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ON THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS
FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS
OF HYPERBOLIC TYPE

1« Introduction

The present note is devoted to the study of the conver-
gence of the sequence of successive approximations for the
solution of the Goursat problem for the equation

zxy(-xvy) = f(x,y,z,zx,zy)

where 2z, Zyy 2 denote -appropriate functions on any subset’

J
of the space R2, while z__(x,y) is the value of z__ at
(x,7) €R® and f satisfies some Carathbodory type conditions,
The main result of this paper says that nonconvergence of
successgsive approximations of such type squations is in any
sense a rare case., This type property is said to be generic,
The study of generic properties for hyperbolic equations
was started by A.Alexiewicz and W.Orlicz [1], who proved that
under some very natural conditions on f, the uniquenes of so-
lutions of the Darboux problem is a generic property. Lasota
and Yorke [4] studied generic properties concerning existence
snd uniqueness of solutions for differential eqguations in
e Banach space. liore recently M.Kisielewicz [2], [3] studied
generic properties for functional differential eguations of
neutral type of the form

x(t) = £(t,X¢,%)
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2 J.Straburzynski

where xt(e) = x(t+8) for fixed teR, 8¢ [~-r,0] and in the
most general form

x(t) = f(t,x,%).

Other generic properties have been studied in [5]. Further
references can be found in [3].

2., Notations and preliminarises

For given positive numbers «, 3, a, b and non-decreasing
functions y = g(x) and x = h(y) of clase C’ defined on inter-
vals [0,a] or [0,b] respectively, having the only one common
point at zero, let U< g(x)<b, Osh(y)<a and P = [-x,a]x
x ['ﬁvb]O

Let D = {(s,t): h(t)<s<a, gle) <t <b} and D =
= {(e,t) : h(t)<ssx, g(s) <tgy}for xe[0,a] and y ¢[0,D].

Furthermore, let G = P\ D, D_ = {ye [8(X),b] : (x,y)e D}
and Dy = {xe [a(y),a] : (x,3) e D}. Similarly we define Gy
and G_. '

We introduce the following notations:
R® - the n-dimensional space with the norm ll*ll;
C (P RP) - the space of all continuous functions with the
supremum norm el o)
C1(P,Rn) - the Bahach spacs of equivalence classes of all
functions p such that p(e,y) is measurable and p(x,+) is
continuous for aea xe [-o,8)] and such that

o
plq = ax p(x,3)] dx <ooj
fel 4 _j yeﬂt_ b] [l e(x,3)]

o] (P R®) - the Banach space of equivalence classes. of all
functions "q such that q(+,y) is continuoue for a.a y ¢ [-P,b]
and q{x,*) is measurable and so that

b
|q|2 = 5 max la(x,y)ll dy <ooj
-p x¢[-o,8]
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Successive approximations 3

A(P,Rn) =~ the space of all absolutely continuous .functions
such that Zy € C1, z, ¢ C, and zxy ¢ L, We shall consider A(P,Rn)
together with the norm |z|p = [z], + |z,], + lzylz and
Wy = C xC, xC, with the norm [(z,phq)]p = |2[ + [p]4 + la],e
Let F be a space of all functions T : f)xCox C1 sz—>Rn
satisfying the Caratheodory type conditions:
{1) f(+,+,2,p»9) is measurable for fixed (z,p-q) ¢ CoxC1x02
(i1) f(x,y,*,*,*) is continuous for fixed (x,y) ¢D
(1ii) there exists a Lebesgue integrable function m:D ——’R+
such that [|£(x,3,2,p,9)[ < m{x,y) for {2z,p,q) € Wp.
Let us introduce in F the eguivalence relation "~" by
setting f,~ f, iff f1(x,y,z,p,q) = £,(x,3,2,p,9) for
a.a (x,y3) ¢D and (z,p,q) €Wp. We denote by ¥ the space of
all eginivalence classes of F with the norm

(%) ||f|1?= “ sup {Ilf(x,y,z,p,q)" : (z,p,q)eWP}dxdy, fe¥.
D

A mapping fe ¥ 1is called to be locally Lipschitzean with
respect to (z,p,q) €W, iff for every (z,p,q) there exists
a neighbourhood U of (z,p,q) and a Lebesgue integrable function
k, .:D — R_ such that

