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ON THE APPROXIMATE SCHEMES IN THE MODULAR SPACE 

1. Introduction 
The paper general izes the theory of the approximate schemea 

in a normed spaoe [2]. All de f in i t ions and theorems connected 
with modular and Or l ioz ' s spaoe can be found in [ l ] . 

Let V be an abstraot nonempty set and l e t V" be a f i l t e r 
of subsets of V. 

D e f i n i t i o n 1. A function g s V —» R tends 
to zero with respect to V" , g(v) - ^ -0 , i f fo r every e> 0 
there i s a set V e V ' such that |g(v) | <e for a l l v « V 0 . 

Let X0 be a r e a l modular spaoe and l e t (X0 ) be a f a -
* v veV 

mily of r e a l modular spaoes. Let T = (? v ) v e y be a family of 
l inea r operators suoh that T„(XJ = X„ fo r a l l v e V. 

v ? 
D e f i n i t i o n 2. Let L e i fo r a l l v s V and 

°v 

l e t xeXp. The family (x^ygy T-tends to x with respeot 
to + , xv i f ^ ( a t x , - Tyx)) for every a> 0. 

D e f i n i t i o n 2 ' r Let j l e fo r a l l v e V and ^ Pv 

l e t x e y The family (Xy)vey (!»?) - tends to x with r e s -

pect to , xv H x i t ^ L x , i f there ex i s t s a > 0 such that 

^ ( a f x ^ - Tvx)) I + o . R e m a r k 1. If xy x , then x ^ x but 
the reverse implication i s not t rue . 
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2 A.Kasperskl 

D e f i n i t i o n 3. The family ( p v ) v e V w i l 1 0 0 

ca l l ed strongly nonsingular , i f from ^>v(aTvx) —»0 for c e r t a i n 
a> Ü we obtain x = 0 . 

D e f i n i t i o n 3 ' . The family ( ? v ) v e y w i l l be 

ca l l ed nons ingu l a r , i f from p v (aT yx) 0 for every a> Ü we 
obtain x = 0 . 

T h e o r e m 1. The family ( f v ) v e y i s s t rongly non-

s ingu la r i f f from xv x and x v i t fol lows 
x = y . 

P r o o f . Let xv ÍI lE lÍÍ . x and xv Then 
? v ( a T v ( x - y ) ) = p v (a(T vx - xv + x y - T y y ) ) P v ( 2 a ( ? v x - x v ) ) + 
+ pv (2a(Tvy - x v ) ) for every a> D. But there e x i s t s a'> Ü 

such that ? v ( 2 a " (T v x - x y ) ) X o and p v ( 2 a ' (T v y - x v ) ) 0, 

so p v ( a ' T v ( x - y ) ) 0. As the family ( p v ) v € y i s strongly non-
[ I n i l ( J nJ") 

s i ngu l a r we have x = y . Now from xv 4 Vx and xv V Vy 

i t fol lows that x = y . Let ^ v (aT v x) —• 0 for c e r t a i n a> 0. As 

? v ( aT v x ) = ? v ( a ( T v x - Ü)) , so 0 (T><t^L x . But 0 0, 
so x = 0. 

T h e o r e m 1 ' . The fami ly ( 9 v ) v e y i s nonsingular 

i f f from xv i i i ^ L x and x^ i t fol lows x » y . 
V,'a omit the proof qui te analogous to that of Theorem 1. 
R e m a r k 2. If pv are norms for a l l v eV, then the 

nons ingular i ty and strong nons ingular i ty of the family 
( p v ) v e V are equ iva l en t . 

R e m a r k 3. In the whole paper D(A) i s the domain 
of the operator A and R{A) i s the image of A, 

Let X_ and X_ be r e a l modular spaces . Let (X„ ) 
v veV 

and (X-/) be f a m i l i e s of r e a l modular spaces . Let 
"v veV 

? = (?v^veV a n d = ^-v'veV b e t w o f a m i l i e s o f l i n e a r ope-
r a t o r s such that T„(X ) = X. and T'(X ) = X / for every 

"1 "v "2 "v 
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Approximate schemes 3 

Let A be an operator such that D(A) cX and R(A) cX . 
M >2 

Let A = ( A v ) v £ y be a family of operators such that D (A v ) c X^ , 

R ( A v ) c X 9 , TV (D( A ) ) cD (A v ) f o r every v e V. 

