

Demetra Demetropoulou-Psomopoulou

A PROLONGATION OF THE REAL ALMOST-PRODUCT STRUCTURE
OF A DIFFERENTIABLE MANIFOLD

One of the most interesting real G-Structure of the first order is the real almost-product structure (π_R -structure) defined by G. Legrande ([7]) by means of a linear operator J acting on the tangent vector space T_x at each point x of a differentiable manifold V_m and satisfying a relation of the form

$$J^2 = \text{Identity},$$

which gives a decomposition of this space in a direct sum.

To this structure there is found a prolongation, in the sense, that there is defined a real G-structure of order 2, called almost product structure of order 2 (π_R^2 -structure), by means of a linear operator J satisfying the same relation on the vector space T_x^2 of the second order tangent vectors.

For this purpose, there is given a brief discussion of the fibre bundle of the second order tangent vectors and its associated principal prolongation of order 2 of a differentiable manifold, from the standpoint that will be used throughout this paper. Then there is defined the π_R^2 -structure, its adapted basis, connection, characteristic cohomology class and holonomy group.

1. Let V_m be an m -dimensional differentiable manifold of class C^∞ and $T_{1,x}^2(V_m)$ the set of all 2-jets of the functions

on V_m with source $x \in V_m$ and target 0 . According to C.Ehresmann ([4], [6]), the set $T_1^{2*}(V_m) = \bigcup_{x \in V_m} T_{1,x}^2(V_m)$ has the structure

of a fibre bundle with basis V_m , structural group L_m^2 and fibre $L_{1,m}^2$.

The structural group L_m^2 is ([6]) the set $J_0^2 f$ of all invertible 2-jets with source and target $0 \in R^m$ of a 2-mapping f at the point $0 \in R^m$, which can be expressed by the form,

$$y^i = a_{j_1}^i x^{j_1} + \frac{1}{2!} a_{j_1 j_2}^i x^{j_1} x^{j_2},$$

where $\{y^i\}$ is a coordinate system of $y = f(x)$ in the neighborhood of the point $0 \in R^m$, $\{x^j\}$ is a coordinate system of x in the neighborhood of the point $0 \in R^m$, $a_{j_1}^i = \left(\frac{\partial y^i}{\partial x^{j_1}} \right)_0$ with $\det(a_{j_1}^i) \neq 0$ and $a_{j_1 j_2}^i = \left(\frac{\partial^2 y^i}{\partial x^{j_1} \partial x^{j_2}} \right)_0$.

Hence, each $a \in L_m^2$ can be written in the form,

$$(1.1) \quad a = (a_{j_1}^i, a_{j_1 j_2}^i), \quad i, j_1, j_2 = 1, 2, \dots, m, \quad \det(a_{j_1}^i) \neq 0$$

and $a_{j_1 j_2}^i$ is symmetric with respect to j_1, j_2 .

If

$$\beta = (\beta_{k_1}^{j_1}, \beta_{k_1 k_2}^{j_1}) \in L_m^2$$

then, from the composition of 2-jets ([6]), it follows that the product of the two elements a and β of L_m^2 ,

$$a\beta = c = (c_{k_1}^i, c_{k_1 k_2}^i),$$

can be defined by the relations

$$(1.2) \quad \begin{cases} c_{k_1}^i = a_{j_1}^i \beta_{k_1}^{j_1}, \\ c_{k_1 k_2}^i = a_{j_1}^i \beta_{k_1 k_2}^{j_1} + a_{j_1 j_2}^i \beta_{k_1}^{j_1} \beta_{k_2}^{j_2}. \end{cases}$$

Also,

$$(1.3) \quad \dim L_m^2 = N = m \binom{m+2}{2} - m = m^2 + m \binom{m+1}{2}.$$

The Lie algebra L_m^2 of the Lie group L_m^2 is ([8]) defined by

$$(1.4) \quad L_m^2 = \left\{ \lambda / \lambda = (\lambda_{j_1}^i, \lambda_{j_1 j_2}^i), \quad i, j_1, j_2 = 1, 2, \dots, m, \right. \\ \left. \lambda_{j_1}^i \in R^m \otimes R^{m*}, \lambda_{j_1 j_2}^i \in R^m \otimes S^2(R^{m*}) \right\},$$

where $S^2(R^{m*})$ is the set of the 2-linear symmetric forms on R^m .

