

Ryszard Deszcz, Stanisław Ewert-Krzemieniewski

NOTES ON MANIFOLDS
ADMITTING TOTALLY UMBILICAL HYPERSURFACES1. Conformally birecurrent manifolds

Let N be a $(n+1)$ -dimensional connected Riemannian manifold of class C^∞ with not necessarily definite metric g_{rs} , covered by a system of coordinate neighborhoods $\{U; x^r\}$. We denote by $\{s^r_t\}$, R_{vrst} , R_{rs} , R the Christoffel symbols, the curvature tensor, the Ricci tensor and the scalar curvature of N , respectively. The Weyl conformal curvature tensor

$$(1.1) \quad C_{rstu} = R_{rstu} - \frac{1}{n-1} (g_{st}R_{ru} - g_{su}R_{rt} + g_{ru}R_{st} - g_{rt}R_{su}) + \\ + \frac{R}{n(n-1)} (g_{st}g_{ru} - g_{su}g_{rt})$$

is said to be recurrent ([8]) if the condition

$$(1.2) \quad C_{r_1 \dots r_4, v} C_{s_1 \dots s_4} = C_{s_1 \dots s_4, v} C_{r_1 \dots r_4}$$

holds on N where the comma denotes covariant differentiation. A Riemannian manifold of dimension > 4 will be called conformally recurrent ([1]) if its Weyl conformal curvature tensor is recurrent. The relation (1.2) states that at each point $x \in N$ such that $C_{rstu}(x) \neq 0$ there exists unique vector b_v such that

$$(1.3) \quad C_{rstu, v} = b_v C_{rstu}.$$

The tensor C_{rstu} is said to be birecurrent if the condition

$$(1.4) \quad C_{r_1 \dots r_4, vw} C_{s_1 \dots s_4} = C_{s_1 \dots s_4, vw} C_{r_1 \dots r_4}$$

is satisfied on N . In consequence, a Riemannian manifold of dimension ≥ 4 is said to be conformally birecurrent ([2]) if its Weyl conformal curvature tensor satisfies (1.4). Evidently, if at some point x , $C_{hijk}(x) \neq 0$ holds then there exists a unique tensor a_{vw} such that

$$(1.5) \quad C_{rstu, vw} = a_{vw} C_{rstu}$$

holds good.

Remarks. (i) Every conformally recurrent manifold is conformally birecurrent.

(ii) Every conformally birecurrent manifold satisfies

$$(1.6) \quad C_{rstu, [vw]} = C_{rstu, vw} - C_{rstu, wv} = c_{vw} C_{rstu},$$

where c_{vw} is a tensor field on N .

2. Totally umbilical hypersurfaces

Let M be a hypersurface of N , defined in a local coordinate system by means of the system of parametric equations $x^r = x^r(y^a)$, where y^a are local coordinates of M . Moreover, let the induced tensor $g_{ab} = g_{rs} B^r_a B^s_b$ be a metric tensor of M ,

where $B^r_a = \frac{\partial x^r}{\partial y^a}$. In the sequel we will use the notation

$$B^r_{a_1 \dots a_p} = B^r_{a_1} B^r_{a_2} \dots B^r_{a_p}$$

We denote by $\{^a_b\} \{^a_c\}$, ∇_a , \bar{R}_{abcd} , \bar{R}_{ad} , \bar{R} the Christoffel symbols, the operator of covariant differentiation, the curvature tensor, the Ricci tensor and the scalar curvature of M with respect to g_{ab} . The vector field H^r defined by

$$H^r = \frac{1}{n} g^{ab} \nabla_b B^r_a = \frac{1}{n} g^{ab} \left[\partial_b B^r_a + \{^r_s\} B^{st} B_{ba} - B^r_c \{^c_b\} \right]$$

is called the mean curvature vector field of M . If the tensor $H_{ab}^R = \nabla_b B_a^R$ satisfies the condition

$$(2.1) \quad H_{ab}^R = g_{ab} H^R,$$

then M is said to be a totally umbilical hypersurface.