D e f i n i t i o n 4. We say that the approximate 
property holds on x eD (A ) , i f for every a > 0 

P ^ a f A ^ J t ) - T ;A (X ) ) ) 0. 

D e f i n i t i o n 4 ' . We say that the p-approximate 
property holds on x e D(A) > i f there exists a>0 such that 

? ; ( a (A v ( T v x ) - T ;A (X ) ) ) 0. 

2. The l inear approximate scheme 
Let now A be a l inear operator and l e t A be a family of 

l inear operators. 
D e f i n i t i o n 5. We say that the family ¿V i s 

s t ab l e , i f there exists a continuous, strongly increasing func-
t ion w( t ) such that w(0) = 0, w(+oo) = too and p ' v (A yx v )> 
> w ( p v ( x v ) ) f o r every v e V and every x y e D ( A v ) . 

R e ma r k 4. I f f v and ^ are norms for a l l v cV, 
then w( t ) =» t (see [2 ] ) . 

Let us consider the equation 

(1) Ax = y , yeR(A). 

We w i l l ca l l i t the exact equation. I t has a solution, since 
y e R ( A ) , which i B oalled the exact eolat ion. 

Let us consider now a family of equations 

(2) Avxy = y v , f o r every v e V and y v e R ( A y ) . 

The solution of (2) exists f o r every v e V and w i l l be called 
the approximate solution. The family of equations (2) w i l l 
be called the approximate scheme f o r solution of the equa-
tion ( 1 ) . I t w i l l be said that the approximate saheme i s 
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(T,9 .-¿^-convergent ((T.V -)-convergent), i f every family of 
approximate so lu t ions (T ,9 ) - tends (IP-tends) to the exact 
so lu t ion with respec t to-J". 

T h e o r e m 2. I f : 
(a) the family (9 v ) v 6 y i s s t rongly nonsingular , 
("b) the p-approximate property holds on every exact s o l u t i o n , 
(c) the family <ft i s s tab le and w i s a convex or subaddi-

t i ve func t ion , 

(d, y v i i ^ y , 
then: 
( a ' } the exact so lu t ion i s only one, 
( b ' ) the approximate so lu t ion i s only one f o r every v e V , 
( c ' ) the approximate scheme i s ( T , - ^ - c o n v e r g e n t . 

P r o o f . 
( a ' ) Let x1 and x 2 be two exact s o l u t i o n s . So x ^ x j eZ^ , 

Ax.j = AXg = y . From (c) we have 

? ; (2a (A v T v X l - T;AX i)) + P^(2a(AvTvx2 - T^AXg))^ 

* ^ (bA v T v (x 1 - x 2 ) ) ^ w( P v (aT v (x 1 - x 2 ) ) ) 

f o r every a > 0 . He no a, from (b) there e x i s t s b > 0 such tha t 

w( ? v (bT v (x 1 - x 2 ) ) ) ^ 0 

which impl ies , by the p roper t i e s of w, 9 (bTv(*1 - x 2 ) ) ^ 0 . 
So from (a) we obtain x^ = x 2 . 

1 o 
(b '} Let x^ and x^ be two approximate s o l u t i o n s . From (c) 

we have 0 = - - ) f o r every v e V , 
henoe - x^) = 0, so x^ = x^. 

( c ' j Let x be the exact so lu t i on and l e t xy be an appro-
ximate s o l u t i o n . From (0) we have f o r every a > 0 : 

i f w"1 i s a subaddit ive f u n c t i o n , then 

? v ( a ( x v - Tvx)) «; w - 1 ( ? ' v (A v (a (x v - T v x) ) ) ) » 

= » " ^ ( a ^ - AyTvx))) ^ w~1 ( 9 ' y(2a(y v - ? ; y ) ) ) + 

+ w"1(9;(2b{t;Ax - AvTyx))) . 
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Approximate schemes 5 

Hence,from (b ) , (d) we obtain that xy i f w"1 i s 
a convex function we have 

p y (a (x y - T v x ) ) < 1 w- 1 ( 2^ (2a ( y v - ? ; ? ) ) ) + 

+ \ w~1 (2?; (2a(T;Ax - A y T y x ) ) ) . 