Similarly, $L_{1,m}^2$ is ([3], [6]) the set $j_0^2 g$ of all 2-jets with source $0 \in R^m$ and target $0 \in R$ of a 2-mapping g at $0 \in R^m$, which can be expressed by the form,

$$t = y_{i_1} x^{i_1} + \frac{1}{2!} y_{i_1 i_2} x^{i_1} x^{i_2},$$

where $\{x^i\}$ is a coordinate system at x in the neighborhood of $0 \in R^m$, $t = g(x)$ is its image by g in the neighborhood

of $0 \in R$, $y_{i_1} = \left(\frac{\partial t}{\partial x^{i_1}} \right)_0$ and $y_{i_1 i_2} = \left(\frac{\partial^2 t}{\partial x^{i_1} \partial x^{i_2}} \right)_0$.

Therefore, each $y \in L_{1,m}^2$ can be written in the form,

$$(1.5) \quad y = y_{i_1}, y_{i_1 i_2}, \quad i_1, i_2 = 1, 2, \dots, m, \quad y_{i_1 i_2} \text{ is symmetric with respect to } i_1, i_2.$$

Also,

$$(1.6) \quad \dim L_{1,m}^2 = v(m, 2) = \binom{m+2}{m} - 1 = m + \binom{m+1}{2}.$$

Let $\{x^i\}_{i=1,2,\dots,m}$ be a system of local coordinates at $x \in V_m$ for a given chart. Then, according to definition ([4]) of the prolongation of a chart on $T_1^{2*}(V_m)$, the element $\omega \in T_1^{2*}(V_m)$ can be expressed by the form,

$$(1.7) \quad \omega = (x^i, y_{i_1}, y_{i_1 i_2}), \quad i, i_1, i_2 = 1, 2, \dots, m, \quad y_{i_1 i_2} \text{ is symmetric with respect to } i_1, i_2.$$

If

$$(x^{j'}, y_{j'_1}, y_{j'_1 j'_2})$$

is the expression of ω in a new coordinate system $\{x^{j'}\}_{j=1,2,\dots,m}$ at $x \in V_m$, then from relations given by C. Ehresmann ([6]), the transformation law for the local coordinates of ω is given by the equations,

$$(1.8) \quad \begin{cases} x^{j'} = \varphi^{j'}(x^i) \\ y_{j'_1} = y_{j'_1}^{i_1} \\ y_{j'_1 j'_2} = y_{i_1}^{i_1} a_{j'_1 j'_2}^{i_1} + y_{i_1 i_2}^{i_1} a_{j'_1}^{i_1} a_{j'_2}^{i_2}, \end{cases}$$

where the functions $\varphi^{j'}$ have continuous partial derivatives of every kind up to order 2 and $(a_{j'_1}^{i_1} a_{j'_2}^{i_2}) \in L_m^2$.

The equations (1.8) provides also the left action of L_m^2 on the vector space $L_{1,m}^2$ which is isomorphic to the fibres $T_{1,x}^{2*}(V_m)$ over $x \in V_m$.

The dual fibre bundle $T_1^2(V_m)$ of the fibre bundle $T_1^{2*}(V_m)$, has ([2]) a basis V_m , structural group L_m^2 and fibre $F^2 = (L_{1,m}^2)^*$. Hence, each $X \in T_x^2$ (where T_x^2 is the fibre over $x \in V_m$ of the fibre bundle $T_1^2(V_m)$) can be defined by the linear mapping,

$$X : T_{1,x}^2 \longrightarrow R.$$

Conclusion 1.1. The fibre bundle $T^2(V_m) \times (V_m, L_m^2, F^2)$ is ([1]) the fibre bundle of all tangent vectors of order 2 and $X \in T_x^2$ is a tangent vector of order 2 (or 2-tangent vector) at the point $x \in V_m$.

Let

$$(1.9) \quad e = (e_{i_1}, e_{i_1 i_2}), \quad i_1, i_2 = 1, 2, \dots, m, \quad e_{i_1 i_2} \text{ symmetric in the indices } i_1, i_2,$$

be a basis of T_x^2 (therefore and of its isomorphic vector space F^2) with respect to the local system $\{x^i\}_{i=1,2,\dots,m}$ at the point $x \in V_m$.

It is evident that every $X \in T_x^2$ can be expressed uniquely in the form

$$(1.10) \quad X = \sum_{i_1=1}^m x^{i_1} e_{i_1} + \sum_{1 \leq i_1 < i_2 \leq m} x^{i_1 i_2} e_{i_1 i_2},$$

where $(x^{i_1}, x^{i_1 i_2})$ are functions of the neighborhood (U, x^i) on V_m and $x^{i_1 i_2}$ is symmetric in the indices i_1, i_2 .