2pg
||f(x'ytz1vp1 pq]) - f(xn3152992'q2)" <
<y g (xa3)(|29-25] §7 + [py=0o| 37 + |a495 F)

for (2,,p449¢)s (25405495) €U and (x,3) ¢ D, where

lz14-z2|§y = ;“P lzq=251,

xy
X
Xy
p - = -
|P1-p2 13 L e 2% 1y IPa(eat) = py(s,t) e
and C
laga, 13 = §B o 5% g 1aaleet) - aple,tifar,
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4 J.Straburzyiski

Similarly to proofs in the paper [6] we can prove the
following Lemmas

Lemma 1. (A(P,Rn),l'lp) is a Banaoh space.

Lemma 2. (%, ¢) is a complete metric space with o
defined by (=).

Lemma 3. Supposse that z : G — R? is absolutely
continuous function, then there exists an absolutely conti-
nuous extension 2 of the function 2z on P such that
lEIP = IZIGO

Lemma 4. For every £fe¢ ¥ and € > O there exists
T, 6 ¥ , locally Lipschitzean and such that g(fe,f) SE .

3. Convergende of successive approximatidhs
Let us consider the following functional-differential
equation

(1) z(x,y)=¢p(x,y) for (xvy).eG
zxy(x,y) = f(x,y,z,zx,zy) for a.a (x,y)eD

where ¢¢4(G,RP) is given, f 1 DxCyxCyxCy —=R% and fe 3.
The problem consisting in finding a solution of equation (I)
will be called the Goursat problem,

It is easy to verify that (I) i& equivalent to the inte-
gral equatioh ’ '

) y(x;j) for x,¥) €@
(ITI) 2(x,y) = _
ﬂ(x;y)+~§5 f(s,t,z,zx,zy)dsdt for {x,y) €D

Py

where

X Y .
Alx,3) = 9(0,0) + | 9 ls,8(e))as + | ¢ (n(t),t)at.
] 0
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Successive approximations 5

Hence we obtain

#5(x,7) for a.a x¢ [-oya] and ye G,

zx(xﬂ) =4 J
Pe(x,8(x)) + 5 f(x,t,z,zx,zy)dt for a.a x¢[0,a)
8(x) and ye D
and

vy(xny) for xe G, and a.a y ¢ [~B,b]

z_(x,3) = x v
J
cpy(h(y),y) + j £(8,5,2, Zys2y )ae for x eD
h{y) and a.a ye [0,b]

Let X = 4{G,R") x ¥ and let us denote by 8 the set of
all (¢,f) with locally Lipschitzean f. '

In virtue of Lemma 4, we have § = X,

Let (zn) ‘be a sequence from A(P,Rn) defined by

¢(x,y) for (x,y)e@
{x*) z (x,5) =
2’(x93) + . j§ f(s.t,ln_.‘,(ln-.‘ )x,(znp1 )y)dadt
D
Xy . for (x,y) €D,
where z,(x,3) = ¢(x4y) for (x,y) ¢ G and 2,(x,3) = §(x,3),
for (x,y) e D. Here ¢ denote an absoclutely continuous exten-
sion of the function ¢ on P.

Theorem 1, Por everyj (¢,f)e S the sequence (z )
defined by (xx) is convergent in A(P,R%) to the unique aolu-
tion of (I).

Proof., Ilat so(r,y) = ¢(x,y) for (x,y) ¢ G and
2,(x,3) = ¢(x,3) for (x,3) ¢ Ds

Supposc U, and k ) —>R are a neighbourhood of
(zo,(z )x,(z )y) and Lehesgue integrable function, respecti-
vely such that

- 39 -



6 J.Straburzyiski

||f(x,y,z1,p1,q1) - f(x’ynzz‘,p2792)"$
<ko(x,3)12g-2,l 50 + 1pg-ppl + lag-a,137)

for (z1,p459¢)4(25405,85) €Uy and (x,y) € Do
Let S0 be a ciosed ball of WP with the center
(zo,(zo)x,(zo} ) and a radius r,> 0 such that S, cU..
Selsct (xo,yo) ¢ D such that

ﬂ n{x,y)dxdy s%o—; ” ko(s,t)dsdt <% , |A-z°'Do$%°- ,

D, Dy

where D, = {(s,t) : h(t) ¢s <Xg» gls) ¢t syo}. This is

possible, because |2—z°|D — 0, D” n{s,t)dst — 0 and
xy

” ko(s,t)dsdt —» 0 a8 (x,y) — (0,(?).