Hence,from (b ) , (d) we obtain xy 

T h e o r e m 2 ' . I f : 
(a) the family ( ? v ) v e y i s nonsingular, 
(b) the approximate property holds on every exact solution 
(c ) the family Sc is stable and w"1 ie a convex or subaddi-

t ive function, 

them 
( a ' ) the exact solution is onl̂ r one, 
(b'J the approximate solution ie only one for every v e V , 
(c ' ) the approximate scheme is (X,-/)-convergent. 

We omit the proof quite analogous to that of Theorem 2. 
R e m a r k 5. I f y = y v = 0 for a l l v t V , then w"1 

does not be a convex or subadditive function. 
C o r o l l a r y 1» I f the assumptions of Theorem 2 

hold, then A~1yv '^ » -x . I f moreover, T y y « R ( A y ) for every 

v eV, then A^1Tyy 

P r o o f . Prom (c ) we obtain that A~1 exists for every 

v e V. So a ; \ because A~1yy = x y . l e t a> 0. Prom 
the assumptions we obtain 

P v ( a (A ; 1 T v y - T y x ) ) « p v (2a(A;1T;y - A ; 1 y v ) ) + 

+ .pv (2a(A;1yv - T y x ) J < ( p ^ a i ^ y - y y ) ) ) + 

+ e 7 (2a ( * ; 1 y y - T y x ) ) 

f o r su f f i c i ent ly small a> 0. 

- 417 -



6 A.Kasperski 

C o r o l l a r y 1 ' . I f the assumptions of Theorem 2 

hold, then A^1yv x. I f , moreover, T^y€R(Av) for every 

v eV, then A~1T^y J l i ^ x . 

3. Monlinear approximate scheme 
Let now A be a nonlinear operator and let A be a family 

of nonlinear operators. 
D e f i n i t i o n 6. We say that the family is 

stable, i f there exists a continuous, strongly increasing 
function w(t) such that w(O) = 0, w(+oo) = +oo and for every 
1 P x^»x^eD(Av ) , v e V and a> 0 there is 

(a) ^ (a (A v ( x^ ) - A v ( x J ) ) U w( ? v ( a (x ] - x j ) ) ) . 

I f there exists M>0 such that (a) holds only for a e (0,k], 
then we say that the family A is p-stable. 

R e m a r k 6. I f A is a family of linear operators, 
then p-stabil ity and stability are equivalent, sinoe D(Ay) 
is a linear space for every v eV. 

Now we must solve the equation 

(3) A(x) = 0. 

The solution of (3) w i l l be called the exact solution. Let 
us consider now the family of equations 

(4) A y (x v ) = 0 for every v e V . 

The solution of (4) w i l l be called the approximate solution 
for every vve V. 

T h e o r e m 3. I f : 
(a) the family (p v ) v 6y Is strongly nooaingular, 
(b) the exact solution exists, 
(o) the approximate solution exists for every v e V, 
(d) the ^-approximate property holds on every exact solution , 
(e ) the family A is 9-stable, 
then: 
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( a ' ) the exact solution i s only one, 
(b ' ) the approximate solution i s only one for every v eV, 
( c ' ) the family (Xy^^y o f approximate solutions of (4) 

(T,ç) - tends to the exact solution x of (3) with res-
pect to . 

P r o o f . 
( a ' ) Let x-pXg be two exact solutions. Prom modular pro-

perties and from (e) we obtain 

ç v (a(T v (x 1 - x 2 ) ) ) $ w~ 1( ? ; (A v(T vx 1) - Av(Tvx2))) < 

^ w- 1(P ; (2aA v(T vx 1)) + 9 ; (2aA v (T v x 2 ) ) ) 

for a e (0 , Hence^from (d) we obtain ç v ( a (T v (x 1 -x 2 ) ) ) 0. 
SiO from (a) i t follows that x1 = x 2 . 