For another system of local coordinates $\{x^j\}_{j=1,2,\dots,m}$ at $x \in V_m$ the second order tangent vectors,

$$(e_{j'_1}, e_{j'_1 j'_2}),$$

of the new basis of T_x^2 are transformed to the basis (1.9) as follows,

$$(1.11) \quad \begin{cases} e_{i_1} = e_{j'_1} a_{i_1}^{j'_1} \\ e_{i_1 i_2} = e_{j'_1} a_{i_1 i_2}^{j'_1} + e_{j'_1 j'_2} a_{i_1}^{j'_1} a_{i_2}^{j'_2}, \end{cases}$$

where $a = (a_{i_1}^{j'_1}, a_{i_1 i_2}^{j'_1}) \in L_m^2$.

Then, the corresponding transformation law for the local coordinates of $X \in T_x^2$ will be,

$$(1.12) \quad \left\{ \begin{array}{l} x^{j'_1} = a_{i_1}^{j'_1} x^{i_1} + a_{i_1 i_2}^{j'_1} x^{i_1 i_2} \\ x^{j'_1 j'_2} = a_{i_1}^{j'_1} a_{i_2}^{j'_2} x^{i_1 i_2}. \end{array} \right.$$

The equations (1.12) establishes also the left action of L_m^2 on the fibre F^2 .

We consider the fibre bundle of all 2-frames of the manifold V_m , $H^2(V_m) = \bigcup_{x \in V_m} H_x^2(V_m)$, where H_x^2 is ([3]) the set of all invertible 2-jets of R^m into V_m with source $0 \in R^m$ and target $x \in V_m$.

The above fibre bundle is ([4]) a principal fibre bundle with basis V_m , structural group L_m^2 and is called principal prolongation of order 2 of the manifold V_m . It is also associated ([6]) to the fibre bundle $T_{1,m}^{2*}(V_m)(V_m, L_m^2, L_{1,m}^2)$. Hence, to each $h \in H^2(V_m)$ there corresponds the isomorphism

$$h^{-1}: z \in L_{1,m}^2 \rightarrow zh^{-1} \in T_{1,x}^{2*}(V_m),$$

or

$$h: T_{1,x}^{2*}(V_m) \rightarrow L_{1,m}^2.$$

If we consider their dual spaces, it follows that each $h \in H^2(V_m)$ can be identified with the isomorphism,

$$(1.12) \quad h: y \in F^2 \rightarrow hy \in T_x^2.$$

Therefore, $H^2(V_m)(V_m, L_m^2)$ is also the associated principal fibre bundle to the fibre bundle $T^2(V_m)(V_m, L_m^2, F^2)$ of the tangent vectors of order 2.

From (1.13) it follows that h can be identified with the image

(1.14) $(h_{i_1}, h_{i_1 i_2})$, $i_1, i_2 = 1, 2, \dots, m$, $h_{i_1}, h_{i_1 i_2}$ linear forms on T_x^2 and $h_{i_1 i_2}$ symmetric in the indices i_1, i_2 ,

by means of h of a basis (1.9) of the vector space F^2 .

Conclusion 1.2. $H^2(V_m)$ can be identified with the space of bases of the vector spaces T_x^2 at $x \in V_m$.

2. A real almost product structure of second order (briefly a π_R^2 -structure) can be defined on a manifold V_m by means of two fields of class C^∞ of proper supplementary subspaces

of T_x^2 , T_1 and T_2 with $\dim T_1 = n_1 + \binom{n_1+1}{2} + \binom{n_2+1}{2}$,

$\dim T_2 = n_2 + n_1 n_2$ ($n_1 \neq 0$, $n_2 \neq 0$, $n_1 + n_2 = m$).

If J_x is a linear operator on T_x^2 such that,

$$J_x v = v_1 - v_2, \quad v_1 \in T_1, \quad v_2 \in T_2,$$

then

$$(2.1) \quad J_x^2 = \text{Identity on } T_x^2 = I_{v(m,2)}.$$

To this operator there corresponds the element F of the tensor product $T_x^2 \otimes (T_x^2)^*$,

$$(2.2) \quad F = (F_{i_1}^{j_1}, F_{i_1}^{j_1 j_2}, F_{i_1 i_2}^{j_1}, F_{i_1 i_2}^{j_1 j_2}) \quad i_1, i_2, j_1, j_2 = 1, 2, \dots, m,$$

$F_{i_1}^{j_1 j_2}$ symmetric with respect to j_1, j_2 , $F_{i_1 i_2}^{j_1}$ symmetric with

respect to i_1, i_2 and $F_{i_1 i_2}^{j_1 j_2}$ symmetric in the indices i_1, i_2 and j_1, j_2 .