Let N^R be a local unit normal to M . Then we have

$$(2.2) \quad (a) \quad g_{rs} N^R B_a^s = 0 \quad \text{and} \quad (b) \quad g_{rs} N^R N^s = \epsilon$$

and

$$(2.3) \quad g^{ab} B_{ab}^{rs} = g^{rs} - \epsilon N^R N^s,$$

where $\epsilon = \pm 1$. Since H^R is normal to M , we have a relation of the form

$$(2.4) \quad H^R = \epsilon H N^R.$$

The scalar function H is called the mean curvature of M . For a totally umbilical hypersurface M of N the equations of Weingarten, Gauss and Codazzi respectively, can be written in the form ([7])

$$(2.5) \quad \nabla_a N^R = -H B_a^R,$$

$$(2.6) \quad \bar{R}_{abcd} = R_{rstu} B_{abcd}^{rstu} + \epsilon H^2 (g_{ad} g_{bc} - g_{ac} g_{bd})$$

and

$$(2.7) \quad R_{rstu} N^R B_{bcd}^{stu} = H_d g_{bc} - H_c g_{bd}, \quad H_c = \nabla_c H.$$

Moreover, for such hypersurface the relations [7]

$$(2.8) \quad R_{rs} N^R B_a^s = (n-1) H_a$$

and

$$(2.9) \quad N^R C_{rstu} B_{bcd}^{stu} = 0$$

hold.

3. Totally umbilical hypersurface of certain manifolds

We put

$$(3.1) \quad Q_{ad} = -g^{bc}C_{abcd} = \epsilon N^r N^u C_{rstu} B_{ad}^{st}$$

and

$$(3.2) \quad P_{ad} = \epsilon N^r N^u R_{rstu} B_{ad}^{st},$$

where

$$(3.3) \quad C_{abcd} = C_{rstu} B_{abcd}^{rstu}.$$

Transvecting (1.1) with $B_{abcd}^{rstu} g^{bc}$, using (2.3), (3.1) and (3.2), we obtain

$$(3.4) \quad -Q_{ad} = \frac{1}{n-1} R_{ad} - P_{ad} + S_1 g_{ad},$$

where

$$(3.5) \quad R_{ad} = R_{rs} B_{ad}^{rs}$$

and $S_1 = \frac{1}{n} R - \frac{1}{n-1} g^{bc} R_{bc}$.

The following lemma is a generalization of Proposition 1 ([7]).

Lemma 1. Let M be a totally umbilical hypersurface of a manifold N satisfying the condition

$$(3.6) \quad C_{rstu, [vw]} = c_{vw} C_{rstu} + F Q(C)_{rstuvw},$$

where F is a function on N , c_{vw} is a tensor field on N and $Q(C)_{rstuvw}$ is defined by

$$(3.7) \quad Q(C)_{rstuvw} = g_{rv} C_{wstu} - g_{rw} C_{vstu} - g_{sv} C_{wrtu} + \\ + g_{sw} C_{vrtu} + g_{tv} C_{wurs} - g_{tw} C_{vurs} - g_{uv} C_{wtrs} + g_{uw} C_{vtrs}.$$

Then the relation

$$(3.8) \quad H_f C_{rstu} = 0$$

holds on M .

