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ON LOCALLY FINITELY GENERATED DIFFERENTIAL SPACES

In this paper we consider Sikorski differential space
(1], [2] whose a differential structure is generated by a
finite set of real-valued functions. In Corollary 2.3 it is
given a characterisation such a differential structure.

Any ﬁausdorff differential space which is locally finitely
generated is m differential space of class D, [4].

1. Preliminaries

Let M be an arbitrary non empty set and C be a family of
real functions on M. By scC we denote the sget of all real
functions on M of the form wo (oc.l,...,ocn), where w is an arbi-
trary smooth real function on RR, Cyseeeyty € C and n=1,2,¢¢¢
A set C 1s said to be closed with respect to composition with
the smooth function on R® iff ¢ = scCc [2].

By'TC we denote the weakest topology on M in which =21l
functions of C are continuous. Now let A be an arbitrary sub-
set of M, By C, we denote the set of all functions g: A —R
suoch! that for each point p € A there aexists an open neighbour-
hood U of p and a function f ¢ C such that £fl1Un4 = glUnaA,

A 8et.C is said to be closed with respect to localization
iff CM =Ce If C = (scC)M then the set C 1s said fto be a dif-
ferential structure on M and the couple (M,C) is called &
differential space [1], [2].

Let now (M,C) and (N,D) be differential spaces. 4 mapping
Fs: M — N 18 said to be a smooth mapping of the differential
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gpace (M,C) into the differential space (N,D) iff for each
feD foPFeC, If F is a smooth mapping of the differential
space (i,C) into the differential space (N,D) we write
F: (M,¢) — (,D) [2]. Moreover for an arbitrary mapping
F: M — X by F*: D —C we define the mapping defined by the
formula F¥() = ooF for any o eD.

The notion of tangent vector to (M,C) at the point peM
we define as a linear mapping v: C — R satisfying the follow-
ing condition

visB) = alp)v(p) + p{p)v(x) for any o, PeCe

The set of all tangent vectors to (M,C) at the point pel
we denote by Mp and call the tangent space to (},C) at the
point p.

If FP: (M,C) — (N,D) is a smooth mapping between diffesren=-
tial spaces then for each point p eM the mapping F*p:Mp — NNp)
defined by the formula (F*pv)([s) = v(F’p) for any peD and
Ve Mp is a linear mapping.

By a smooth vector field tangent to (1f,C) we mean each
mapping X: C — C such that X(xB) = «X(p) + pX(x) for any
«,eC, The set of all smooth tangent vector field to (M,C)
we denote by X(M).

Now we prove some lemmas which will be usefull in the
saqusel,

Lemma 1.1s Lot F:(M,C) —= (N,D) be a smooth mapp-
ing of a differential space (M,C) onto a differential space
(N,D) such that F¥: D — C is an isomorphism between linear
rings. Then

(1) P is an open mapping

(i1) F is a diffeomorphism iff F is one to one

{iii) the topologiqs Tb and tD are equipollent and the
mapping Fo: 7o —» .7y defined by the formula F,(U) = F(U) for
U € Tq establishes the equipollence of (5 and Tpe

(iv) if (M,C) is a Hausdorff differential space then P
is a diffeomorphism,

Proof. (i). Let U= (ByyeeesPy)” [¢] be an arbi-
trary open-set of the base of the topology 7s. Because by
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assumption F is an isomorphism therefore there =xists esxactly
one sequence of functions Xqpees € D such that ﬁi = Fﬁxi =

;0o F for i = 1,2,.4.,n. Hence U = (51,...,ﬁn)-1[Q] =

(Fﬁx1,...,Fﬁun)-1[Q] = F'1(a1,...,a )'1[Q] and consequently

n
rU) = (a1,...,an)'1[Q]D. Hence F is an open mapping.

(ii) Observe that (Fo G)* = G*o P¥, Since F is 2 bijection
then (F1oP)* = PXoP ™™ = 1d;. On the other hand because F*

is an isomorphism so F’o P&, idy. From the least two identi-

ties we get F*o RIS S el B equivalently oo F*"1.

Hence for each e C we have F* ' (x) = F ™ («) = «oF ' ¢ D,
So F'1 by definition is a smooth mapping and conseqguently F
is a diffeomorphism.

{1ii) Since for any Ve N F'1(V) e 7y and F&(F'1(V)) =
= F(F'1(V)) = V therefores F is a mapping "onto". It is easy
to prove also that F(U) = F(V) iff U = V for any V,U €75
Hence F is one to one and consequently F, 1s a bijection.

