1f and only if esch £,
and the induced morphism <fi>I : X =] Y; ere in st. It
I

follows that any morphism in € has a unique (S,SY)-factori-
zation., What prevents (s,5%) to be a factorization system
in € (for morphisms) is that s*¢ s in general., In fact, it
is a factorization system if and only if & is reflexive.
From what follows, it is readily seen that this will be the
case precisely when (S,S‘) = (2&,(2%)').

We can express Theorem 2.5 as a generalization of the
correspondances a} and ¢) above: we show that any multifacto-
rization system F = (E,l) in € such that €y is reflective
in U is such that all sources in E are C-morphisms,

If € has a terminal object t, then we can see this as
a consequence of the easily verified fact that a multireflec~-
tive subcategory of T is reflective if and only if it ocon-
taing t (compare this to Theorem 2.3 of [8]): Cp is then re-
flective if and only if (t,p) €M, and for (X,f) e E, the fact
that

r  _
I ——=Y
t——

is always commutative implies, if (t,¢)ec M, that there is only
one Pro(D ,t)-morphism A:Y —=t; this insures that YeC, and
then that f is a morphism in €,
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Multifactorization systems 11

In the general case, one remarks first that B ¢ Z&v where
R is the reflection functor to Pro(D €z), and then that for
any source f:X —» Y, the fact that R(X)e € when ¥€p is re-
flective implies that R(f) can be an isomorphism only if Y e €.

We have then proved the following:

2.7+ Theorem, Any multifactorization system F
in a category C such that CF is reflective in L is a facto-
rization system for sources, Hence the correspondences of
Theorem 2.5 reduce to ones between factorization systems for
sources (with the properties mentioned) and (epi)reflective
subcatagories, QesE.Ds

3. Examples and problems

3.1« Example., Partially ordered sets.

Let € be a partially ordered set (considersed as a cate-
gory in the usual way) and let & be a full subcategory of T
verifying the following property: for each Xet€ and each
Ae & such that X <A, the set {A’e 4| X <4’ ¢ A} has & smallest
element. As remarked by H. Herrlich (see [7]), this property
characterizes the multireflective subcategories of € (among
the full ones). If R is the reflection functor from Pro(D,,C
to Pro(Do,d’c), then one verifies that

Tp = {x—={r | for a1l aes with X <4, there exists
exactly one 1eI such that A sYi}.

One can find examples where (Z/R,(Eé)') is not a multi~
factorization system: suppose there exist XYY, in C\ &
and Ae & such that X<Y; <4, 1 = 1,2, ¥, # Y, and there is
noY in € such that X <Y <Y y» 1= 1,25 then X ""{Y1’Y2} does
not necessarily have a (ER,(Z'R) )-multifactorization. On
the other hand, if € is complete, then X = Y, » Y2 and

{Y1 ,Yz} is itself in (ZR . In fact (}:R,(Z'.R) ) is
a multifactorization system in this case by Theorem 2.5,
Remark that & is multiepireflective but not epimultireflecti=-
ve in €.
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12 i Hébert

302 s xample. ields in commutative rings,

The full subcaiegory ¥ of (coammutative) fields is multi-
reflective in the category fﬂtng of commutative rings with
unity {see for example [2]). Let R be the reflecion functor
from rro{D,, tRing) to Pro(D_,¥). By Theorem 2.5, (ZR'(Z{{)I)
is 3 multifactorization oyctem in €Ring. ¥e will construct
in gn effective way the multifactorization of sources having
an Artin ring ss domain.

Consider any source f = {f }I.X — Y = {Yi} in Eﬁlm% .

Denote by Q".A —» X and Qy.Y — Y the reflections; then

nx = {?ﬁ‘ X — X{o) | aeSpec(X)}

g = {{rg™s Yo —7a(e) | pesec(ry }| 11

where Spec(X), the spectrum of X, is the set of all prime
ideals of X and rpx is the canonical homomorphism into the re-
sidual field of the ring of fractlons Xy (similarly for
Spec(Y;) and Qg ). also R(F): X — T is the multisource

{{£a:xt27%(B)) —= ¥y (B) | Pespec(y;)}| 1e1).