Proof. The equality (3.6), by Ricci identity and (2.3) gives

$$(3.9) \quad (-C_{pstu}R_{qrsvw} + C_{ptru}R_{qsvw} - C_{purs}R_{qtvw} + C_{ptrs}R_{quvw})(B_{ij}^{pq}g^{ij} + \epsilon N^pN^q) = C_{vw}C_{rstu} + FQ(C)_{rstuvwxyz}.$$

Transvecting (3.9) with $N^pB_{bcdef}^{stuvwxyz}$ we get, in virtue of (2.7), (2.9), (3.7), (2.2)(a) and (3.1)

$$(3.10) \quad H_f(C_{ebcd} + g_{ce}Q_{bd} - g_{de}Q_{bc}) = H_e(C_{fbcd} + g_{cf}Q_{bd} - g_{df}Q_{bc}).$$

Contracting (3.10) with g^{ed} and using (3.1) we find

$$(3.11) \quad -H^1C_{icbf} = (n-1)H_fQ_{bc} + H^1Q_{big}g_{cf}, \quad H^1 = g^{ij}H_j.$$

From (3.11), by standard calculations, we obtain

$$(3.12) \quad H_fQ_{bc} = 0.$$

The last result together with (3.10) yields $H_fC_{ebcd} = H_eC_{fbcd}$, whence

$$(3.13) \quad H_fC_{abcd} = 0.$$

The assertion of our lemma follows now from (2.9), (3.12), (3.1), (3.13) and (3.3).

As an immediate consequence of Lemma 1 we get the following generalization of Theorem 5 ([7]).

Theorem 1. Let M be a totally umbilical hypersurface of manifold N satisfying the condition (1.6). If $C_{rstu} \neq 0$ everywhere on M , then the mean curvature of M is constant.

Theorem 1, together with Remarks, gives

Corollary 1. Let M be a totally umbilical hypersurface of a conformally recurrent or conformally birecurrent manifold N . If $C_{rstu} \neq 0$ everywhere on M , then the mean curvature of M is constant.

Lemma 2. Let M be a totally umbilical hypersurface of a manifold N satisfying (3.6). The following relation

$$(3.14) \quad -\frac{1}{n-1} R_{bc},[ef] = c_{ef} Q_{bc} + g_{bf} U_{ce} + g_{cf} U_{be} - g_{ce} U_{bf} - g_{be} U_{cf}$$

holds on M , where

$$(3.15) \quad c_{ef} = c_{rs} B_{ef}^{rs},$$

$$(3.16) \quad \left\{ \begin{array}{l} U_{da} = U_{ad} = (\epsilon H^2 - F) Q_{ad} + \bar{U}_{ad}, \\ \bar{U}_{ad} = (S_2 + S_1) P_{ad} - \frac{1}{n-1} R_{ia} P_d^i + F Q_{ad}, \quad P_d^i = g^{ij} P_{jd} \\ \text{and} \quad S_2 = \frac{R}{n(n-1)} - \epsilon H^2. \end{array} \right.$$

Proof. Transvecting (3.9) with $N^R N^W B_{bcde}^{stuv}$ we obtain, in virtue of (2.9), (3.1)-(3.3), (3.5), (3.7) and (2.2)

$$(3.17) \quad C_{ibcd} P_e^i + Q_{bd} P_{ce} - Q_{bc} P_{de} = F(-C_{ebcd} - g_{ce} Q_{bd} + g_{de} Q_{bc}).$$

On other hand, transvecting (3.3) with P_e^a and using (1.1), (2.6) and (3.5), we find

$$(3.18) \quad C_{ibcd} P_e^i = P_e^i \bar{R}_{ibcd} - \frac{1}{n-1} (P_{ed} R_{bc} - P_{ec} R_{bd} + g_{bc} R_{id} P_e^i - g_{bd} R_{ic} P_e^i) + S_2 (P_{ed} g_{bc} - P_{ec} g_{bd}).$$

Symmetrizing (3.18) in (e, b) we obtain

$$(3.19) \quad \begin{aligned} C_{ibcd} P_e^i + C_{iecd} P_b^i &= P_e^i \bar{R}_{ibcd} + P_e^i R_{iecd} + \\ &+ S_2 (P_{ed} g_{bc} + P_{bd} g_{ec} - P_{ec} g_{bd} - P_{bc} g_{ed}) - \\ &- \frac{1}{n-1} (P_{ed} R_{bc} + P_{bd} R_{ec} - P_{ec} R_{bd} - P_{bc} R_{ed}) - \\ &- \frac{1}{n-1} (g_{bc} R_{id} P_e^i + g_{ec} R_{id} P_b^i - g_{bd} R_{ic} P_e^i - g_{ed} R_{ic} P_b^i). \end{aligned}$$