(b') Let Av(x^) = Av(x^) = 0 for v eV. We have 

0 = ç ;U(A v (x J ) - A v (x J ) ) ) * w( ? v ( a (x j - x j ) ) ) for a e (0,M], 

so x j = x^. 
( c ' ) Let x be an exact solution and xy be an approximate 

solution. From (e;) -we obtain 

ÇyfafXy - $ w _ 1 ( ^ ( a ( A v ( x v ) - Av(Tvx)))) = 

= w- 1 (^ (aA v (T v x) ) ) . 

for a e (Oi,M], Hence, from (d) we obtain Xy '^L x. 
T h e o r e m 3 ' . I f : 

(a) the family ( ç v ) v € y i s nonsingular, 
(b) the exact solution ex i s t s , 
(c) the approximate solution ex i s t s for every veV, 
(4) tha approximate property holds on every exact solution, 
(e) the. family Is s table , 
then« 
( a ' ) the exact solution i s only one, 
(b ') the approximate solution i s only one for every veV, 
(c") the family of approximate solutions of (4) 

T .- "tends to the exact solution x of (3) with respeot 
to V" . 
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7/e omit the proof quite analogous ' of Theorem 3. 
R e m a r k 7. If ^ . <?2' (Pv'veV ; :P'v'veV a r e n o r a s > 

then from Th6orem3 2, 2', 3, 3' we obtain the su i t ab l e theorems 
from [2 ] . 

R e m a r k 8 . The assumption that A i s s tab le i s 
very u se fu l . 

D e f i n i t i o n 7. Let X. and Xn be modular 
P-l <?2 

spaces . An operator A : X0 —iXD w i l l be c a l l ed (d1 , o 9 ) - c l o s -

ed, i f for a l l sequences {xnj. c l from —»xQ and Do 
A(XN) we obtain xQ e D(A) and yQ = A(XQ). 

L e m m a 1. I f i s ^ -comple te and A i s 

( p 1 a n d s t ab l e , t hen R(A)• i s f g - 0 ! 0 8 0 ^ » 

P r o o f . Let c R( a) and y Q - í í L y 0 as n - »oo . We 
must see that y 0 e R ( A ) . I f y n e R( !A),then there e x i s t s xQ e D( A) 
such that y n = A(xn) for every n cN. We have 

~ = ~ * w ( 9 1 ( a ( x l - X j ) ) ) . 

for i , j eN and a > 0 , hence 

^ ( a í x . ^ - Xj ) ) ^ w" -

Op 

Since y f l —i yQ , ;then there e x i s t s b> 0 such that 
as oo . So (btx^ - Xj ) ) 0 as i , j oo . . 'S ince 
Xy i s ^ - c o m p l e t e , then there e x i s t e x ( e X ^ such that 
x n - ^ » x 0 . Since A i s (fy »^J-o.omplete, we obtain xQeD(A) 
and A(xQ) = j 0 e R ( A ) , so R ( A ) i s ^ - comp l e t e . 

D e f i n i t i o n 8 . An operator A i Xn X. 
o« 

w i l l be c a l l ed ( p ^ - c o n t i n u o u s , i f from xQ —Vjt we obtain 

A ( x n ) - ^ A ( x ) , where {xQ} c x and x e X ^ . . 

T h e o r e m 4. I f the assumptions of Leaima 1 hold , 
then A"1 e x i s t s and i s , - c o n t i n u o u s . 
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Approximate schemes 9 

P r o o f . A"1 exists because A ie one-to-one. Let 
) = ~A(X2). We have 

0 = E 2 ( 0 ) = ^ ( a U f x . , ) - A ( X 2 ) ) ) £ w (91 (a(x1 - x 2 ) ) ) 
p2 

f o r a > 0 , so x1 = x 2 . Let ( y n } c R ( A ) and y 2 — i - y . By Lemma 1, 
y e R ( A ) . So there er is ts ( j j c such that xR = A~1 (yn ) 

f o r every n e K. Let x = A~ 1 ( y ) , so xeD (A ) and we must prove 

that xQ —V-x. For a > 0 we have 

9 l ( a ( A - 1 ( y n ) - A - 1 ( y ) ) ) = «p ̂  (a ( x ) ) * 

< w " 1 ( ? 2 ( a ( A ( x n ) - A ( x ) ) ) ) = w ' 1 ( p 2 ( a ( ! y n - y )J ) — 0 as n — oo . 
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