It is defined by,

$$(2.3) \quad \begin{cases} (J_x v)^{j_1} = F_{i_1}^{j_1} v^{i_1} + F_{i_1 i_2}^{j_1} v^{i_1 i_2} \\ (J_x v)^{j_1 j_2} = F_{i_1}^{j_1 j_2} v^{i_1} + F_{i_1 i_2}^{j_1 j_2} v^{i_1 i_2}, \end{cases}$$

where $v = (v^{i_1}, v^{i_1 i_2})$ is the 2-tangent vector at $x \in V_m$.

Remark 2.1. The relation (1.12) for the element v of T_x^2 in the overlap of two neighborhoods (U, x^{i_1}) and $(V, x^{j'})$, by means of matrices, can be written in the form,

$$(2.4) \quad \begin{bmatrix} v^{j'_1} & v^{j'_1 j'_2} \end{bmatrix} = \begin{bmatrix} v^{i_1} & v^{i_1 i_2} \end{bmatrix} \begin{bmatrix} j'_1 & 0 \\ a_{i_1} & \\ j'_1 & j'_1 & j'_2 \\ a_{i_1 i_2} & a_{i_1} & a_{i_2} \end{bmatrix},$$

or briefly,

$$v_x^v = A_u^v(x) v_x^u,$$

where

$$(2.5) \quad \begin{cases} A_u^v(x) = \begin{bmatrix} a_{i_1} & 0 \\ i_1 & \\ j'_1 & j'_1 & j'_2 \\ a_{i_1 i_2} & a_{i_1} & a_{i_2} \end{bmatrix}, & v_x^u = \begin{bmatrix} v^{i_1} & v^{i_1 i_2} \end{bmatrix}, \\ v_x^v = \begin{bmatrix} j'_1 & j'_1 j'_2 \end{bmatrix}. \end{cases}$$

Hence, the element $a = (a_{i_1}, a_{i_1 i_2})$ of L_m^2 can be identified with the matrices A of the relation (2.5).

Similarly, according to the relation (1.8), the transformation law for each element ω of T_x^{2*} (that is of $T_{1,x}^{2*}(V_m)$) by means of matrices, can be written by the form,

$$(2.6) \quad \begin{bmatrix} \omega_{j'_1} \\ \omega_{j'_1 j'_2} \end{bmatrix} = \begin{bmatrix} i_1 & 0 \\ a_{j'_1} & \\ i_1 & i_1 i_2 \\ a_{j'_1 j'_2} & a_{j'_1} a_{j'_2} \end{bmatrix} \begin{bmatrix} \omega_{i_1} \\ \omega_{i_1 i_2} \end{bmatrix}$$

where $(a_{j'_1}, a_{j'_1 j'_2}) \in L_m^2$ is the inverse element of $a = (a_{i_1}, a_{i_1 i_2}) \in L_m^2$.

Briefly,

$$\omega_v^x = \omega_u^x A_v^u(x), A_v^u(x) = [A_u^v(x)]^{-1}.$$

For convenience in calculation, from now on, we will keep using matrices.

Thus, the tensor F of the relation (2.2) can be represented by the following matrix

$$(2.7) \quad F = \begin{bmatrix} j_1 & j_1 j_2 \\ F_{i_1} & F_{i_1} \\ j_1 & j_1 j_2 \\ F_{i_1 i_2} & F_{i_1 i_2} \end{bmatrix}.$$

From (2.1) and (2.3) one verifies easily the following equations,

$$(2.8) \quad \left\{ \begin{array}{l} j_1 i_1 F_{k_1} + j_1 i_2 F_{k_1} = \delta_{k_1}^{j_1} \\ j_1 i_1 F_{k_1 k_2} + j_1 i_2 F_{k_1 k_2} = 0 \\ j_1 j_2 F_{k_1} + j_1 j_2 F_{k_1} = 0 \\ j_1 j_2 F_{k_1 k_2} + j_1 j_2 F_{k_1 k_2} = \delta_{k_1}^{j_1} \delta_{k_2}^{j_2}. \end{array} \right.$$

Conversely, let us assume that there is given on the manifold V_m , a tensor field on T_x^2 of type $(1,1)$ and of class C^∞ , which satisfies the equations (2.8). Then, to each point $x \in V_m$, the linear operator J_x on T_x^2 , which is defined by the tensor F from the relations (2.3), has proper values 1 and -1. Let T_1 (respectively T_2) the subspace of T_x^2 derived from the proper 2-tangent vectors which corresponds to the proper value 1 (respectively -1). If $v \in T_x^2$ and $v_1 = v + J_x v \in T_1$,

$v_2 = v - J_x v$, then $v = \frac{v_1 + v_2}{2}$, that is, T_1 and T_2 are supplementary spaces and V_m is equipped with a π_R^2 -structure.

