

M. Dawidowski, I. Kubiaczyk, B. Rzepecki

AN EXISTENCE THEOREM FOR THE HYPERBOLIC
EQUATION $z_{xy} = f(x,y,z)$ IN BANACH SPACES

We are interested in the existence of solutions of the Darboux problem for the hyperbolic equation $z_{xy} = f(x,y,z)$ ($x,y \geq 0$) when f with values in a Banach space satisfies some regularity condition expressed in terms of Kuratowski's measure of noncompactness α . Our result will be proved via the fixed point theorem of Sadovskii given in [5] as Theorem 3.4.3.

Let $J = (0, \infty)$. Throughout this paper $Q = J \times J$ and E will denote a Banach space with norm $\|\cdot\|$. The measure of noncompactness $\alpha(A)$ of nonempty bounded subset A of E is defined as the infimum of all $\epsilon > 0$ such that there exists a finite covering of A by sets of diameter $\leq \epsilon$.

Denote by $C(Q, E)$ the set of all continuous functions from Q to E . The set $C(Q, E)$ will be considered as a vector space endowed with the topology of almost uniform convergence. For $V \subset C(Q, E)$ we denote by $V(x, y)$ the set of all $z(x, y)$ with $z \in V$. Further, we will use standard notation. The closure of a set A and its closed convex hull will be denoted, respectively, by \bar{A} and $\overline{\text{co}} A$. For the properties of α we refer to [2].

The Lemma below is an adaptation of the corresponding result of Ambrosetti ([1], Lemma 2.2). It is special result of Heinz lemma (see [3]).

Lemma. If P is a compact subset of Q and V is a bounded equicontinuous subset of the usual Banach space of continuous E -valued functions on P , then

$$\alpha(\cup\{V(x,y): (x,y) \in P\}) = \sup\{\alpha(V(x,y)): (x,y) \in P\}.$$

Denote by S_∞ the set of all nonnegative real sequences. For $\xi = (\xi_n)$, $\eta = (\eta_n) \in S_\infty$ we write $\xi < \eta$ if $\xi_n \leq \eta_n$ for $n = 1, 2, \dots$ and $\xi \neq \eta$. Let \mathfrak{X} be a closed convex subset of $C(Q, E)$ and Φ be a function which assigns to each nonempty subset Z of \mathfrak{X} a sequence $\Phi(Z) \in S_\infty$ such that

- (1) $\Phi(\{z\} \cup Z) = \Phi(Z)$ for $z \in \mathfrak{X}$,
- (2) $\Phi(\bar{c}\bar{o} Z) = \Phi(Z)$,
- (3) if $\Phi(Z) = \theta$ (the zero sequence) then \bar{Z} is compact.

Here we use the Sadovskii fixed point theorem in the following form (cf. [4]):

If $F: \mathfrak{X} \rightarrow \mathfrak{X}$ is a continuous mapping satisfying $\Phi(F[Z]) < \Phi(Z)$ for arbitrary nonempty subset Z of \mathfrak{X} with $\Phi(Z) > \theta$, then F has a fixed point in \mathfrak{X} .

Let f be an E -valued function defined on $Q \times E$. By (+) we shall denote the problem of finding a continuous solution of

$$\begin{cases} z_{xy} = f(x, y, z) \\ z(x, 0) = 0, \quad z(0, y) = 0 \end{cases}$$

for $x \geq 0$, $y \geq 0$.

Theorem. Let $G: J \times J \times J \rightarrow J$ be a continuous function nondecreasing in the last variable, and let $L: J \times J \times J \rightarrow J$ be a function such that for each $u \in J$ the mapping $(x, y) \mapsto L(x, y, u)$ is continuous and $L(x, y, 0) \equiv 0$ on Q . If

- 1° f is continuous,
- 2° $\|f(x, y, u)\| \leq G(x, y, \|u\|)$ for $(x, y) \in Q$ and $u \in E$,
- 3° $\alpha(f[P \times W]) \leq \sup\{\alpha(L(x, y, \alpha(W))): (x, y) \in P\}$ for any compact subset P of Q and each nonempty bounded subset W of E ,
- 4° the scalar integral inequality

$$g(x, y) \geq \int_0^x \int_0^y G(u, v, g(u, v)) du dv$$

has a locally bounded solution g_0 existing on Q , and

$$\int_0^{+\infty} \int_0^{+\infty} L(u, v, r) du dv < r \quad \text{for all } r > 0,$$

then there exists a solution z of (+) such that $\|z(x, y)\| \leq g_0(x, y)$ for $(x, y) \in Q$.

