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CONDITIONING IN LIMIT PROBLEM FOR ORDER STATISTICS

1. Introduction

The Levy & book [9] contains some results which suggest
the following idea of obtaining limit theoreams fof sums of
dependent random variables: to replace all probabilities and
expectations in known limit theorems for row-wise idependent
double sequences into the analogous conditional quantities,
where the conditioning is with respect«to some specially
chosen 6-fields, and change the convergence of numbers into
the convergence in probability. Brown and Bagleson first
applied the idea in [1]. They considered the conditioningiin
respsct to the 6-fields from a double row-wise increasing
array. Later, the theory with such a conditioning was develop-
ed by Bagleson ([2]), Kxopotowski ([3], [4]), Jakubowski ([5])
and others - still for sums only.

Applying this idea and making use of the conditioning
proposed in [1] we prove in the present paper two limit theo~
rems for order statistics in the case of dependent random
veriables, They are generalizstions of some results for row-
wise independent double sequence which belong to Loeve
(see [6]).

We consider a double sequence {{xnk}}' k= 1,000,k,
n=12,ses, 0f random variables defined on a common probabi-
1ity space (Q, ¥, P). The double sequence of 6-fields {{gnk}}.
is row-wige increasing and adapted to {{xnk}}. For wef we
order the reaslizations Xn1(w),...,xnknuo), n» 1, in the in-:
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creasing sequence {znk}’ k = 1,...,kn. Let us define a random
verisble Z,. by: znk(w) =2 k= 1,...,kn, nz 1. The rasndom

veriable Z, is the k~th order statistic. Obviously
n, n-k+1

2, = min{Xn1,...,Xnkn},

znkn =-max{xn17...,xnkn}.

In this paper all the equations between random variables
ere in the almost sure sense; the symbols 22, TT denote
k

kn kn k
>, TT , respectively.
k=1 k=1

The following lemma taken from [5] is the basic tool in
the theory of limit theorems for sums of dependent random
varigbles with the conditioning described above:

Lemma . Let {{xnk}}' {{?nk}} be defined as above. If

EJ Blexp(itXy,) | ?n,k-1)';2’ g, # 0,

then

Blexp(it D> xnk” — 2,
k

where t is any real number and z, is a certain complex
nunber.

We apply the above lemme in the proof of our results for
order statistics,

2. The case of r-th order statistics

For the double seguences {{xnk}}, {{an}} defined above
we denotg by Fp,(*|¥, _,) the conditional distribution func-
tion of xnk’ k = 1,...,kn, and we -have

Theorenm 1. If the random variables xnk'
k = 1,...,kn, n3>»1, are row-wise conditionally uniformly
assymptotically identically distributed, i.e.
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(1) max |y (x | %o yeq) = Fp(x)| = 0

for certain sequence of distribution functions Fn, nx1, and

P
(2) 20 (1= Polx [ %, q)) — Lix),
k
then

I'-1 k
<x)— > LE%EI e'L(x),

(3) ?(Zn,kn-r+1
k=0

where x 1s a real number,

It should be emphasized that the conditions (1) and (2)
are the conditional versions of those from the theorsm for
row~-wise independent double sequence. As in [6] the proof is
divided into three parts, and also similarly as in [6] the
result obtaindd in the first part (a) follows from the known
limit results - see the papers [7], [8] or the book [10].

We present it to make our paper selfcontained and to show how
useful Jakubowski’s lemma is in proving limit results,

Proof. Since (P(Zn,kn-r+1 <x)) is a compact se=-

quence, then for its convergence to s it suffices to prove
that from every subsequence we can choose a subsequence con-
vergent to s, The sequerce {Fn(x)} is also compact and con-
sequently we can assume that

3
(4) max |Ppy(x| %y yq) = Flx)| —=0
for certain distribution function F(x). Applying the routine
technigue of subsequences wé can changs the convergence in

probability in (2) and (4) into the a.e. convergencs.
Let us observe that

(5) P2k paq <) = P(z I(Xnk>x)<r)
'"n
k
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for any r = 1,...,kn, n>1. Now we consider three possible

cases: (a) F(x) = 1, L{x) <00, (b) 0<F(x)<g1, L(x) = o,

{c) F(x) = 0. {Obviously for U< F(x) <1 we have L{x) =oc0 ).
(a) From the expansion of the exponential function we get

log T En’k_1(exp(itI(Xnk>x))) =
k

>= og(1 + (1 - Fplx| ?n,k-ﬂ)(eit - 1)) =
k

20 Plx |5y e - 1) e
k

2 2
+ 8(x) (eit -1 21;' (1 - Fnk(xlgn,k-‘l” ’

where {8 (x)| <1 and En,k-1(') = E(°|‘.¥n’k_1) for any
k =1,e00,kp, n21. On the other hand

2
S5 (0= Pdx | 5, e q)) <
k
smla:x (1 - Fnk(x lzn,k-1“ % (1- Fnk(x | g:n,k-1”‘
Conssquently (2) implies

P 1t

TT Bp, yq(exp(161(X > x))) —= exp(L(x){e™" = 1)} > 0.
k

Now applying the lemma with X . changed into I(xnk>x)
we see that the random variable % I(X,, > x) is Poissonian
with the mean L{x) in limit. Hence (3) follows froam (5).