3. A basis $e = (e_{i_1}, e_{i_1 i_2})$ of T_x^2 will be called adapted to the π_R^2 -structure with respect to x (briefly π_R^2 -adapted basis) if $(e_{\alpha_1}, e_{\alpha_1 \alpha_2}, e_{A_1 A_2}) \in T_1$ et $(e_{A_1}, e_{\alpha_1 A_1}) \in T_2$ (i and every latin index takes its value in $1, 2, \dots, m$, α and every greek index takes its value in $1, 2, \dots, n_1$ and finally, A and every capital latin index takes its value in $n_1 + 1, \dots, m$). If $(e_{j'_1}, e_{j'_1 j'_2}) = \{(e_{\beta'_1}, e_{\beta'_1 \beta'_2}, e_{\beta'_1 \beta'_2}), (e_{\beta'_1}, e_{\beta'_1 \beta'_1})\}$ is another π_R^2 -adapted basis, the element $k = (k_{i_1}^{j'_1}, k_{i_1 i_2}^{j'_1}) \in L_m^2$ of the transformation law between π_R^2 -adapted bases may be written,

$$(3.1) \quad \begin{cases} k_{i_1}^{j'_1} = (k_{\alpha_1}^{\beta'_1}, k_{A_1}^{\beta'_1}) \in L(n_1, n_2) \\ k_{i_1 i_2}^{j'_1} = (k_{\alpha_1 \alpha_2}^{\beta'_1}, k_{A_1 A_2}^{\beta'_1}, k_{\alpha_1 A_1}^{\beta'_1}), \end{cases}$$

where $L(n_1, n_2)$ is ([7]) the structural group of the real almost product structure of order 1.

Using matrices, k can be written by the matrix,

$$(3.2) \quad K = \begin{bmatrix} \begin{bmatrix} \beta'_1 & 0 \\ k_{\alpha_1}^{\beta'_1} & k_{A_1}^{\beta'_1} \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} \beta'_1 & 0 \\ k_{\alpha_1 \alpha_2}^{\beta'_1} & k_{A_1 A_2}^{\beta'_1} \end{bmatrix} & \begin{bmatrix} \beta'_1 & \beta'_2 & 0 & 0 \\ k_{\alpha_1}^{\beta'_1} & k_{\alpha_2}^{\beta'_2} & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & \beta'_1 \\ k_{\alpha_1 A_1}^{\beta'_1} & 0 \end{bmatrix} & \begin{bmatrix} 0 & k_{\alpha_1}^{\beta'_1} k_{A_1}^{\beta'_1} & k_{\alpha_1}^{\beta'_1} k_{A_2}^{\beta'_2} \\ 0 & 0 & k_{A_1}^{\beta'_1} k_{A_2}^{\beta'_2} \end{bmatrix} \end{bmatrix}$$

Let $L^2_{(n_1, n_2)}$ be the subgroup of L^2_m consisting of all elements of the form (3.1) with corresponding matrix of the form (3.2).

One can easily verify that with respect to an π_R^2 -adapted basis the tensor F associated to the operator J can be represented by the matrix,

$$(3.3) \quad F = \begin{bmatrix} \begin{bmatrix} \beta_1 & 0 \\ \delta_{\alpha_1} & 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & -\delta_{A_1}^B \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \end{bmatrix} \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \begin{bmatrix} \begin{bmatrix} \beta_1 & \beta_2 \\ \delta_{\alpha_1} & \delta_{\alpha_2} \end{bmatrix} & 0 & 0 \\ 0 & -\delta_{A_1}^B & 0 \\ 0 & 0 & \begin{bmatrix} B_1 & B_2 \\ \delta_{A_1} & \delta_{A_2} \end{bmatrix} \end{bmatrix} \end{bmatrix}.$$

The group $L^2_{(n_1, n_2)}$ can be characterized as the subgroup of L^2_m defined by all elements of L^2_m which commute with F .

4. The set $E_{\pi_R^2(V_m)}$ of all π_R^2 -adapted bases at the different points of V_m is equipped with a structure of principal fibre bundle of basis V_m and structural group $L^2_{(n_1, n_2)}$.

π_R^2 -connection in V_m is called any infinitesimal connection ([8]) defined on the principal fibre bundle $E_{\pi_R^2(V_m)}$.