Moreover, symmetrizing (3.17) in (e, b) , applying (3.19) and Ricci identity we get

$$(3.20) \quad P_{eb, [cd]} = S_2(g_{bc}P_{ed} + g_{ec}P_{bd} - g_{bd}P_{ec} - g_{ed}P_{bc}) -$$

$$- \frac{1}{n-1}(g_{bc}R_{id}P^i_e + g_{ec}R_{id}P^i_b - g_{bd}R_{ic}P^i_e - g_{ed}R_{ic}P^i_b) +$$

$$+ Q_{bd}P_{ce} + Q_{ed}P_{bc} - Q_{bc}P_{de} - Q_{ec}P_{bd} - F(g_{de}Q_{bc} - g_{ce}Q_{bd} +$$

$$+ g_{bd}Q_{ec} - g_{bc}Q_{ed}) - \frac{1}{n-1}(P_{ed}R_{bc} + P_{bd}R_{ec} - P_{ec}R_{bd} - P_{bc}R_{ed}).$$

Finally, substituting in (3.20), (3.4) and (3.16) we obtain

$$(3.21) \quad P_{eb, [cd]} = g_{bc}\bar{U}_{de} + g_{ec}\bar{U}_{db} - g_{bd}\bar{U}_{ce} - g_{ed}\bar{U}_{cb}.$$

Now we prove, that

$$(3.22) \quad R_{bi}P^i_d = R_{di}P^i_b.$$

Contracting (3.17) with g^{ed} and making use of (3.1) we obtain $C_{ibc}P^{ij} + Q_{bi}P^i_c - g^{ij}P_{ij}Q_{bc} = nFQ_{bc}$, $P^{ij} = g^{aj}P^i_a$, whence it follows $Q_{bi}P^i_c = Q_{ci}P^i_b$. Transvecting (3.4) with P^a_e and using the last relation we get (3.22). Making use of the definition of \bar{U}_{ad} and (3.22) we state that U_{ad} is symmetric.

The following relation

$$(3.23) \quad Q_{bc, [ef]} = (\epsilon H^2 - F)(g_{bf}Q_{ec} - g_{be}Q_{cf} + g_{cf}Q_{eb} - g_{ce}Q_{fb}) +$$

$$+ c_{ef}Q_{bc}$$

holds on M . In fact, transvecting (3.9) with $\epsilon N^R N^u B_{bccef}^{stvw}$ and applying (2.9), (2.6), (3.1), (3.7) and Ricci identity, we find (3.23).

On the other hand, from (3.4) we obtain $-\frac{1}{n-1}R_{ad, [ef]} = Q_{ad, [ef]} - P_{ad, [ef]}$. This together with (3.23) and (3.21) leads to (3.14). Our lemma is thus proved.

Lemma 3. Let M be a totally umbilical hypersurface of a manifold N satisfying (3.6). Then the relation

$$(3.24) \quad c_{vw} C_{rstu} = 0$$

holds on M .

