

Brian Fisher, Todor D. Todorov

OPERATIONS WITH DISTRIBUTION VECTORS

The space of distributions D' is isomorphically embedded in the space of distribution vectors \tilde{D}' (1) and this larger space \tilde{D}' is equipped with operations of multiplication and integration. Several formulae for $\delta^2(x)$, $\delta^{(p)} \cdot \delta^{(q)}$, $x_+^p \cdot \delta^{(q)}(x)$, etc., are derived which, as we know, are significant for some applications, in particular, in quantum field theory but they do not make sense in D' itself. The paper is a continuation of a previous work (1) but it could be read independently.

In the following we let C be the field of complex numbers, D be the space of infinitely differentiable functions defined in the real line with compact support and D' be the space of all distributions on D .

D e f i n i t i o n 1. Let α_r be in C for $r = 0, 1, \dots$. We say that

$$\underline{\alpha} = [\alpha_0, \alpha_1, \dots]$$

is a number vector (2). We denote the vector space of all number vectors, with the usual definition of the sum and product by a scalar, by \mathbb{C} .

D e f i n i t i o n 2. Let h_r be in D' for $r=0,1,\dots$. We say that

$$\underline{h} = [h_0, h_1, \dots, h_r, \dots]$$

is a distribution vector.

If $h_{r+i} = 0$ for $i = 1, 2, \dots$, we write

$$\tilde{h} = [h_0, h_1, \dots, h_r, 0, 0, \dots] = [h_0, h_1, \dots, h_r]$$

and if $h_i = 0$ for $i = 1, 2, \dots$ we write

$$\tilde{h} = [h_0] = h_0.$$

We denote the vector space of all distribution vectors, with the usual definition of sum and product by a scalar, by \tilde{D}' .

Definition 3. Let $\tilde{h} = [h_0, h_1, \dots, h_r, \dots]$ be in \tilde{D}' and let φ be in D . We define (\tilde{h}, φ) to be the number vector

$$(\tilde{h}, \varphi) = [(h_0, \varphi), (h_1, \varphi), \dots, (h_r, \varphi), \dots].$$

Definition 4. Let $\tilde{h} = [h_0, h_1, \dots, h_r, \dots]$ be in \tilde{D}' . We define the derivative \tilde{h}' of \tilde{h} by

$$\tilde{h}' = [h'_0, h'_1, \dots, h'_r, \dots].$$

Theorem 1. Let $\tilde{h} = [h_0, h_1, \dots, h_r, \dots]$ be in \tilde{D}' and let φ be in D . Then

$$(\tilde{h}', \varphi) = -(\tilde{h}, \varphi').$$

The proof of the theorem follows easily.

Definition 5. Let ρ be a fixed function in D having the properties:

$$(i) \quad \rho(x) = 0 \quad \text{for} \quad |x| \leq 1,$$

$$(ii) \quad \rho(x) \geq 0,$$

$$(iii) \quad \rho(x) = \rho(-x),$$

$$(iv) \quad \int_{-1}^1 \rho(x) dx = 1.$$

We define the function δ_ρ by $\delta_\rho(x) = \rho(vx)$ for all $v > 0$.

Definition 6. Let f and g be in D' and let $g_\varphi = g * \delta_\varphi$. If there exist h_0, h_1, \dots, h_r in D' such that

$$(f, g_\varphi, \varphi) = \sum_{i=0}^r (h_i, \varphi) \varphi^i + \Delta(\varphi),$$

for arbitrary φ in D , where

$$\lim_{\varphi \rightarrow \infty} \Delta(\varphi) = 0$$

(Δ could depend on φ as well), we define the product $f \circ g$ in \mathcal{D}' by

$$f \circ g = [h_0, h_1, \dots, h_r].$$

We say that h_0 is the finite part of $f \circ g$. If $h_i \neq 0$ for some $i \geq 1$, we write

$$\text{p.f.}(f \circ g) = h_0$$

and if $h_i = 0$ for $i = 1, 2, \dots, r$, we write

$$f \circ g = h_0.$$

Theorem 2. The product " \circ " is a generalization of the usual product in D' when one of the distributions is a smooth function, i.e. $f \circ g = f \cdot g$ for all $f \in D'$ and all $g \in C^\infty$.