We consider a covering of V_m by open neighborhoods endowed with local cross sections of $E_{\pi_R^2(V_m)}$. Any π_R^2 -connection may be defined in each neighborhood U by a local form π with values in the Lie algebra $L^2_{(n_1, n_2)}$ of the group $L^2_{(n_1, n_2)}$.

Hence an π_R^2 -connection is represented by the matrix,

$$(4.1) \quad \Pi = \begin{bmatrix} \begin{bmatrix} \pi_{\beta_1}^{\alpha_1} & 0 \\ 0 & \pi_{B_1}^{A_1} \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} \pi_{\beta_1 \beta_2}^{\alpha_1} & 0 \\ 0 & \pi_{\beta_1 B_1}^{A_1} \end{bmatrix} & \begin{bmatrix} \pi_{\beta_1}^{\alpha_1} \pi_{\beta_2}^{\alpha_2} & 0 & 0 \\ 0 & \pi_{\beta_1}^{\alpha_1} \pi_{\beta_1}^{A_1} & 0 \\ 0 & 0 & \pi_{B_1}^{A_1} \pi_{B_2}^{A_2} \end{bmatrix} \end{bmatrix},$$

where $\pi_{j_1}^{i_1} = (\pi_{\beta_1}^{\alpha_1}, \pi_{B_1}^{A_1})$ and $\pi_{j_1 j_2}^{i_1} = (\pi_{\beta_1 \beta_2}^{\alpha_1}, \pi_{B_1 B_2}^{\alpha_1}, \pi_{\beta_1 B_1}^{A_1})$
are linear differential forms on U .

It can be verified that

$$(4.2) \quad \begin{cases} \nabla F_{\beta_1}^{\alpha_1} = 0, \quad \nabla F_{B_1}^{\alpha_1} = -2\pi_{B_1}^{\alpha_1} = 0, \quad \nabla F_{\beta_1 \beta_2}^{\alpha_1} = 0, \quad \nabla F_{\beta_1 \beta_1}^{\alpha_1} = -2\pi_{\beta_1 \beta_1}^{\alpha_1} = 0, \\ \nabla F_{B_1 B_2}^{\alpha_1} = 0, \quad \nabla F_{\beta_1}^{A_1} = 2\pi_{\beta_1}^{A_1} = 0, \quad \nabla F_{B_1}^{A_1} = 0, \quad \nabla F_{\beta_1 \beta_2}^{A_1} = 2\pi_{\beta_1 \beta_2}^{A_1} = 0, \\ \nabla F_{\beta_1 B_1}^{A_1} = 0, \quad \nabla F_{B_1 B_2}^{A_1} = 2\pi_{B_1 B_2}^{A_1} = 0, \quad \nabla F_{\beta_1}^{\alpha_1 \alpha_2} = 0, \quad \nabla F_{B_1}^{\alpha_1 \alpha_2} = 0 \\ \nabla F_{\beta_1 \beta_2}^{\alpha_1 \alpha_2} = 0, \quad \nabla F_{\beta_1 B_1}^{\alpha_1 \alpha_2} = -2\pi_{\beta_1}^{\alpha_1} \pi_{B_1}^{\alpha_2} = 0, \quad \nabla F_{B_1 B_2}^{\alpha_1 \alpha_2} = 0, \quad \nabla F_{\beta_1}^{A_1 A_1} = 0 \\ \nabla F_{B_1}^{A_1 A_1} = 0, \quad \nabla F_{\beta_1 \beta_2}^{A_1 A_1} = 2\pi_{\beta_1}^{A_1} \pi_{\beta_2}^{A_1} = 0, \quad \nabla F_{\beta_1 B_1}^{A_1 A_1} = 0, \quad \nabla F_{B_1 B_2}^{A_1 A_1} = 2\pi_{B_1}^{A_1} \pi_{B_2}^{A_1} = 0, \\ \nabla F_{B_1}^{A_1 A_2} = 0, \quad \nabla F_{B_1}^{A_1 A_2} = 0, \quad \nabla F_{\beta_1 \beta_2}^{A_1 A_2} = 0, \quad \nabla F_{\beta_1 B_1}^{A_1 A_2} = -2\pi_{\beta_1}^{A_1} \pi_{B_1}^{A_2} = 0, \\ \nabla F_{B_1 B_2}^{A_1 A_2} = 0. \end{cases}$$

Proposition 4.1. With respect to an π_R^2 -connection, the absolute differential of the tensor F is zero.

$E_{\pi_R^2}(V_m)$ may be considered as a sub-bundle of the fibre bundle $H^2(V_m)$ of 2-frames that is of bases of vector spaces $\{T_x^2\}_{x \in V_m}$ (conclusion (1.2)). An π_R^2 -connection defines canonically a special affine connection of order 2 ([5]) on V_m which it may be identified.

