

Zbigniew Łuszczki, Bogdan Rzepecki

AN EXISTENCE THEOREM
FOR ORDINARY DIFFERENTIAL EQUATIONS OF ORDER $\alpha \in (0,1]$

Let $0 < \alpha < 1$ and let $I = [0, T]$, $T > 0$. In this note we study the existence of the unique solution on I to the Cauchy problem for ordinary differential equations with a derivative of order α .

First, we need the concepts of fractional integration and differentiation. Let u be a function on the positive real axis. The integral of order α of u is defined by the convolution integral

$$D^{-\alpha}u(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha-1} u(s) ds,$$

where Γ denotes the Gamma function. Obviously, if u belongs to $L^1(I)$ then $D^{-\alpha}u$ exists almost everywhere and belongs to the same space.

The derivative $D^\alpha u$ of order α of a function u is now defined indirectly through fractional integration. More precisely,

$$D^\alpha u(t) = \frac{d}{dt} (D^{-(1-\alpha)}u(t))$$

whenever it exists. Additional details and properties may be found e.g. in [3] or [4].

The definitions of integration and differentiation of fractional order of real or complex-valued functions go back

to J.Liouville, B.Riemann, and H.Weyl. In connection with Laplace transform theory, these notations are intensively treated in [2], see also [6]. For recent literature see the papers in [1]. Moreover, in [1] the reader will obtain some ideas on the theory of fractional integration and differentiation in connection with semi-group theory and linear partial differential equations.

Our result reads as follows.

Theorem 1. Let $x_0 \in \mathbb{R}$ and let f be a continuous function defined on $I \times \mathbb{R}$. If, moreover, f satisfies in the second variable the Lipschitz condition, then the equation

$$D^\alpha x(t) = f(t, x(t))$$

has a unique solution existing on $(0, T]$ such that

$$\lim_{t \rightarrow 0^+} D^{-(1-\alpha)} x(t) = x_0.$$

Proof. Without loss of generality we may suppose that $T > 1$. Denote by X the set of all continuous functions on $(0, T]$ which are Lebesgue integrable on I . We endow the vector space X with the sequence of seminorms:

$$p_0(x) = \int_0^T |x(t)| dt, \quad p_n(x) = \sup_{\frac{n-1}{n} \leq t \leq T} |x(t)|, \quad n=1,2,\dots;$$

under this topology, X becomes a Fréchet space. The proof is based on the following fixed point theorem [5].

Theorem. Let F and I be mappings of X into itself such that $p_m(Fu-Fv) \leq k \cdot p_m(Iu-Iv)$, $m=0,1,\dots$, for all $u,v \in X$, where k is a constant less than 1. If I as a one-to-one transformation for which $F[X] \subset I[X]$ and $I[X]$ is a closed set, then the equation $Ix = Fx$ has a unique solution.

Suppose $|f(t, x_1) - f(t, x_2)| \leq L|x_1 - x_2|$ for $t \in [0, T]$ and $x_1, x_2 \in \mathbb{R}$. Let $r > 0$ be a constant with $r^\alpha > L$. Define mappings I and F by putting

$$(Ix)(t) = e^{-rt} x(t),$$

$$(Fx)(t) = e^{-rt} \left(\frac{x_0}{\Gamma(\alpha)} t^{\alpha-1} + D^{-\alpha} f(t, x(t)) \right)$$

for $x \in X$. It is clear that $F[X] \subset X = I[X]$.

Let $u, v \in X$. Since

$$\int_0^T \left| \int_0^t u(t-s)v(s)ds \right| dt \leq p_0(u)p_0(v)$$

and

$$\begin{aligned} & e^{-rt} \left| D^{-\alpha} f(t, u(t)) - D^{-\alpha} f(t, v(t)) \right| \leq \\ & \leq \frac{1}{\Gamma(\alpha)} e^{-rt} \int_0^t (t-s)^{\alpha-1} |f(s, u(s)) - f(s, v(s))| ds \leq \\ & \leq \frac{L}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} e^{r(s-t)} |(Iu)(s) - (Iv)(s)| ds, \end{aligned}$$