The above theorem is just an interpretation of Definition 6, having in mind as well that $g_\varphi \rightarrow g\varphi$ in the test-to-topology of D when g is a smooth function and φ is in D .

Theorem 3. Let f and g be in D' and suppose that the products $f' \circ g$ (or $f \circ g'$) and $f \circ g$ are in \mathcal{D}' . Then the product $f \circ g'$ (or $f' \circ g$) is in \mathcal{D}' and

$$(f \circ g)' = f' \circ g + f \circ g'.$$

Proof. Suppose

$$(f, g, \varphi) = \sum_{i=0}^r (h_i, \varphi) v^i + \Delta(v),$$

$$(f', g, \varphi) = \sum_{i=0}^r (k_i, \varphi) v^i + \Delta_1(v),$$

for arbitrary φ in D , so that

$$f \circ g = [h_0, h_1, \dots, h_r],$$

$$f' \circ g = [k_0, k_1, \dots, k_r].$$

Then

$$((fg, \varphi)', \varphi) = -(fg, \varphi') = (fg' + f'g, \varphi)$$

and so

$$\begin{aligned} (f, g, \varphi) &= -(f, g, \varphi') - (f', g, \varphi) = \\ &= - \sum_{i=0}^r (h_i, \varphi') v^i - \Delta_2(v) - \sum_{i=0}^r (h_i, \varphi) v^i - \Delta_1(v) = \\ &= \sum_{i=0}^r (h'_i - k_i, \varphi) v^i - (\Delta_1 + \Delta_2)(v) \end{aligned}$$

for some function Δ_2 , where

$$\lim_{v \rightarrow \infty} \Delta_2(v) = \lim_{v \rightarrow \infty} (\Delta_1 + \Delta_2)(v) = 0.$$

It follows that the product $f \circ g'$ is in D' and

$$f \circ g' = [h'_0 - k_0, h'_1 - k_1, \dots, h'_r - k_r] = (f \circ g)' - f' \circ g.$$

The results of the theorem follows.

We now put for simplicity

$$\varrho_i = \varrho^{(i)}(0)$$

for $i = 0, 1, \dots$ so that in particular

$$\varrho_i = 0$$

for odd i .

Theorem 4. The product $\delta^{(p)} \circ \delta^{(q)}$ is in D' and

$$\delta^{(p)} \circ \delta^{(q)} = h(p, q) = [h_0(p, q), h_1(p, q), \dots, h_{p+q}(p, q)]$$

for $p, q = 0, 1, 2, \dots$, where

$$h_i(p, q) = \begin{cases} 0, & 0 \leq i \leq q, \\ (-1)^{i-q-1} \binom{p}{i-q-1} \varrho_{i-1} \delta^{(p+q+1-i)}, & q < i \leq p+q+1, \end{cases}$$

and $\binom{p}{q}$ denotes the binomial coefficient

$$\binom{p}{q} = \frac{p!}{q!(p-q)!}.$$

In particular

$$\delta^2 = \delta \circ \delta = [0, \varrho_0 \delta],$$

$$\delta' \circ \delta = [0, \varrho_0 \delta'],$$

$$\delta \circ \delta' = 0.$$

So, we see that the multiplication operation " \circ " is a non-commutative operation.