Xy
Let
¢({x,y) for (x,y)eG
u1(x,y) =
Ax,3) + ] £(5,5,3,,(2,) 4, (2], )d8dt
D ,
Xy for (x,y) €D,

We observe that u, € A(P,Rn) and

r

r
1“1""0‘01)0*‘39' ' I(“1)x"(”o’x|11>o“32 ’ I(“1)y'(zo)3|2Do

Then |u1"L>|D <T,.
Now let °

a {x,y) for (x,y)eGuD,

z1(x,y) =
z (x,5) + (u{v-zo) for (x,3)eD\D,.
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Successive approximations 7

Using induction we define seguences: (un) and (zn) in a(®,r")
by setting

olx,5) for (x,y) eG

un(x,y) =
AMx,y) + If f(s,t,zn_1;(zn_1)x,(zn_1)y)dsdt
D
Xy for (x,y)eD
u (x,y) for (x,y)eGuD,
Zn(X..‘]) =

zo(x,y) + (un-zo) for (x,y)e D\Do

for n = 1,2,..0 .
It is easy to see that

lzn'zolP = Iun'zolDos To

for n = 1,2,... and (zn.(zn)x,(zn)y)e Sy¢€ Uy. Theretors,

lzo-2415 = |z2-z.‘|0Do + |(z2)x-(z1)x|1D° + |(22)y-(z1)y|2Dos

< sup §f xolentdlzy=2 )% dsat + 2 ff K (s,t)]2,-2 | dsat <

) ny D,.

<lzg-2lp (3 ff K (s,8)0041 ).

D,

Similarly, we get

[2n4172nlp €31%20=2p-alp f! ky(s,t)dedt
Do
for n = 1,2,... . Hence, by the completeness of A(P,R”) the
existence of z° ¢ A(P,R") satisfying 1lim |zn-z°|P = 0 follows,
n -»oo

Of course (z°,z:,z;) €S,. Then
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8 J.Straburzynski

Iz°(x,3)-A(x,3) - ” f(s,t,z°,z;,z;)dsdt | <|z°—zn|op +

D
Xy

+ H "f(s,t,zo,z;,z;) -_f(s,t,zn_1,(zn_1)x,(zn_1)y)dsdts

Dxy

< Iz-znlP (1 + ” ko(s,t)dad\t)

D,

fbr (x,3) eD, and n = 1,2,... . Furthermore z%(x,3) = e(x,3)
for (x,y) € Go Thus

nxp(x.)’) for (x,y)eG

2%(x,3) =] A(x,y) + ” f(s,t,z°,z;,z;)dsdt for {x,y) €D,

D
Xy

° o
zo'(x,y) + (z°-z°)‘ for (x,y) e D\ D,e

L

We shall show now that there exists exactly one function 2°
satisfying above equality. Suppose that % e A(P,R") satisfies -
it too. Since

lzo-ilp = IZO-EIDDO *-'z;"gx“Do + }2;47‘21)0 <

«312°%z2lp ff x (s, t)amat <l2®z]
T D
0

then |ZO-E|P'= 0. )
Let now zi”(x.y) = 2%(x,5) for (x,y) eGuD, and 2‘()1’(x,y)=

- z°z;:y)‘ for (x,y) ¢ R\ D, where z° is a solution of (I) on Dye
Simiarly we oan prove that there exists a olosed ball

S, €Uy with the center (zo-”), (zgl))x, (zg1 )_)y)'and a radius

r,> 0 and a point (x.‘ 13,) (X, <xq <&) such that
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Successive approximations 9

“ n{x,y) s?— , ” k1(s,t)dsdt<% , |x1-zg1)|D1s£6Q
D1 D1

where

X
A (x,3) = zg”(xo.g(xo)) + f (zgﬂ)x(syg(s))da +

*o

J \
+ j (zf,"))y(xo,t)dt
elx,)

and‘ D, = {(x.y) t X, <X<X,, g(x)<ysyo}.