so

$$\begin{aligned} & \int_0^T |(Fu)(t) - (Fv)(t)| dt \leq \frac{L}{\Gamma(\alpha)} \int_0^T \left(\int_0^t (t-s)^{\alpha-1} e^{-r(t-s)} |(Iu)(s) - \right. \\ & \left. - (Iv)(s)| ds \right) dt \leq \frac{L}{\Gamma(\alpha)} \cdot p_0(Iu - Iv) \cdot \int_0^T s^{\alpha-1} e^{-rs} ds \leq \\ & \leq \frac{1}{r^\alpha} \cdot \frac{L}{\Gamma(\alpha)} \cdot p_0(Iu - Iv) \cdot \int_0^\infty s^{\alpha-1} e^{-rs} ds = r^{-\alpha} L \cdot p_0(Iu - Iv) \end{aligned}$$

and

$$\begin{aligned} & |(Fu)(t) - (Fv)(t)| \leq \\ & \leq \frac{L}{\Gamma(\alpha)} \cdot p_n(Iu - Iv) \cdot \int_0^t (t-s)^{\alpha-1} e^{-r(t-s)} ds \leq \\ & \leq \frac{1}{r^\alpha} \cdot \frac{L}{\Gamma(\alpha)} \cdot p_n(Iu - Iv) \cdot \int_0^\infty s^{\alpha-1} e^{-rs} ds = r^{-\alpha} L \cdot p_n(Iu - Iv) \end{aligned}$$

for a positive integer n and $n^{-1} \leq t \leq T$. This implies

$$p_m(Fu-Fv) \leq r^{-\alpha} L \cdot p_m(Iu-Iv), \quad m = 0, 1, \dots$$

for all u, v in X .

Consequently, there exists a unique $x \in X$ such that

$$x(t) = \frac{x_0}{\Gamma(\alpha)} t^{\alpha-1} + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, x(s)) ds.$$

We have

$$D^{-(1-\alpha)} \left(\frac{x_0}{\Gamma(\alpha)} t^{\alpha-1} \right) = x_0,$$

$$D^{-(1-\alpha)} (D^{-\alpha} f(t, x(t))) = D^{-1} f(t, x(t)) = \int_0^t f(s, x(s)) ds.$$

Therefore

$$D^{-(1-\alpha)} x(t) = x_0 + \int_0^t f(s, x(s)) ds$$

and

$$\begin{aligned} D^\alpha x(t) &= \frac{d}{dt} \left(D^{-(1-\alpha)} \frac{x_0}{\Gamma(\alpha)} t^{\alpha-1} \right) + \\ &+ \frac{d}{dt} (D^{-(1-\alpha)} (D^{-\alpha} f(t, x(t)))) = f(t, x(t)), \end{aligned}$$

and the proof is complete.

Remark. Let E be a Banach algebra with norm $\|\cdot\|$. By \mathcal{H} we shall denote the set of all continuous functions $v: (0, T] \rightarrow E$ such that $\int_0^T \|v(t)\| dt < \infty$.

Assume that $g \in \mathcal{H}$, $K \in \mathcal{H}$ and $h: I \times E \rightarrow E$ is a continuous function. Modifying the above reasoning we obtain the following generalization of Theorem 1.

Theorem 2. If h is a function satisfying in the second variable the Lipschitz condition and $\|K(t)\| = O(t^{\alpha-1})$, $0 \leq t \leq T$, then the integral equation

$$x(t) = g(t) + \int_0^t K(t-s)h(s, x(s))ds$$

has a unique solution in the set \mathfrak{X} .

REFERENCES

- [1] P.L. Butzer, H. Berens: Semi-Groups of Operators and Approximation, Springer-Verlag, Berlin 1967.
- [2] G. Doetsch: Handbuch der Laplace-Transformation. Anwendungen der Laplace-Transformation, Bd. III, Birkhäuser, Basel 1956.
- [3] M.M. Djrbashian: Integralnye preobrazovaniya funktsij v kompleksnoj oblasti, Nauka, Moscow 1966.
- [4] I.M. Gelfand, G.E. Shilov: Generalized Functions. Vol.1, Academic Press, New York 1964.
- [5] B. Rzepski: An extension of Krasnoselskii's fixed point theorem, Bull. Acad. Polon. Sci., Sér. Sci. Math., 27 (1979) 481-488.
- [6] D.V. Widder: The Laplace Transform, Princeton University Press, Princeton 1941.

DEPARTMENT OF MATHEMATICS, HIGHER SCHOOL OF ENGINEERING,

65-246 ZIELONA GÓRA, POLAND

Received November 13, 1985.