Theorem 5. The products $x_+^p \circ \delta^{(q)}$ and $\delta^{(q)} \circ x_+^p$ are in D' and

$$x_+^p \circ \delta^{(q)} = h(p, q) = [h_0(p, q), h_1(p, q), \dots, h_{q-p}(p, q)]$$

for $p = 0, 1, \dots, q$ and $q = 0, 1, 2, \dots$, where

$$h_i(p, q) = \begin{cases} \frac{1}{2} (-1)^p \binom{q}{p} p! \delta^{(q-p)}, & i = 0, \\ (-1)^{p-1} \binom{q-1}{p} p! \varrho_{i-1} \delta^{(q-p-1)}, & 1 \leq i \leq q-p \end{cases}$$

and

$$\delta^{(q)} \circ x_+^p = k(p, q) = [k_0(p, q), k_1(p, q), \dots, k_{q-p}(p, q)]$$

for $p = 0, 1, \dots, q$ and $q = 0, 1, \dots$, where

$$k_i(p, q) = \begin{cases} \frac{1}{2} (-1)^p \binom{q}{p} p! \delta^{(q-p)}, & i = 0 \\ (-1)^{p-1} \binom{q}{p+1} p! \varrho_{i-1} \delta^{(q-p-1)}, & 1 \leq i \leq q-p. \end{cases}$$

In particular

$$x_+^p \circ \delta^{(p)} = \delta^{(p)} \circ x_+^p = \frac{1}{2} (-1)^p p! \delta$$

for $p = 0, 1, 2, \dots$.

These theorems are equivalent to Theorem 3 and 4 proved in [1].

We now consider the product of two distribution vectors. For convenience we note that \mathcal{D}' is isomorphic to the space of power series in an indeterminate v having distributions as coefficients. Under this natural isomorphism we write

$$f = [f_0, f_1, \dots, f_r, \dots] = \sum_{r=0}^{\infty} f_r v^r.$$

Definition 7. Let

$$f = [f_0, f_1, \dots, f_r, \dots] \equiv \sum_{r=0}^{\infty} f_r v^r$$

and

$$g = [g_0, g_1, \dots, g_r, \dots] \equiv \sum_{r=0}^{\infty} g_r v^r$$

be in \mathcal{D}' and suppose that $f_r \circ g_s$ exist for all $r, s = 0, 1, \dots$ (in the sense of Definition 6) and

$$f_r \circ g_s = \sum_{m=0}^{\mu_{rs}} h_{rsm} v^m$$

for $r, s = 0, 1, \dots$ for some distributions h_{rsm} and some integers $\mu_{rs} \geq 0$. Let now put

$$h_n = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \sum_{m=0}^{\mu_{rs}} h_{rsm} \quad (r+s+m = n)$$

for $n = 0, 1, 2, \dots$. We define the product $\tilde{f} \circ \tilde{g}$ in \mathcal{D}' by

$$\begin{aligned} \tilde{f} \circ \tilde{g} &= \left(\sum_{r=0}^{\infty} f_r v^r \right) \circ \left(\sum_{s=0}^{\infty} g_s v^s \right) = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (f_r \circ g_s) v^{r+s} = \\ &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \left(\sum_{m=0}^{\mu_{rs}} h_{rsm} v^m \right) v^{r+s} = \\ &= \sum_{n=0}^{\infty} h_n v^n = [h_0, h_1, \dots, h_n, \dots] \end{aligned}$$

and say that h_0 is the finite part of $\tilde{f} \circ \tilde{g}$.

Theorem 6. Let \tilde{f} and \tilde{g} be in \mathcal{D}' and suppose that the products $\tilde{f} \circ \tilde{g}$ and $\tilde{f}' \circ \tilde{g}$ (or $\tilde{f} \circ \tilde{g}'$) are in \mathcal{D}' . Then the product $\tilde{f} \circ \tilde{g}'$ (or $\tilde{f}' \circ \tilde{g}$) is in \mathcal{D}' and

$$(\tilde{f} \circ \tilde{g})' = \tilde{f}' \circ \tilde{g} + \tilde{f} \circ \tilde{g}'.$$

