DEMONSTRA 0 MATHEMATICA

Vol. XX No 3-4 1987

Andrzej Kasperski

ON THE APPROXIMATE SCHEMES IN THE MODULAR SPACE

1. Introduction _

The paper generalizes the theory of the approximate schemes
in a normed space [2]. All definitions and theorems connected
with modular and Orliocz’s space can be found in [1].

Let V be an abstract nonempty set and let ¥ be a filter
of subsets of V.

Def®inition 1. A function g : V — R tends
to zero with respect to v, g(v) i’—o, if for every e€> 0
there is a set V e v "such that |g(v)| <e for all veV .

Let X, be a real modular space and let (x9 ) be a fa-
v veV
mily of real modular spaces. Let T = (Tv)vev be a family of

linear operators such that TV(XP) = X  for all veV,

Oyl
Definition 2, Letxv_ex? for all veV and
. v
let xex?. The family (Jg)‘";v T~tends to x with respect

oV, x, .(_T-i-).x, if 9v‘°("v - T.x)) io for every a> O.
Definition 2. Let x, eX for all veV and

let xsxq. The family (xv) (T,0) - tends to x with res-

veV
pect to ¥, x, £2,0,%) 5, 1f there exists a>0 such that
oylalxy - T x)) Yoo,

Remark 1, It x, Mx. then xvﬂl—ﬂﬂx but
the reverse implication is not true,
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2 A.Kasperski

Definition 3. The family (gv)vev will ope

called strongly nonsingulsr, if from gv(aTVx) oo for certain
a> 0 we obtain x = O,
Definition 3 The family (0y)yey Will be

called nonsingular,if from pv(aTvx)izuo for every a> 0 we

obtain x = O.
Theoren 1. The family (Qv)vev is strongly non-

singular iff from x, iELEQCL x and X, igiglij.y it follows
X=yo

Proof., Let x, (T,0,¥) x and X, y. Then
o (aly(x=y)) = oy(alTyx = x, + xv - T,9)) <o (2alTyx = xy)) +

+ o (2a(Ty - x,)) for every a> 0. But there exists a’> 0

(T,0,¥)

such that QV(Za'(Tvx - x,)) M 0 and py(2a" (T,y - x,)) i;(h

so gv(a’Tv(x-y))lt»o. 4s the family (Qv)v€v is strongly non-
v (T’Q’*) ,'&)

singular we have x = 3. N

it follows that x = y. Let g, (aT x) — O for certain a> 0. 4s

o (al,x) = g, (a(Px ~ 0)), s0 0 (Ty0 %) ». But © (T,0,V) 0,

80 X = O,
Theoren 1. The family (9v)vev is nonsingular

iff from x, {2, ana x, LTV o 3% follows x = g

Ve omit the proof guite analogous to that of Theorem 1.

Remark 2, If o, are norms for all veV, then the
nonsingularity and strong nonsingularity of the family
(oy)yey 8re equivalent.

Remark 3. In the whole paper D(A) is the domain
of the operator A and R{4A) is the image of 4,

Let X, and X, be real modulsr spaces. Let (X

€4 92 pv veV

) be families of real modular spaces, Let
QV veV

T = (2,)yev and T = (T,;)vev be two families of linear ope=-

rators such that I, (x ) = X and T'(x ) = X , for every
veV ®v - ¥y

and (X
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Approximate schemss 3

Let A be an operator such that D(A) cX. and R{A) cX

P o'

Let & = (a,) be a family of operators such that D(4,)c X

veV
R(a,) CXQV’ EV(D(A)) cD(a,) for every velV,

oy’

Definition 4. We say that the approximate
property holds on x ¢D(4),1if for every a>0

oy lala (2,x) - 2oalx))) S0,

Definition 4’ We say that the p-approximate
property holds on x e D(A),if there exists a >0 such that

o (ala,(T,x) - T,a(x))) 2= o,

2. The linear approximate schems

Let now 4 be a linear operator and let # be a family of
linear operators.

Definition 5., We say that the family & is
stable,if there exists a continuous, strongly increasing func-
tion w(t) such that w(0) = 0, w{+o0) = +oo and p’v(Avxv);
> w(?v(xv” for every veV and every x,e D(Av).

Remark 4. If ¢, and ¢, are norms for all veV,
then w(t) = t (ses [2]).

Let us consider the equation

(1) Ax = ¥, yeR(4).

We will call it the exact equation. It has a solution, since

7 €R(A), which 18 called the exaet solution,
Let us consider now a family of equations

(2) Ayx, =3y, for every veV and y,eR(4,).