Proof. Denote by \mathfrak{X} the set of all $z \in C(Q, E)$ with $\|z(x, y)\| \leq g_0(x, y)$ on Q and

$$\begin{aligned} \|z(x_1, y_1) - z(x_2, y_2)\| &\leq \left| \int_0^{x_2} \int_{y_1}^{y_2} G(u, v, g_0(u, v)) du dv \right| + \\ &+ \left| \int_{x_1}^{x_2} \int_0^{y_1} G(u, v, g_0(u, v), g_0(u, v)) du dv \right| \quad \text{for } (x_1, y_1), (x_2, y_2) \in Q. \end{aligned}$$

The set \mathfrak{X} is a closed convex and almost equicontinuous subset of $C(Q, E)$. We define a continuous mapping F of \mathfrak{X} into itself as follows

$$(Fz)(x, y) = \int_0^x \int_0^y f(u, v, z(u, v)) du dv \quad \text{for } z \in \mathfrak{X}.$$

Let n be a positive integer and $P_n = [0, n] \times [0, n]$. Let Z be a nonempty subset of \mathfrak{X} and $W = \bigcup \{z(x, y) : (x, y) \in P_n\}$. Fix (x, y) in P_n . For any given $\epsilon > 0$ there exists $\delta > 0$ such that $u', u'' \in [0, x]$, $v', v'' \in [0, y]$ with $|u' - u''| < \delta$ and $|v' - v''| < \delta$ imply $|L(u', v', \alpha(W)) - L(u'', v'', \alpha(W))| < \epsilon$. We divide the intervals $[0, x]$, $[0, y]$ into m parts $x_0 = 0 < x_1 < \dots < x_m = x$, $y_0 = 0 < y_1 < \dots < y_m = y$ in such a way that $|x_i - x_{i-1}| < \delta$, $|y_i - y_{i-1}| < \delta$ for $i = 1, 2, \dots, m$.

Put $P_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$, $i, j = 1, 2, \dots, m$, and let (δ_j, τ_j) be a point in P_{ij} such that

$$L(x, y, \alpha(W)) \leq L(\delta_j, \tau_j, \alpha(W)) \quad \text{for } (x, y) \in P_{ij}.$$

Now, by the integral mean value theorem, our condition β^0 and Lemma, we obtain

$$\begin{aligned}
 \alpha(F[Z](x,y)) &\leq \alpha\left(\sum_{i,j=1}^m \text{mes}(P_{ij}) \overline{\text{co}}(f[P_{ij} \times W])\right) \leq \\
 &\leq \sum_{i,j=1}^m \text{mes}(P_{ij}) L(\delta_i, \tau_j, \alpha(W)) \leq \sum_{i,j=1}^m \iint_{P_{ij}} L(u, v, \alpha(W)) du dv + \\
 &+ \sum_{i,j=1}^m \iint_{P_{ij}} |L(u, v, \alpha(W)) - L(\delta_i, \tau_j, \alpha(W))| du dv \leq \\
 &< \iint_0^x \iint_0^y L(u, v, \alpha(W)) du dv + \varepsilon xy = \\
 &= \varepsilon xy + \iint_0^x \iint_0^y L(u, v, \sup\{\alpha(Z(x,y)): (x,y) \in P_n\}) du dv.
 \end{aligned}$$

As $\varepsilon > 0$ is arbitrary, this implies

$$\begin{aligned}
 (4) \quad \sup\{\alpha(F[Z](x,y)): (x,y) \in P_n\} &\leq \\
 &\leq \sup_{(x,y) \in Q} \iint_0^x \iint_0^y L(u, v, \sup\{\alpha(Z(x,y)): (x,y) \in P_n\}) du dv.
 \end{aligned}$$

Define

$$\Phi(Z) = \left(\sup_{(x,y) \in P_1} \alpha(Z(x,y)), \sup_{(x,y) \in P_2} \alpha(Z(x,y)), \dots \right)$$

for any nonempty subset Z of \mathfrak{X} . Evidently $\Phi(Z) \in S_\infty$. By the corresponding properties of α , the function Φ satisfies conditions (1)-(3) listed above. From our assumption on L and inequality (4) it follows that $\Phi(F[Z]) < \Phi(Z)$ whenever $\Phi(Z) > 0$. Thus all assumptions of Sadovskii's fixed point theorem being satisfied, F has a fixed point in \mathfrak{X} and the proof is complete.

Remark. In particular, the function $L(u,v,r) = L(u,v) \cdot \varphi(r)$, where

$$\int_0^{+\infty} \int_0^{+\infty} L(u,v) dudv < 1 \quad \text{and} \quad 0 < \varphi(r) < r \quad \text{for} \quad r > 0$$

satisfies conditions from the theorem.

REFERENCES

- [1] A. Ambrosetti : Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967) 349-360.
- [2] J. Banas, K. Goebel : Measures of non-compactness in Banach spaces, Lecture Notes in Pure and Applied Math., 60, New York and Basel (1980).
- [3] H.P. Heinz : Theorems of Ascoli type involving measures of noncompactness, Nonlinear Analysis, Theory, Method and Appl. 5, No. 3, 277-286.
- [4] B. Rzepnicki : An application of a fixed point principle of Sadovskii to differential equations on the real line, Comment. Math. Univ. Carolinae, 26 (1985), 713-717.
- [5] B.N. Sadovskii : Limit-compact and condensing operators, Russian Math. Surveys, 27 (1972) 86-144.

INSTITUTE OF MATHEMATICS, A.MICKIEWICZ UNIVERSITY,
60-769 POZNAN, POLAND;

DEPARTMENT OF MATHEMATICS, HIGHER SCHOOL OF ENGINEERING,
65-246 ZIELONA GÓRA, POLAND

Received December 9, 1985.