Proof. Transvecting (3.9) with $B_{abcdef}^{rstuvwxyz}$, making use of (3.3), (2.6), (2.9), (3.15), (3.7) and the Ricci identity we obtain

$$C_{abcd, [ef]} = c_{ef} C_{abcd} + (F - \epsilon H^2) Q(C)_{abcdef},$$

whence, in view of (3.3), (1.2), (2.6) and (3.5) we get

$$(3.25) \quad \bar{R}_{abcd, [ef]} - \frac{1}{n-1} (g_{ad} R_{bc, [ef]} - g_{ac} R_{bd, [ef]} + g_{bc} R_{ad, [ef]} - g_{bd} R_{ac, [ef]}) = c_{ef} C_{abcd} + (F - \epsilon H^2) Q(C)_{abcdef}.$$

Permuting (3.25) in pairs of indices (a,b) , (c,d) , (e,f) adding the resulting equations to (3.25) and using (3.14) we obtain

$$(3.26) \quad c_{ef} W_{abcd} + c_{ab} W_{cdef} + c_{cd} W_{efab} = 0,$$

where

$$(3.27) \quad W_{abcd} = C_{abcd} - (g_{ad} Q_{bc} - g_{ac} Q_{bd} + g_{bc} Q_{ad} - g_{bd} Q_{ac}),$$

whence

$$(3.28) \quad c_{ef} W_{abcd} = 0.$$

Contracting (3.28) with g^{bc} we get, in virtue of (3.27) and (3.1), $c_{ef} Q_{ad} = 0$. Hence (3.27) and (3.28) yield $c_{ef} C_{abcd} = 0$. Finally (2.9), (3.3) and (3.1) lead immediately to

$$(3.29) \quad c_{ef} C_{rstu} = 0.$$

Assume now that at some point $x \in M$

$$(3.30) \quad C_{rstu}(x) \neq 0$$

Then it readily follows that the tensors $c_{vw}B_{ef}^{vw}$, $c_{vw}B_e^{vN^w}$ and $c_{vw}N^vN^w$ vanish at x . Thus $c_{vw}(x) = 0$. The last remark completes the proof.

Lemma 3, in virtue of Remarks, implies

Theorem 2. Let N be a conformally birecurrent (resp. conformally recurrent) manifold. If N admits a totally umbilical hypersurface M , then on M the relation (1.1) is satisfied.

4. Totally umbilical hypersurfaces of conformally birecurrent manifolds

If a totally umbilical submanifold M ($\dim M \geq 4$) of a conformally birecurrent manifold N is also conformally birecurrent, then the relation

$$(4.1) \quad g_{rs}H^rH^s \bar{C}_{abcd} = 0$$

holds on M ([3]), Corollary 1), where \bar{C}_{abcd} is Weyl conformal curvature tensor of M . If M is a conformally birecurrent totally umbilical hypersurface of a conformally birecurrent manifold, then the condition (4.1), by (2.4), is reduced to

$$(4.2) \quad H \bar{C}_{abcd} = 0.$$

In this section we prove, that (4.2) yields

$$(4.3) \quad H C_{rstu} = 0.$$

We put

$$(4.4) \quad S_{abcdef} = R_{rstu,v} \nabla_f (B_{abcde}^{rstuv})$$

and

$$(4.5) \quad D_{abcd} = R_{rstu,v} B_{abcd}^{rstuv} H^u.$$

The tensors S_{abcdef} and D_{abcd} satisfy the following relations ([3], formulas (2.16) and (2.19))

$$(4.6) \quad S_{abcdef} = g_{fa}D_{dcbe} + g_{fb}D_{cdae} + g_{fc}D_{bade} + g_{fd}D_{abce} + g_{ef}(D_{abcd} - D_{abdc})$$

and

$$(4.7) \quad D_{abcd} = g_{bc}E_{ad} - g_{ac}E_{bd} + \epsilon H^2(\bar{R}_{abcd} - \epsilon H^2(g_{ad}g_{bc} - g_{ac}g_{bd})) + H^2(g_{bd}P_{ac} - g_{ad}P_{bc}),$$

where $E_{ad} = \frac{1}{2} \epsilon v_d v_a (H^2)$.

Lemma 4. Let M be a conformally birecurrent totally umbilical hypersurface of a conformally birecurrent manifold N . If the condition

$$(4.8) \quad C_{rstu}(x) \neq 0$$

holds at a certain point $x \in M$, then $H(x) = 0$.