Denote by Spec(Y) the disjoint union U Spec(Y¥;) and by
I

Spec(f) the function from Spec(Y) to Spec(X) defined by
Spec(f)(p) = f;1({5) (where peSpec(Yi)). Then it is easily
verified that f is in Zé if and only if the two following
properties are satisfied:

i) For each i eI ﬁeSpec(Yi) and y,y’ in Y;\ P, there
exist x,x’ in X\ fi (B) such that y-fi(x) -y ofi(x’) is in PB.

ii) Speo(f) is bijective.

Remark also that a particular f£,:X —» Y; in f is dia-
gonally universal (see 2.6) for the inclusion functor if and

only if:

- 512 -



Multifactorization systems 13

i)’ Por each Pe¢ Spec(Y;) and y,3° in Y;\ B, there exist
X,X’ in X\ff(ﬂ) such that y-fi(x) - y'ofi(x’) is in P and

i)’ Spec(fi) is injectivae,

We want to show that in some cases, the multifactorization
($g,(E3)) can be obtained through the pullback (in
Pro(Do,CR'mg)) of R(f) along 6?. For this we have to look
more closely at its comstruction,.

Consider the smallest equivalence relation on {he set
K = IuSpec{X) such that i in I is equivalent to o« in Spec(X)
if 1;1(}3) = o for some pPe Spec(Yi). For each equivalence
class [k], denote by P[k] the subring

Y.
P[k] = {{Xa,yi|xa€X(0k), Vi eYis o,ie [k]}lfﬁ:xq- : Qﬂl(yi)

when o« = 7 ()}

of 11 x(o)x 11 ¥
aelk] ie (k1.
Then P = {P[k]) | keK}, with the obvious projections, is

the pullback of R(f) along Pye We then obtain a factorization

of £ in Pro(Do,CfRLng)' through the induced source from X to P:

i.

It follows from the standard propaerties of factorization
systems (in Pro(Do,tRi'n%)) that t is in 2& (ses for example
[1]), and then its sources are in (Zé)' « We show first that
if each [k] is finite and each prime ideal of X is maximal
(in particular if X is an Artin ring and I is finite), then
8 is in Zé_(and then T 8 is the (2&,(2%)')-multifactori—
zation of f),
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14 “.Hébert

Denote by s[k]: X —» P[k] the [k]~component of 5. Then

s[k](x) = {% + N, fy(x) ] o,ie [k]}, where li,, is the maximal
ideal of X_.

For o e [k] nSpec(X), it is easily verified that the sub-
set o) {{xq,yl}l = 0} of P[k] is a prime ideal. Obviously

sk ]'1 (o)) = o, and then the induced homomorphism

s(k], X(or,) —= P[k](x)) (component of R(s[k])) is an iso-
()

morphism because it has an injective left inverse, namely the

{unigue) homomorphism A such that

)

plk] — P[k](cx0

o 7 A
-~
}((ao)’

commute (whers r, 1is the relevant component of T), We show
0
next that Spec(P[k]) = {a'|oe[k]n Spec(X)}. Let peSpec(B[k]).

1f {k] n Spec(X) = {ogseeesoy}, consider an element {x.71}
of o/ n..enoy. The fact that x, = O for each o« in [x] implies
that each Vi belongs to each prime ideal of Y;, and is then
nilpotent, In (k] being finite, {=x,,y;} is also nilpotent
and then is an elemsnt of p . Hence oza Neesno Co, and this
implies that oj ¢ p for some j. Furthermore, p¢ o:{ UoeeoU oc('n
because if {x ,yl}eP k] is such that x # O for eacher,
then y; is invertible for each ie [x] nI and then{ ,yl} is
1nvertible. Hence Qcoc for some n. But the inclusions
o Cs[k] (¢) € @, imply that j = n because all prime ideals
of X are maximal, and then ¢ = af. This shows that each s[k]
is diagonally universal for the inclusion functor. By the
very definition of the equivalence rslation, we conclude
that s is in Z‘R'