(iv) Let (M,C) be a Hausdorff differential space that
means 7 is a Hausdorff topology. Now let P3Py € M be such
points that F(p1) = F(p,) and V be an arbitrary neighbourhood
of the point F(p1). Hence for the set U = F‘1(V) we get p, eU
and p,e U. Therefore p, = p, beoauss (M,C) is a Hausdorff
differential space and consequently P is one to one. By (iii)
F 1s a diffeomorphism,

Lemma Te2e Let f£: (M,C) — (N,D) be a smooth
mapping of a differential space (M,C) onto a differential
space (N,D) such that £*: D —C is an isomorphism between
-linear rings., Then

(1) for each point peM the mapping f*p: M
an isomérphism between the linear spaces

(ii} the mapping f, : E(M) — ¥(N) defined by the formula
(£,X)(B) = £2=1(X(£*B)) for any X ¢ ¥ (M) and PeD is an iso-
morphisth between modules

(iii) for each point peM and for any vector fields
Xe®(M) and Y ¢ ¥ (N) there are identities:

- 479 -



4 W.Sasin, Z.Zekanowski

(1) (£,X)(£0p)) = £, X(p),
(2) £, (£5¥)(p)) = ¥(£(p)).

Proof. (i) Let vel be a tangent vector such that
f,, v = 0. For an arbitrary oe C (f*pv)(f*'1a) = v(f* £ g =
= v{x) = 0., Therefore v = 0 and consequently f,, is a one to
one mapping. We will show now that f _ is "onto". Let w eNf(p)
be an arbitrary tangent vector to {N,D) at the point f(p).
It is easy to observe that the mapping v: C — R defined by
the formula v{x} = w(f*'1a) for any xeC is a tengent vector
to (M,C) at the point p and moreover f*pv = W, So fx-p is onto.
In consequence £ : Mp —'Nf(p) igs an isomorphism.

(11) Observe that for any «, PeC and X,Y e () there is
the identity

fulaX + BY) = £ et X + 2% 1Bog, Y,

It is easy to verify also that the mapping f;1: E(N) — (M)
defined by the formula: (£3'Y){x) := £*(¥(£*~la)), for each
Ye¥%(N) and «eC, is linear and inverse of fy. Hence fy is
an isomorphism between modules,

(iii) Since £¥: D —» C is an isomorphism we have the iden-
tity o = £* 1ot for any oeC, Using the last identity we
verify the following equality

(1.1) (£,X0(£(p))(B) = (£,X)(p)(£(p)) = 21 x($"B) ) (£(p)) =

= (£ V(x(£*B)) o £)(p) = X(£*P)(p) = X(p)(£*p) =

(f*p X(p))(p)
for each peM, PeC and X e ¥(M). From (1.1) it follows

(2X)(2(p)) = £, X(p)

for eagh peM and X e X(M).

- 480 -
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Let now Ye¢ X¥(N) and p be an arbitrary point of i, By an
immediate calculus we verify the following identity:

(£ (£7B)(5) =

i}

(1220 £, (2500 (e))(B) = (£570)(p)(£7B)

Y(p)(£(p)) =

"
H

e*(x(e* L £%8)) (p) = £*(¥(p))(p)

n

Y(£{p))(p)

for an arbitrary P eD. Hence from (1.2) we get

£,,((£377)(p)) = ¥(£(p))

for each point pelf and Ye %(N),

From Lemma 1.2 it follows that

Corollary 1.3. Let f: (M,C) ~— (N,D) be
a smooth mapping of a differential space (l,C) onto a diffe-
rential space (N,D) such that £*:D — C is an isomorphism. Then
(,C) is a differential space of constant differential dimen-
sion n iff (N,D) is g differentigl space of constant diffe-
rential dimension n.

Proof. Let (M,C) be a differential space of con-
stant differential dimension n. Then, by definition, for an
arbitrary point pe¢ M there exists a local vector base of
C-module ¥(M)., We will show that (N,D) is a differential
space of constant differential dimension n too. In fact, let
4 be an arbitrary point of N. Since f 1is a mapping "onto"
80 there exists point p e M such that f(p) = g. Let now
W1,...,Wn be a local vector base of C-module ¥(M) at the
point p., From Lemma 1.2 it follows that TyWireee,f,W create
a local vector base of D-module ¥(N) gt the point g. Indeed,
if an open set U is the domain of the local vector base
W1,...,Wn then f£(U) 1is the domain of the vector fields
f#W1,...,f#Wn. From the lemma 1,2 ~ (ii) it follows that
the vector fields (f"]U)#W1,...,(f|U)#Wn make a module base of
Df(U)-module Z(f(U)). Let us observe yet that the vectors
((fIU)#W1)(q),...,((fIU)#Wn)(q) are linearly independent.