Proof. The following equation ([3], Lemma 4) is satisfied on some neighborhood $V \subset M$ of x

$$(4.9) \quad \nabla_f \nabla_e \bar{C}_{abcd} - a_{ef} \bar{C}_{abcd} = T_{abcdef},$$

where $a_{ef} = a_{vw} B_{ef}^{vw}$, a_{vw} is the tensor of birecurrence of C_{rstu} ,

$$(4.10) \quad T_{abcdef} = S_{abcdef} - \frac{1}{n-2} (g_{ad}S_{bcef} - g_{ac}S_{bdef} - g_{bd}S_{acef} + g_{bc}S_{adef}) + \frac{1}{(n-1)(n-2)} S_{ef}(g_{ad}g_{bc} - g_{ac}g_{bd}),$$

where $S_{adef} = g^{bc}S_{abcdef}$ and $S_{ef} = g^{bc}S_{bcef}$.

We suppose that

$$(4.11) \quad H(x) \neq 0.$$

Then, by (4.2), we obtain on the neighborhood $V' \subset V$

$$(4.12) \quad \bar{C}_{abcd} = 0$$

whence, in virtue of (4.9), it follows that

$$(4.13) \quad T_{abcdef} = 0.$$

Lemma 1, in view of Remark (ii) and (4.8), yields on V'

$$(4.14) \quad \nabla_f H = 0.$$

Now the equalities (4.7), (4.10), (4.13) and (4.14) give

$$(4.15) \quad D_{abcd} = \epsilon H^2 (\bar{R}_{abcd} - \epsilon H^2 (g_{ad}g_{bc} - g_{ac}g_{bd})) + \\ + H^2 (g_{bd}P_{ac} - g_{ad}P_{bc})$$

and

$$S_{abcdef} = \frac{1}{n-2} (g_{ad}S_{bcdef} - g_{ac}S_{bdef} - g_{bd}S_{acef} + g_{bc}S_{adef}) + \\ + \frac{1}{(n-1)(n-2)} S_{ef} (g_{ad}g_{bc} - g_{ac}g_{bd}) = 0,$$

whence, substituting (4.6) and (4.15), by transvection with $g^{af}g^{ed}$ we find

$$(4.16) \quad \epsilon P_{bc} = \frac{1}{n-2} (\bar{R}_{bc} - \frac{\bar{R}}{n} g_{bc}) + \epsilon \frac{P}{n} g_{bc},$$

where $P = g^{bc}P_{bc}$. On the other hand, contracting (2.6) with g^{ad} using (3.2), (3.5) and (4.16) we obtain

$$(4.17) \quad \frac{1}{n-2} \bar{R}_{ad} = \frac{1}{n-1} R_{ad} + \frac{1}{n-1} Z g_{ad},$$

where $Z = \frac{\bar{R}}{n(n-2)} - \epsilon \frac{P}{n} + (n-1) \epsilon H^2$. Now the equality (4.12), together with (2.6), (4.17), (1.1) and (3.3), gives

$$(4.18) \quad C_{abod} = K(g_{ad}g_{bo} - g_{ac}g_{bd}),$$

whence $C_{abcd} = 0$ and $Q_{ad} = 0$.

Since (2.9) holds, $C_{rstu}(x) = 0$, which is a contradiction. This completes the proof.

Lemma 4 implies

Theorem 3. Let M be a conformally birecurrent totally umbilical hypersurface of a conformally birecurrent manifold N . Then on M the relation (4.3) is satisfied.

As it is known ([6]) every totally umbilical submanifold of a conformally recurrent manifold is also conformally recurrent. Using this fact, Remark (i) and Theorem 3 we obtain

Corollary 2. (cf. [7], Proposition 1). Let M be a totally umbilical hypersurface of a conformally recurrent manifold N . Then on M the relation (4.3) is satisfied.