Analogously, we define

z‘()”(x.ﬂ for (I.N)eGuDo

uy(x;,3) = »
21(x,y)+ _” f(s,t,zn_1,(zn_1)x,(zn_1)y)dsdt(1.y)eD1
D1xs
and
un(x,y) for (x,y)eGuDou D,
zn(x,y) = '

2,(,1)(X.y) + (u;zg1’) for (x,3)e D \(DyuD,).

Now, in a simllar way as above we can define a function

2! e A(P,R®) such that 1im Izn-z1|P = 0,
n--oco
Continuing this process we can define a unique function

z ¢ A(P,RP) satisfying {I) on the whole P, This completes the
proof,

3. Non-convergence of sugcessive approximations for the
equation (I)

Let (,2) ¢ X and let (3{%*T)) be a sequence of A(P,R®)
defined by : -
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10 Jo.Straburzynski

(% %] 2l9%)(x,3) =

o(x,y) for (x,y)eG

Ayt + J] £(s,8,2 2550, (2215, (2123T)) ) asat
ny for (x,y) €D

In this section we shall show that non-convergence of a se-
quence (zg‘f"f)) is in any sense a rare case.

We will use here the following, not published yet result
of Lesota (the proof is given in [2]).

Lemma 5. Let (X,d) be a complete metric space
and S a dense subset of (X,d). Suppose a function x:X - [0,0)
is such that x(x ) == U as n —» co for any seguence (x ) of X
such that x, —» x €5 a8 n—+oo . Then the set If {xex.x(x) o}
is a residual subset of (X,d).

Let y: X — [0, ) be defined by % (¢,f)=1lim diam Eé"’f)

o+ oo

where Eé?'f) = {zg"f),zgf_{ﬂ,...} for m = 1,2,.¢« 2and
diam Egp’f) denotes the diameter of Eéf’f). We have E;Z{ﬂ c
c Eé""f’ and then diam Egﬁ{f) < diam E,(n"".f). Since

0 < diam Es‘f'f) <6 f! n(x,y)dxdy
D
for every (¢,f) eX, then 1lim diem E(‘P’ ) exists for each
m->oo0
{¢,f) € Xo Now, by definition of y(¢,f) it at once follows
that y{9,f} = 0 iff (zlsl"”f } converges in A(P,Rn).
Lemma 6, Let (¢,f)eS and ((pn,fn) be a sequence

in X such that "Pn' (pG|+ p(f,,f) —» 0 @8 n —» oo . Then

(‘Pnof )

Zn
to a2 1e

zg"f)l P 0O as n = oo , uniformly with respect
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Successive approximations 11

Proof. ILetz (x,5) = ¢(x,y} for (x,7)eG and
z,(x,5) = §(x,y} for (x,y) e D. Select a neighborhood U of
(z‘o’(zo)x’(zo)y) and koe L({D) such that

||f(xly,z1’p1iq1) - f(x,ylzgva'QQ)" <

ES ko(xvy)(lz1‘22|§ + IP1'P2‘1 |Q1'QE|2 )

for (x,y)e D and (z1,p1,q1), (ze,pz,qz) eU,.
Let Bo be a closed ball of WP with the center
(zo’(zo)x’(zo)y) and & redius r > 0 such that B c U_.
Similarly es in the proof of Theorem 1 we can select

(x_,y.) €D and N> 1 such that
oo

ol s ] ateyony e, ] yten0m00 <3
D

I!DD i -,

0
<3 and |-z |D <3 whers

(h(t),t)dt.

X J
An(%:3) = 930,00 + | (gp),(s,8(8))08 + | (9,)
0 0

Denote

zél"”f)(s,t) for (s,%) €GuD,
X,y (Z;‘P'f))(svt) =
ovo zgp'f)(s,t) for (s,t) eD\Do.

! »T)
((zw’f)) Ms,t) = (ZI(H(P Ix(sy¥) for {s,5) e GuD,
y o X ’ =

ovo 0 for (s,t) eD\D,,

- 397 -



12 J.Straburzynski

(0. 2] (zé¢’f)y(s,t) for (s,t) €GlJDo
1, 5 (=88 ), 0) -

Xy
oo 0 for (s,t)eD\D.