Proof. Suppose

$$\tilde{f} = \sum_{r=0}^{\infty} f_r v^r, \quad \tilde{g} = \sum_{r=0}^{\infty} g_r v^r.$$

Then

$$\tilde{f} \circ \tilde{g} = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (f_r \circ g_s) v^{r+s}$$

and

$$\tilde{f}' \circ \tilde{g} = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (f'_r \circ g_s) v^{r+s}$$

so that the products $f_r \circ g_s$ and $f'_r \circ g_s$ are in \tilde{D}' . By Theorem 3 the product $f_r \circ g'_s$ is in \tilde{D}' and

$$(f_r \circ g_s)' = f'_r \circ g_s + f_r \circ g'_s.$$

Thus

$$\begin{aligned} (\tilde{f} \circ \tilde{g})' &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (f_r \circ g_s)' v^{r+s} = \\ &= \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} (f'_r \circ g_s + f_r \circ g'_s) v^{r+s} \end{aligned}$$

which implies the existence of $\tilde{f}' \circ \tilde{g}'$ and

$$(\tilde{f} \circ \tilde{g})' = \tilde{f}' \circ \tilde{g} + \tilde{f} \circ \tilde{g}'.$$

Example 1. $(\delta, \delta \varphi) = (\delta, v \varphi(vx) \varphi(x)) = v \varphi(0) \varphi(0) = v \varphi_0(\delta, \varphi)$ for arbitrary φ in D and so

$$\delta^2 \equiv \delta \circ \delta = [0, \varphi_0 \delta].$$

Example 2. $\delta^3 \equiv \delta \circ \delta \circ \delta = v^2 \varphi_0^2 \delta = [0, 0, \varphi_0^2 \delta].$
More general for the n -th power of the delta-function δ we obtain

$$\delta^n = v^{n-1} \varphi_0^{n-1} \delta = [0, 0, \dots, \varphi_0^{n-1} \delta].$$

E x a m p l e 3. $(\delta, \delta_v \varphi) = (\delta, v^2 \varphi'(vx) \varphi(x)) = -v^2 \varphi'(0) \varphi(0) = 0$ for arbitrary φ in D and so

$$\delta \circ \delta' = 0.$$

E x a m p l e 4. Using Theorem 3 we see that $\delta' \circ \delta$ is in D' and

$$\delta' \circ \delta = (\delta \circ \delta)' - \delta \circ \delta' = [0, \varphi_0 \delta'].$$

E x a m p l e 5. $(\delta', \delta'_v \varphi) = (\delta', v^2 \varphi'(vx) \varphi(x)) = -v^3 \varphi''(0) \varphi(0) + v^2 \varphi'(0) \varphi'(0) = -v^3 \varphi''(0)(\delta, \varphi)$ for arbitrary φ in D and so

$$\delta' \circ \delta' = [0, 0, 0, -\varphi_2 \delta].$$

These four results are, of course, particular cases of Theorem 4.

E x a m p l e 6. $[\delta, \delta'] \circ [\delta'', \delta] = (\delta + v \delta') \circ (\delta'' + v \delta) = \delta \circ \delta'' + v \delta \circ \delta'' + v \delta' \circ \delta'' + v^2 \delta' \circ \delta = [0, 0, \varphi_0 \delta, \varphi_0 \delta', -\varphi_2 \delta].$

We finally consider integration in D' and D .

D e f i n i t i o n 8. Let f be in D' , let μ be a measure in R and let δ be a measurable subset of R . We say that f is integrable on δ if there exists an integer $m \geq 0$ and complex coefficients $\alpha_0, \alpha_1, \dots, \alpha_m$ for which

$$\int_{\delta} f_v(x) d\mu(x) = \sum_{i=0}^m \alpha_i v^i + \Delta(v)$$

where $f_v = f * \delta_v$ and

$$\lim_{v \rightarrow \infty} \Delta(v) = 0.$$

We then write

$$\int_{\delta} f(x) d\mu(x) = [\alpha_0, \alpha_1, \dots, \alpha_m] \equiv \sum_{i=0}^m \alpha_i v^i$$

and say that α_0 is the finite part of the integral.