We mention that in the absence of any restriction on f
the source 5 obtained above is not necessarily in Z}R (and
hence R is not a simple reflexion, in the terminology of [3]):

- 514 -



liultifactorization systems 15

for example, one can easily fing f:X — Y such that [k]rﬁI is
infinite for some ¥k € K eand where there exists an slement
{Xa'yi} of r[k] with each y; nilpotent but not itself nilpo-
tent, Such an element is necessarily in each of but theres must
exist a prime ideal ¢ of P[k] such that {xa,yi} ¢ 0. Hence
o # q for 211 oy ¢ [k] n Spec(X), =nd Spec(5) is not bijective.

If X is an Artin ring, then, whatever is f there is only
a finite number of agquivalence classes in K, and two applica-
tic.as of the above procedure leads to the (2:&,(2:%)/)—multi-
fectorization of f: indeed, 8:X — P verifies the hypothesis
mentioned above for f and then, if u v is its factorization
through the pullback of R{8) along VP’ v is in ZJH and t u
in EZR.

In the gensral case, the (ZIR,(EZ‘) )-oultifactorization
of £ can be obtained tnrough the (H' ,b)=factorization of s
in Pro(Do,C), where I = (EZP) n Swmon, Skon the class of strong
monomorphisms in Pro(D t) (see the proof cf Theorem 3.3 in
[3]); no effective way to obtain this factorization is known
to us,

3.3, D-pro-factorizations

Wwhat we did for D = D, can be done for any class of cate-
gories D, leading to a concept of "D-pro-factorization sys~
tem" and to the analogous correspondences involving the
D-pro-{(epi)reflective subcategories. However, it seems to us
that in general the hypothesis needed on Pro{(D,€) to apply
the method of section 2 do not translate nicely enough into
conditions on T to make such a result very interesting. It
remains to see to what extent these hypothesis are necessary,

3.4, Multireflective hulls

If {(Eu,Ma)}A is a class of multifactorization systems
in a category C which is cocoamplete and cowell-powered and
E, € Bpisource for each o« ¢4, then one can prove that

(( 0wy )N M) is also a multifactorization system, by
oech el
applying the analogous result for factorization systesm for
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morphisms (see Theorem 2 of {4]) to Pro(D_ ,€). From this and
Theorem 2.5a), one concludes that the intersection of epi-
nultireflective subcategories is an gpimultireflective sub-
category. The problem of tne existence of a (general) multi-
reflective hull remains the same than in the reflective case:

we do not know if ({ N Ma)’, N iy} is always a multifacto-
xeh o€ h {%)
rization system when one of the E, contains non-epl sources.

3.5. ultiepireflective subcategories

Recall from [7] that if & is o multireflective subcategory
of © with 1§ the unit of the adjunction at the Pro(D,,t)-le~
vel, we call # nmultiepireflective in T if each ﬁx is what
we will call o weak episource, that is, each of its € -mor-
phisms is an epimorphism., This concept might be more interest-
ing than epimultireflectivity which is abusively strong.

If we replace, in part a) of Theorem 2,5, "epimultireflec-
tive" by "multiepireflective" and "Episource" by "Weak episour~-
ce", then the result is still trus. The proof follows the same
lines, except that we cannot use Lemma 2.3. We have here to
prove directly that ([@]*’, [5]” is g factorization system
for morphisms in Pro(D,,C). But it is not difficult to verify
that [@ﬂ"‘é Weak 'episource, from which it follows that for
each Xe Pro(D_,€), the class of all morphisms in [5]* with
domain X has s representative set (by the cowell-poweredness
of C). This permits again the utilization of Theorem 3.1
of [1].

(ﬂJ.Adamek and J.Rosicky recently showed by a counterexample
that even in categories which are well- and cowell-powered,
complete and cocomplete, the subcategories do not always have
reflective hulls: see [Kelly, G.M., On the ordered sat of
reflective subcategories, Sydney Cat. Sem. Rep., August 1986],
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