Let us observe that

(Ppsfy) (9,£)
I'jxoyo 2 - jxoyo(zm )l ot
(‘PHan) ( £)
k -k Pol)
+ g 5 (U3 )y) - kg y (5 |y +
(‘Pntfn) (¢,2)
ey (a0 - 4y (sl T, <
: 1 b
< en=ol g + 1A~Alp #+ 3p(f,,2)]
1-3 i‘)j k,(x,y)dxdy mre i ln° :
0

for n> N, which proves that

I z(‘Pnrfn)

n ..zn(l‘P?f)IDb—bO a8 nh —» oo,

uniformly with respect to m> 1. COntinniLn‘g this progess we
can get
{e,,%,)
Izm n'"n _z!g‘l’of)lP_.o a8 n—=oo ,
uniformly with respect to m> 1. This proves Lemma 6,
We shall show now that ¥ (‘f’n'fn) —= 0 for every ssquence
(¢psf,) of X such that [¢ - go|+ o(£,,f) =0 a8 0= ,

where (¢,f) €S,
Lemma 7, Let (cpn,i’n) be a sequence of X such that

lop= #gl+ e(f,sf) — 0 as n —» o and (g,f) €8, Then
X(?n.fn) —~ 083 n-—+>00,
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Proof, Suppose that (<pn,fn)-1s a sequence of X
convergent to (¢,f) € S such that x(cpn,fn) is not coavergent
to sero. Then there are p» 0 and a subsequence (‘Pk’fk) of
(q:n,fn) such that ¢ - ¢4 + p(fk,f) —+ 0 as k — oo and
xlpysfy) > p for each k> 1, Henoce, 1t follows that

(?kofk)
diam B 2 n for k,m>1, But in view of the Lemma 6

(Pyrfy)
a sequenas (zm k*k } is convergent to z&‘P"‘ﬁ in A(P,RY),

uniformly with respect to m> 1., Therefore, for n,m> 1 and
suffiolently large k, say k> Nk, we have

(‘Pkofk) (?kofk)

1 £ £
I'm -5, IPSE"'I’&P' ) -z,(“" )IP'
‘Thus

(Ppsfy)
n < diam 8:1" k si— + diam géquf) - 1‘lE

for k> Ny, bscause (¢,f) e S, This contradicts to p> 0.

Theorem 2, The set X of all (¢,f) ¢ X for which
a sequence (z,(l‘P’f)) defined by the formula (xxx) is convergant
in A(P,R®) is residdal subset of X.

Proof., Invirtue of Lemma 7 the mapping y:X - [0,c0)
satisfles the assumptions of Lemma 5. This implies that the
set Q= {(cp.f) €X 3 y(p,f) = 0} is a residual subset of X.
Then, ¥ 1is a residual subset of X, too and the proof has
besn complated,

REFERENCES

(1JA1exiewicz 4, Orlicz W.t Some re-
marks on the existence and uniqueness of solutions 'of hy-
perbolic equation Zry = f(x,y,z,zx.zy), Studia Math.,

15 (1965), 201-215.

[2] Kisilelewioz M.t Generio properties of functio-
nal-differential equations of neutral type in Banaoh spacs.
Punkcial Ekvac., 25 (1) (1982).

- 399 -



14 J.Straburzyiski
[3] K1t sielewicsz i.: Nonlinear functional-diffe-

(4]

[5]

[6]

rential equations of nesutral type, PWN, Pozna®i-Zielona Gé~-
ra, (1985).

Lesota A., Yorke Jet The genseric property
of existence of solutions of functional-differential
equations in Banach space, J. Differential Zquations,

13 (1973), 1-12.

De Blasi F,S., My Jak J.: Generic proper-
ties of hyperbolic partial differential egquations, J. Lon~-
don Llath. Soc., (2) 15 (1977), 113~-118.
Straburzydskil J.: On certain extension of
absolutely continuous functions &nd approximation theorem,
Discrete Math. (to appear).

INSTITUTE OF MATHEHATICS AND PHYSICS, ENGINEERING COLLEGE,
€5-246 ZIELONA GORA, POLAND
Received September 15, 1985,

- 400 =