The solution of (2) exists for every veV and will be called
the approximate solution, The family of equations (2) will
be called the approximate scheme for solution of the equa=-
tion (1). It will be said that the approximate scheme is
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4 A.Kasperski

(T,0,%)-convergent ((T,¥+)-convergent), if every family of
approximate solutions {T,¢)-tends (T-tends) to the exact
solution with respect o+,

Theorem 2. If:
(a) the family (9y)yey 18 strongly nonsingular,
(b} the p~approximate propsrty holds on every exact solution,
{c) the family & is stable and wo is 8 convex or subaddi-

tive function, ’

(a) Ty Myv
then:
(a’) the exact solution is only one,
(b’) the approximate solution is only one for every veV,
{(c’) the approximate scheme is (T,9;¢)-convergent.
Proof.
{a’) Let x; and x, be two exact solutions. So xq,X, er1,
Ax, = Ax, = 3. From (c) we have

oy(28(a T xy - Toax)) + o (2a(A;Tyx, - ToAx,)) 2

> op(BA T, (xy = x5))2> wlo (al (x, - x5)))

for every a> 0. Hence,from (b) there exists b> 0 such that

Wloy(bT,(x, = xp)1) Yoo

which implies, by the properties of w, Qv(b@v(x1 - x2)) jL-O.
So from {(a) we obtain Xy = Xgo

{(b’) Let xl and xs be two approximate solutions, From (c)

we have 0 = g;(Av(x; ~ xs))z w(ev(xl - xsé) for every veV,

henae pv(x; - xs) =0, 80 x; = xs.

(c’) Let x be the exact solution and let x, be an appro-
ximate solution., From (¢) we have for every a> O

1f w~' 18 a subadditive function, then

oplalx, = T.x)) < w g, (A lalx, - 1,x)))) =
= w gy lalyy - AZyx))) < (g (2aly, - Ty3))) +

+ w'1(q;(2a(2;Ax - Avgvx))).
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Approximate schémes 5

Hence,from (b), (d) we obtain that x, (40 ) x; 1if wl 1s
a convex function we have

oylalx, - 2,x)) < 3w (20, (2a(y, - 2j3))) +

+ % w'1(29;(23(g;ﬂx - A,T,x))).

Henoe,from (b}, (d) we obtain Xy Lgl§lil.x.

Theorem 2, If:
(a) the family (Qv)vev is nonsingular,
(b) the approximate property holds on every exact solution
(c) the family & is stable and w™ ! is a convex or subaddi-
tive function,

(a) 7VM30
then:
(a’) the exart solution is only one,
(v’) the approximate solution ie only one for every veV,
(c’) the approximate scheme is (T,V}-convergent.
We omit the proof quite analogous to that of Thecrem 2.
Remark 5 Ify=y,=0forall veV, thenw '
does not bs a convex or subadditive function.
Corollary 1. If the assumptions of Theorem 2
nold, then A;1yv lgﬁglg!sx. If moreover, QGy €R(4,) for every

v eV, then A;1Ivy (T, .,
Proof. Prom (c) we obtain that A;

veV. So A;1yv (T4 V) x, because A;1yv = X, Let a> 0. From
the assumptions we obtain

1 existe for every

oplala]'y - T/x)) < p (2a(47'D0y - 435, +

+.p (2a(a;ly, - T.x)) <w ol (2a(Tiy - 3,))) +

- v
+ 9,,(2tan(n*.v1:7v - I,x)) —=0
for sufficiently small a> O,
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3 A.Kasperski

Corollary 1° If the assumptions of Theorem 2

hold, then A-1yv—(2'lr—).x. If, moreover, 2",3 eR(Av) for every

v eV, then 4 1Tvy (,7) Rl ML 4

3. Nonlinear approximate scheme

Let now A be a nonlinear operator and let & be a family
of nonlinear operators.

Definition 6, We say that the family & is
stable, if there exists a continuous, strongly increasing
fl.nction w{t) such that w(0) = 0, w(+00) = +o0 and for every

,J%eD(A ), VeV and a> 0 there is

(a)  oilala,lx]) - Av(xv)))z W(ev(a(xl - xS))).

If there exists M> 0 such that (a) holds only for a ¢ (0,¥],
then we say that the family #t is p-stable.

Remark 6, If # is a family of linear operators,
then g-stability and stability are equivalent, since D(4,)
is a linear space for every veV,

Now we must solve the equation

(3) Al{x) = 0.