5. Example

In the last section we give an example of a totally umbilical hypersurface satisfying the condition (4.3) with non-zero function H .

Let $\{V; x^\alpha\}$ be a locally chart on an n -dimensional manifold (\tilde{M}, \tilde{g}) of constant curvature, $\alpha, \beta \in \{2, 3, \dots, n+1\}$, $n \geq 3$. We denote by $\tilde{g}_{\alpha\beta}$ the components of \tilde{g} on V . Moreover, let on \mathbb{R} , with identity map x^1 , be given the metric tensor $\bar{g}_{11} = 1$.

Now we define on the manifold $N = \mathbb{R} \times V$ the metric \tilde{g}_{rs} by

$$(5.1) \quad \tilde{g}_{rs} = \begin{cases} \bar{g}_{11} & \text{if } r = s = 1 \\ \delta \tilde{g}_{\alpha\beta} & \text{if } r = \alpha \text{ and } s = \beta, \\ 0 & \text{otherwise} \end{cases}$$

where $\delta = \delta(x^1)$ is a differentiable function different from zero in every point of N . The manifold N with the metric \tilde{g}_{rs} is conformally flat ([4], pp. 176, 179).

The manifold M defined by the equations $x^1 = C = \text{const}$, $x^2 = y^1, x^3 = y^2, \dots, x^{n+1} = y^n$, with metric $\delta(C) \tilde{g}_{\alpha\beta}$ induced from \tilde{g}_{rs} is a totally umbilical submanifold of N ([5], Theorem 1). The mean curvature vector field H^r of M is given by ([5], p. 107)

$$(5.2) \quad H^r = \begin{cases} -\frac{1}{2} \bar{g}^{11} \partial_1 \ln |\delta| & \text{if } r = 1 \\ 0 & \text{otherwise} \end{cases}$$

The above relation, together with (2.4) and (2.2)(b) gives

$$(5.3) \quad N^r = \begin{cases} 1 & \text{if } r = 1 \\ 0 & \text{otherwise} \end{cases} \quad \text{and } \epsilon = 1.$$

From (2.11), in virtue of (5.2) and (5.3), we obtain the equality $H = -\frac{1}{2} \partial_1 \ln |\delta|$. If δ is a non-constant function on N , then H is non-zero on M . Since N is conformally flat, the condition (4.3) holds on M .

REFERENCES

- [1] T. Adachi, T. Miyazawa: On a Riemannian space with recurrent conformal curvature, *Tensor N.S.*, 18 (1967), 348-354.
- [2] C.D. Collinson, F. Söller: Second order conformally recurrent and birecurrent plane waves, *Tensor N.S.*, 27 (1973), 37-40.
- [3] R. Deszcz, S. Ewert-Krzemieniewski, J. Policht: On totally umbilical submanifolds of conformally birecurrent manifolds. *Colloquium Math.*, to appear.
- [4] G.I. Kruckovič: On spaces of V.F. Kagan (Russian), *V.F. Kagan - Subprojective spaces*, Moscow (1961) 163-195.
- [5] G.I. Kruckovič: On some class of Riemannian spaces (Russian), *Trudy Sem. Vekt. Tenz. Anal.*, 11 (1961), 103-128.
- [6] Z. Olszak: On totally umbilical surfaces immersed in Riemannian conformally recurrent and conformally symmetric spaces, *Demonstratio Math.*, 8 (1975), 303-311.

- [7] Z. Ol'szak : Remarks on manifolds admitting umbilical hypersurfaces, *Demonstratio Math.*, 11 (1978), 695-702.
- [8] W. Roter : On conformally recurrent Ricci-recurrent manifolds, *Colloquium Math.*, 46 (1982), 39-57.

DEPARTMENT OF MATHEMATICS, AGRICULTURAL ACADEMY,
50-357 WROCŁAW, POLAND;
INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF SZCZECIN,
70-311 SZCZECIN, POLAND
Received November 8, 1985.