Example 7. $\int_{-\infty}^{\infty} \delta(x)dx = 1.$

Example 8. $\int_0^1 \delta_v(x)dx = \int_0^1 v\delta(vx)dx = \frac{1}{2}$ and so

$$\int_0^1 \delta(x)dx = \frac{1}{2}.$$

Example 9. $\int_{-\infty}^{\infty} \delta'(x)dx = 0.$

Example 10. $\int_0^1 \delta'_v(x)dx = \int_0^1 v^2 \delta'(vx)dx = -v\delta_0$

and so $\int_0^1 \delta'(x)dx = [0, -\delta_0].$

Theorem 7. For all $f \in D'$ and all $\varphi \in D$ we have:

$$\int_{-\infty}^{\infty} (f \circ \varphi)dx \equiv \int_{-\infty}^{\infty} f(x)\varphi(x) = (f, \varphi).$$

Proof. It is well known that $(f\varphi) \xrightarrow[v \rightarrow \infty]{} f\varphi$ in the topology of \mathcal{E}' (\mathcal{E}' is the space of all distributions with compact supports) so that

$$\lim_{v \rightarrow \infty} \int_{-\infty}^{\infty} (f\varphi)_v dx = (f\varphi, 1) = (f, \varphi).$$

The proof is finished.

Definition 9. Let

$$\tilde{f} = [f_0, f_1, \dots, f_r, \dots] \equiv \sum_{r=0}^{\infty} f_r v^r$$

be in D' and suppose that f_r is integrable on δ with

$$\int_{\delta} f_r(x) d\mu(x) \equiv \sum_{i=0}^{m_r} \alpha_{ri} v^i$$

for $r = 0, 1, \dots$. We say that \tilde{f} is integrable on δ and write

$$\int_{\delta} f(x) d\mu(x) \equiv \sum_{r=0}^{\infty} \sum_{i=0}^{m_r} d r_i x^{r+i} \equiv [d_0, d_1, \dots, d_n, \dots]$$

where

$$d_n = \sum_{r=0}^{\infty} \sum_{i=0}^{m_r} d r_i, \quad (r+i = n)$$

for $n = 0, 1, \dots$ and say that d_0 is the finite part of the integral.

$$\text{Example 11. } \int_0^1 [\delta(x), \delta'(x)] dx = [1/2, 0, -\rho_0].$$

We see that the integral of a given distribution vector (if exists) is a number vector.

Remark. The reader could remain disappointed at the fact that the multiplication operation introduced in our paper is nonassociative which follows directly from the example

$$\delta' \circ (\delta \circ \delta') \neq (\delta' \circ \delta) \circ \delta'.$$

Recall, however, that according to the well-known interpretation of the Schwartz example

$$(x^{-1} \cdot x) \delta(x) \neq x^{-1} (x \cdot \delta(x))$$

it is principally impossible to supply the distribution space or any of its enlargements (in particular, the space of distribution vectors \mathcal{D}') with an associative multiplication operation.

REFERENCES

[1] B. Fisher : Products of distributions defined by a vector, Proceedings of the Third International Conference on Complex Analysis and Applications, Varna (1985), (to appear).

[2] Chr. Ya. Christov, T.D. Todorov: Asymptotic numbers - algebraic operations with them, Serdica, Bulgaricae Mathematicae Publicationes, vol.2 (1976) 87-102.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY,
LEICESTER LE1 7RH, U.K.;
BULGARIAN ACADEMY OF SCIENCES, INSTITUTE OF NUCLEAR RESEARCH
AND NUCLEAR ENERGY, 1784 SOFIA, BULGARIA
Received October 10, 1985.