The solution of (3) will be called the exact solution. Let
us consider now the family of equations

{4) A {x,) = 0 for every veV,

The solution of (4) will be called the approximate solution
for every veV,
Theorem 3. If:
(a) the family (p,) .y 18 strongly noneingular,
(b) the exact solution exists,
{c) the approximate solution existe for every veV,
(d) the p-approximate property holds on every exact solutior,
(e} the family £ is g-stable,
thens
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{a’) the exact solution is only one,
(b’) the approximate solution is only one for every v eV,
{c’) the family (xy)yey Of approximate solutions of (4)
(Tye) - tends to the exact solution x of (3) with res-
pect to V.
Proof.
(a’) Let Xq9%o be two exact solutions. From modular pro-
perties and from (e) we obtain

oy (el (x, - x5))) sw'1(e(,(Av(va1) - Av(!vxz'))) <
< w gy (2a8,(Tx,)) + 9) (284, (T,x,)))

for ae {0, %]. Henoe,from (d) we obtain Qv(a(gv(x1-x2))).i; 0.
So from (a) it follows that Xy = Xpe
(b’) Let Av(x;) = Av(xs) = 0 for veV, We have

0 = o (ala,(x]) = a,(x2)))3 wlp (alx] - x2))) for ae (0,u],

S0 xl = xs.
{c’) Let x be an exact solution end x, be an approximate

solution, Prom (e) we obtain
oolalx, - Ix)) < v (pylala,(x,) - a,(2,x)))) =
= w'1(9;(aAv(EvX))).

for a e (0,M]. Hence, from (d) we obtain b iEﬁgJil»x.
Theorem 3. If:
(a) the family (¢,),.y 18 nonsingular,
(b) the exact solution exists,
(¢} the approximate solution exists for every veV,
(d) the approximate property holds on every exact solution,
(e) the family A 1s stadle,
thens '
(a’) the exact solution is only one,
(v’) the approximate solution is only one for every veV,
(c”) the family (xv)vev of approximate solutions of (4)
T - tends to the exact solution x of (3) with respsct

tD*o
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Ve omit the proof quite analogous - ‘int of Theorem 3.

Remark 7. If p;y 0y, {eyloeys (04lyey aTe noras,
then from Theorems 2, 2, 3, 3’ we obtain the cuitable theorems
from [2].

Remark 8. The assumption that & is stoble is
very useful,

Definition Te Let XQ and X? be modular
1 2
spaces. An operstor A : X X will be called ~clos=
pa P 0, %o, 1 (91,05
ed, if for all sequences {xn} cX 01 from x, —ex, . and

02

Alx,) ~%3, Wwe obtain x ¢ D(4) and y, = A(xo).

Lenna 1. -If XQ is Q1-com—plete and A is
1

(91,92)3-closed:and stable,then R(A) 1is 9,-closed.,

Proof. Let {yn}CR(A) and yn-g—2>y° as n -s»co0. We
must see that y e R(A). If y,eR(A),then there exists x, e D(4)
such that y, = A{x,) for every n e¢N. -We have

oolalyy - 34)) = gplalalxy) - Alxy))) > wleqlalxy - x4))),
for 1,J eN and a >0, hence

oqalx; = x;)) < W™ (gplalyy = 35000

Since y, Lyo,,then there exists b> 0 suoh that Qz(b(yi-yj )+0
as 1,J - o0 o S0 94(b(xy - %,)) —= 0 a8 1,§J —> oo ../Since

XQ is Q1-complete, then there existe X, € xe such that
1 1

xn_QJ’xo' Since A is (9 102 )-oomplete, we obtaln x, e D(A)
end A(x ) = yoeR(A), 80 R(A) is Qa-complete.
Defintittion 8, An operator A 1t X, ~= X'

: , €4 “ Q2
will be called (91,92 -~continuous, if from x, —= A -——»x we obtain
Alx, ) A(x), whera {xn}cx oy and xex%..

Theoreum 4, If the asawnptio‘ns of Lemma 1 hold,
then A~? exists and is (¢4s0,)~continuous,
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Proof., 2™t

A(x1) = ‘A(xz). We have

exists because A is one-to~one. Let

0 = p,(0) = py(alalxy) = Alx3))) > wleq(alxy - x5)))

0
for a>0, 80 x; = Xy. Let {35} < R(A) and 32—2.37. By Lemma 1,
yeR(A). So there erists {x,}c X91 such that x, = A'1(yn)

for every ncFK. Let x = A"1(y), 80 x ¢ D(A) and we must prove

that xnﬂ—x. Por a> 0 we have

oqlala™(z,) - a7H3))) = gy lalx, - x)) <

<w (g lalalx,)-a(x)))) = v~ (o (aly,-yN) — 0 a8 n = o0,
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