In fact, from (1ii) of Lemma 1.2 thers follow egualities
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((£1U) W) (q) = ((£]U)W ) (£(p)) = £, Wy (p)

for i=1,2,...,n. Hence because W1(p),...,Wn(p) are R-linear
independent and f,  is an isomorphism, the vectors
f*pw1(p),...,f* Wn?p) are linearly independent too.

Let now (N,D) be a differential space of constant diffe-
rential dimension n and p be an arbitrary point of M. There
exists an open neighbourhood V of the point f(p) and a local
vactor base W1,...,Wn of D-module 1'.E(N) on t?i set V. We will
show now that the vector fields f; W1,...,f; Wy mnake a local

vector base of C-module E(M)} on the set f'1(V).

Evidently those vector fields make a module base of
Cf_1(v)-module $(f'1(V)). Next, since f*p is an isomorphism
and the vectors 51(f(p)),...,wn(f(p)) are linear independent
for each point pe f'1(V) therefore from the equality

2,025 (W) (p)) = W(£(p))

for k=1,2,+04,n there followe linear independence of the vec~-
tors £3 (W) (p),ee e, 23 (W) (p).

Now let (M,C) be an arbitrary differential space. A set
Co of real functions defined on M is sald to be a set of ge-
nerators for the differential structure C on M iff (scco)M = C.

It is easy to prove the following lemma.

Lemma 1.3, Let £f: (M,C) — (N,D) be a smooth
mapping of a differential space (M,C[ onto a differential
space (N,D) such that £%: D — C is an isomorphism, Then if
D, is a set of gensrators for the differential structure D
then C, = f*D° 18 a set of generators for C,

2. Pinitely generated differential spaces

Let (M,C) be a differential space. A differential space
(M,C) i8 said to be finitely generated by a set Cy =
= {a1,...,oan} 1t (80Cyly = Co .

Now, by the symbol ¢: X —R"~ we denote the mapping de-
fined by the formuls
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Differential spaces 7

Q(P) = (0‘1(P)p"~pan(p))

for any point pell, Bvidently ¢ is a smooth mapping.

Let &: (i,C) —= (8(i), € 4(y)) be the mapping & onto the
image ¢ (1) with the natural differentiasl structure induced
from (Rn,en) on &(i). The following diagram

¥ 2o

Nl e (u)

Rn

is commutative, where lg(y) 1° & natural imbedding.,
Let 7 : R® — R be the projection map onto the k-axis,
for k=1,...,0. Of course the differential structure ¢
is finitely generated by the n-element set {:rr [@(M) yeoeym IQ(M)}
of functions., The functioms 7, |8(M),...,m, IQ(M) are the succes-
sive components of the imbedding map LQ(M)‘ 4 base of the to-
pology Ten@(m is composed of sets of the form LMM)(P) =
= Pnd(M), where P is an arbitrary open interval in R® [2].
Now we will prove .
Lemma 2.,1. ILet (M,C) be a differential space fi-
nitely generated by the set C;, = {a1,...,a } Then:
(1) the empty set and the sets of the form & 1(P) make
a base of the topology Tos where P is an arbitrary open in-

terval in R®. The bases 7, and <7 are equipollent,
c " en«b(l() _

(1i) the mapping ®i: .(M,C) —’(Q(l),en“m) is open,

(111) T, 1s the Hausdorff topology 1ff §: M—’Q(M) is
a home omorphism,

(iv) 11’, P, and p, ere such points of M that O(p1) = Q(pz)
then for each function «eC a(p1) -o..(pz).

Proo f,.) Let p be an arbitrary point of M and Ue’tc
be an arbitrary open neighbourhood of p. We will show that
there exists a set & '(P) such that pe Q'1(P) ¢ U, Indeed,
gince the sets of the form (oci1....,uik)'1(P) make a base of
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the topology 7y, then there exists a set (ot ,...,0 )=1(p.)
i, i, 1
such that p e(ai1,...,aik)_1(P1)c U.

Of course it suffices to show that there exists an open
interval P in R™ such that p e¢'1(P)c kxi ooy )-1(P1).
1 k

Observe that (ai1,...,a.

) = (JT. cee g )OQ. Hence it
1, 11’ ’ i,

-1 - -1
results that (ai ,nu.,ai ) (P1) = Q 1((f"i ,c-t,ﬂi ) (P1))i
. 1 k 1 k
Evidently the set (ﬂi ooy Ty )'1(P1) is open in R® and con-
1 k

tains the point ${p). So there existis an open interval P in
R® such that &(p)eP a1y seve,yTy )'1(P1). In consequence
1 k-
ped N (p)e o ((w 7, )7U(E,)) = (o «, )7N(E,)
P igreeee iy LA P AR e I 1

which proves that the sets 0'1(P), where P is an arbitrary
open interval in Rn, make a base of the topology Tge
To each eet 9"1(P) we may assign the sat L;EM)(P) =
= §{}M) nP. Evidently this assignement is one %o one. Henoce
the base of the topology Ta composed of the set of the form
@'1(P) is equipollent with the base of the topology Teng(11)
composed of the sets &(li) n P. Moreover 5(@'1(P)) = ®(MK) nP.
(ii) Let Ue 7. There exists an open covering {¢'1(Pi)}iel

of Us It is easy to observe that the sets Lagm)(Pi) make an

open covering of the set $(U). So $(U) is an open set and con-
sequently ? is an open map.