Conversely, let us consider a special affine connection of order 2 and a covering of V_m by open neighborhoods equipped with local cross sections of $E_{\pi_R^2}(V_m)$. This connection may be defined on each neighborhood by a local form ω with values in the Lie algebra of L_m^2 ,

$$(4.3) \quad \left\{ \begin{array}{l} \omega = (\omega_{j_1}^{i_1}, \omega_{j_1 j_2}^{i_1}), \quad i_1, j_1, j_2 = 1, 2, \dots, m, \quad \omega_{j_1}^{i_1} \in R^m \otimes R^{m*}, \\ \omega_{j_1 j_2}^{i_1} \in R^m \otimes s^2(R^{m*}) \text{ and } (\omega_{j_1}^{i_1}), (\omega_{j_1 j_2}^{i_1}) \text{ are local linear} \\ \text{differential forms.} \end{array} \right.$$

In order that the given connection may be identified with an π_R^2 -connection it is necessary and sufficient that the form (4.3) belongs in the Lie algebra of the structural group $L_{(n_1, n_2)}^2$ of $E_{\pi_R^2}(V_m)$. That is,

$$(4.4) \quad \omega_{B_1}^{\alpha_1} = \omega_{\beta_1}^{A_1} = \omega_{\beta_1 B_1}^{\alpha_1} = \omega_{\beta_1 \beta_2}^{A_1} = \omega_{B_1 B_2}^{A_1} = 0.$$

Comparing with (4.2) we obtain the following

Proposition 4.2. In order that a special affine connection of order 2 may be identified with an π_R^2 -connection, it is necessary and sufficient that the absolute differential of the tensor F is zero with respect to this connection.

5. Given an π_R^2 -connection Υ , the curvature form of this connection is the tensor 2-form,

$$(5.1) \quad \Omega = \nabla \pi = d\pi + \pi \wedge \pi,$$

which is defined by the matrix,

$$(5.2) \quad \Omega = \begin{bmatrix} \begin{bmatrix} \alpha_1 & 0 \\ \Omega_{\beta_1} & \end{bmatrix} & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & \Omega_{B_1}^{A_1} \\ 0 & \Omega_{B_1}^{A_1} \end{bmatrix} & \end{bmatrix} \quad \begin{bmatrix} \begin{bmatrix} \alpha_1 & \alpha_2 & 0 & 0 \\ \Omega_{\beta_1} \Omega_{\beta_2} & 0 & 0 & 0 \\ 0 & \Omega_{\beta_1}^{A_1} & \Omega_{\beta_1}^{A_1} & 0 \\ 0 & \Omega_{B_1 B_2}^{A_1} & 0 & \Omega_{B_1 B_2}^{A_1 A_2} \end{bmatrix} & \end{bmatrix}.$$

It may be seen from (5.1) that

$$\Omega_{\beta_1}^{\alpha_1} = d\pi_{\beta_1}^{\alpha_1} + \pi_{Y_1}^{\alpha_1} \wedge \pi_{\beta_1}^{Y_1},$$

$$\Omega_{B_1}^{A_1} = d\pi_{B_1}^{A_1} + \pi_{\Gamma_1}^{A_1} \wedge \pi_{\beta_1}^{\Gamma_1},$$

$$\Omega_{\beta_1 \beta_2}^{\alpha_1} = d\pi_{\beta_1 \beta_2}^{\alpha_1} + \pi_{Y_1}^{\alpha_1} \wedge \pi_{\beta_1 \beta_2}^{Y_1} + \pi_{Y_1 Y_2}^{\alpha_1} \wedge \pi_{\beta_1}^{Y_1} \pi_{\beta_2}^{Y_2},$$

$$\Omega_{B_1 B_2}^{A_1} = d\pi_{B_1 B_2}^{A_1} + \pi_{Y_1}^{A_1} \wedge \pi_{B_1 B_2}^{Y_1} + \pi_{\Gamma_1 \Gamma_2}^{A_1} \wedge \pi_{B_1}^{\Gamma_1} \pi_{B_2}^{\Gamma_2},$$

$$\Omega_{\beta_1 B_1}^{A_1} = d\pi_{\beta_1 B_1}^{A_1} + \pi_{\Gamma_1}^{A_1} \wedge \pi_{\beta_1 B_1}^{\Gamma_1} + \pi_{Y_1 \Gamma_1}^{A_1} \wedge \pi_{\beta_1}^{Y_1} \pi_{B_1}^{\Gamma_1}.$$

In particular, it can be verified that

$$\Omega_{\alpha_1}^{\alpha_1} = d\pi_{\alpha_1}^{\alpha_1}, \quad \Omega_{A_1}^{A_1} = d\pi_{A_1}^{A_1}, \quad \Omega_{\alpha_1\alpha}^{\alpha_1} = d\pi_{\alpha_1\alpha}^{\alpha_1}, \quad \Omega_{A_1\alpha}^{A_1} = d\pi_{A_1\alpha}^{A_1}.$$

If we consider a covering of V_m by neighborhoods equipped with local cross sections of $E_{\pi_R^2(V_m)}$, then

$$\psi_1 = \Omega_{\alpha_1}^{\alpha_1}, \quad \psi_2 = \Omega_{A_2}^{A_1},$$

are closed scalar 2-forms and

$$\psi_{\alpha}^1 = \Omega_{\alpha_1\alpha}^{\alpha_1}, \quad \psi_{\alpha}^2 = \Omega_{A_1\alpha}^{A_1}, \quad \alpha = 1, 2, \dots, n_1,$$

are closed vector 2-forms on $E_{\pi_R^2(V_m)}$.

We call ψ_k , $k=1,2$, the k -th characteristic form of order 1 and ψ_{α}^k , $k=1,2$, $\alpha=1,2,\dots,n_1$, the k -th characteristic form of order 2 of the π_R^2 -connection Y .

Proposition 5.1. The characteristic 2-forms of order 1 (respectively of order 2) of all the π_R^2 -connections have the same cohomology class of degree 2 (characteristic cohomology class of order 1 and of order 2 for the π_R^2 -structure).

6. The holonomy group of an π_R^2 -connection on V_m is ([9]) subgroup of the structural group $L_{(n_1, n_2)}^2$ of the fibre bundle $E_{\pi_R^2(V_m)}$.

Conversely, let V_m be a differentiable manifold endowed with a special affine connection of order 2. Let us assume that $x \in V_m$ there exists a 2-frame z_x such that the holonomy group ψ_{z_x} of the connection at z_x is a subgroup of $L_{(n_1, n_2)}^2$.

Let us consider now, at the point x , the tensor whose components with respect to the basis z_x of T_x^2 is of the form (3.3). This tensor is invariant under transformations by the ele-

ments of ψ_{z_x} and its components satisfy the relations (2.8). From this tensor we obtain ([9]) by parallel transport in V_m a tensor field on V_m with absolute differential equal to zero. The relations (2.8) remains true at every point of V_m and thus an π_R^2 -structure is defined on V_m . Since the absolute differential of this tensor field is equal to zero by proposition (4.2), the given connection may be identified with a π_R^2 -connection.

Proposition 6.1. A necessary and sufficient condition in order that a special affine connection in a manifold V_m be an π_R^2 -connection of an π_R^2 -structure is that the holonomy group of the connection be a subgroup of $L_{(n_1, n_2)}^2$.

REFERENCES

- [1] B. Cenkl : On the G-structures of higher order, *Casopis. Pěst. Mat.* 90, (1965) 26-32.
- [2] C. Coddillon : *géométrie différentielle et mécanique analytique*, Herman, Paris, 1969.
- [3] C. Ehresmann : Les prolongements d'une variété différentiable. I Calcul des jets, prolongement principal, *Comptes rendus*, 233 (1951) 598-600.
- [4] C. Ehresmann : Les prolongements d'une variété différentiable. *Congr. Un. Matem. It.* Taormina (1951) 317-325.
- [5] C. Ehresmann : Les prolongements d'une variété différentiable, V. Covariants différentiels et prolongements d'une structure infinitesimale, *Comptes rendus*, 234 (1952) 1424-1425.
- [6] C. Ehresmann : Introduction à théorie des structures infinitésimales et des pseudogroupes de Lie, *Coll. Intern. du C.N.R.S.*, *Geom. Diff.* Strasbourg (1953) 97-100.

- [7] G. Legend : Étude d'une généralisation des structures presques complexes sur les variétés différentiables. Thèse, Paris, 1958.
- [8] P. Libermann : Pseudogroupes infinitésimaux. Pseudogroupes infinitésimaux de Lie. C.R. de l'Acad. des Sc. de Paris, 246 (1958) 531-534.
- [9] A. Lichnerowicz : Théorie globale des connexions et des groupes d'holonomie Ed. Cremonese, Roma, 1955.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES,
UNIVERSITY OF THESSALONIKI, 54006 THESSALONIKI, GREECE
Received October 11, 1985.