(1ii) Assume that 1y 18 @ Hausdorff topology., Then for
any points PqsPs €Ul there exists a function o, eCj such that
o (pq) fJxk(pz). Hence & is an injective mapping. In conse-
guence ¢ as an open mapping is a homomorphism, _

(iv) Let now p,,p, €M be such po;nts that $(p1) = $(92).
We will show that each open set V which contains Py contains
Py too. Indeed, let V €7 be ‘an arbitrary open set containing
the point p,. Of course (V) is an open set contalning the
pointxs(p1) = $(p2). Moreover p, € 1@ (v)).

Let us take an arbitrary function o eC and let Uspy be
an arbitrary neighbourhood of P4 such that there exists a

smooth function weEy, and the following condition is fulfilled
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alq) = (wed)(q)

for each point ge U, Since p1,p2eU hence Ot(pz) = (w °4>)(92)
and oc(p1) = {we Q)(p1). In consequence from the equality
®(py) = 2(p,) we get

Mm)=wmmﬂ)=wwwg)=amy.

Now we prove

Theorem 2,2, If (i,C) is a2 finitely generated
differential space by ths set CO = {°‘1"“’°‘n} of real func-
tions, then the mapping 3% en(b(l’-'l) —+ C is an isomorphism
between linear rings.

Proof ., Since d: (k,C) — (®(k), Eng(y)) 18 a smooth
surjection then 3* is a one to one homomorphism., Indeed, if
$*x= 0 for oceen@(m) then o od - 0. Hence olg) = (O(.oS)(p) =

=o(8(p)) = 0 for ge & (M), In consequence o = O

Now we will prove that &* is "onto". So let xeC be an
arbitrary real function on L. Let w,: &(ii) — R be the func-
tion defined by the formula

(2.1) wy (a) = olp)

for any qe §(ii), where peii is such a point of li that q = &(p).
From the lsmma (2.,1) - {iv) there follows the correctness
of the definition {2,.,1). Lioreover the equality

(2.2) waog = o
holds. Now we will show that wy is a smooth function on
(6(n), En@(M}" Indeed, for an arbitrary point g e ®({}) let
us choose a point pe ll such that ®(p} = q. There exists an
‘open neighbourhood V of p as well as a2 function we €, such
that |V = wod!V,

Evidently from the lemma 2,1 it follows that &(V) is an
open set containing the point ¢ and moreover the equality

holds. Hence
wl (V) =« 13(V).
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So we have showed that for an arbitrary point g e 3 (M) there
exists an open neighboruhood E(v) of q as well as there aexists

a function we € such that

w8 (V) = 8(V).

Hence it follows that w, € Ena(M)® In this way we have proved
that 3* is an isomor‘phism‘ between the rings as well as
§"(wy) = o

Corollacry . 2.3 A differentiel ‘space (M,C) is
finitely gensrated by n real functions if and only if thers
exists a mapping & : (M,C) —» (Rn,en) such that ¢": Enp(u) ™ C
is an isomorphism between the rings. Moreover, the set of
functions {@*(JT1|Q(M)),.-.,Q’(HnIQ(M))} is a set of genera=-
tors for the differential structure C.

Proof. If (¥,0) is a finitely generated differential
space then by Theorem 2,2 there exists a mappingd: (l,C) —»
—»(Rn,en) such that &*: €no(l) C ie an isomorphism between
rings.

Conversely, let : (M,C) — (R%,¢ ) be a smooth mapping
such that &% : €,p(u) — C.1i8.an isomorphism between rings.
From the lemma 1.3 it follows that the set {b*(ﬂ1|§>(M)),...
ves @*(grn'|'q?(m))} generates the differential structure C. Hence
the differential space (l,C) is finitely generated,

Now let us go to the locally finitely generated differen-
tial space. It is easy to prove

Corollary 2.4, A differential space (I1,C) is
locally finitely genpratéd by n functions iff for each point
p €M there exists an open~neighbourhood V of p as well as ‘

a smooth mapping f: (V,Cv) — (£(V), Enf(V)) such that
£ enf(v) -——Cv i_s' an isomorphism between linedr rings.
If (M,C) is a Hausdorff differential space then (M,C) is a
differential space of .class D, (4],
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