(b) Since
r-1
1>(Zn,kn-:r.'m <x) = 23P 27I(X,>x) =1 ,

i=0 k
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then it suffices to show that for any 1 = 0,1,...,r=1 we have
(6) P(22I(X, >x) = 1) —=0,
k

At first let us observe that

(7) P(2T(X >x) = 1) =
k
i
= >0 B 1T (X <x) TT I(anl>x}).
1SJ1<ooo<ji$kn #31"."31 1=1

Now, we introduce the following definition
A ={uen : m;xank(x |3¢n’k_1)(w) - F(x)l—» 0

and > (1 - Fnk(x| yn,k_.l)(m))-—»oo} .
k

Since the double sequence {{;nk}} is row-wise inoreasing and
P(4A) = 1 (consequently EX = BXI(A) for any integrable random
variable X) so this together with (7) implie that

8 P I(X = 1)<
(8) (x> x) = 1) ¢

< > sup T Ppp(x | ¥y, k-1 ()
1$J1<ooo<di<kn wed k¢31’°"031

i
x JT (1 - F ¥ .
1o ( njl(x | n’:_lh_-1)(w))

For any w ¢ A and sufficiently large n we have

Pre(x | %y yoq) (@) 2 3,
‘where g = P(x), k = Tye00sky. Consequently
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T Fgelx | T g ) () =
kh3qreenrdy

i
= (T Bog (x| 0,5 9)(0)) ™ TT Bl | %y eoq)(0) <
1=1 1 Y]l Kk ’

< |

o|r

i
) TT Fnk(x I gn,k-1)(“’)'
k

On the other hand

log TT Fpylx 7,y q)(@) = 322 dog(1 =1 = Ppylx| 5, 4 4)(w))
k k

< =20 (1 = Fpylx | F g Ha))
k

and thus for any we A and sufficiently large n we get

p T Fnk(x‘ ?n’k_.])(w)*
16d4< e e<dyclty Khdyrenendy

i

x 1TT1 (1 - Fyy (= | Fn,gq-1) (@) <

2,% ,
<(2) exp (- 253(1 - Foe(x] 3, q)(e)) >
i

x 2=, m G- Fnjl(x |?n,dyi-1”“’” <
1SJ1<'..<Ji§kn 131

2 i
<(2)" exp (_-an - Foplx | 5, ) (0)) =

(30 - Bylx | %, g2 0h)
k
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For any we A we have §§:(1 - Polx l?n,k_1)(w)) —» 00, CON-

sequently (8) and the sbove inequality imply (6).
{c) Similarly as in the case (b) we get

P(Zn,kn-r+1>x) =P (Z I(X, > x);r);
k

r r
2B TT Xy >=x)>inf TT (1 - Fylx |3, 5 1) (w)),
i=1 B i ’

where B = {ueQ: mix Folx | ’Jn,k_.])(w) - 0}. Since for sny
weB

r
ﬂ (1 - Fni(xl ?n’i_1)(‘0)) — 1,
i=1

then P(2Z <x) — 0,

n,kn-r+1
Since L(x) = oo, we obtain (3). The proof is completed,

3. The case of (kn-r)-th order statistics

For the double sequences {{xnk}}’ {{Knk}} defined above
we have
Theorem 2, If the condition (1) is fulfilled and

(9) 35 Po(x | %, ) —= ulx),
k

X 1s a real number, then

o0 k
<x) — > —k——M (lx) e'M(X).
k=r+1

(10) P(Zn,:|:‘+1

Proof. Let us observe that

(11) P‘(zn,rﬂ <x) =1 -P 2 (X <x) <r + 1),
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Repeating the proof of Theorem 1 with Fnk(x [%p k_1), F, L
and I(X,, <x) changed respectively into 1 - F,, (x |§n,k-1)’
1 = F, Il and I(xnk>»x) we get from (1) and (9)

r
k
P (Z (X <x)<r + 1)-. E M_k_gﬂ o~ M(x)
k k=0

Consequently (11) implies (10).

4. Remarks

Now we present an example of a double sequence of rv’s
which is row-wise conditionally uniformly aessymptotically
identically distributed.

We consider two independent double sequences {Ynk}}’
{{an}} of row-wise iid rv’s. The common distribution function
on n-th row in {{Ynk}} is Fn. Let us take a double sequence
{{ank}} of positive real numbers such that :E: an —> 0 and

for any k and B consider such a set A, that P(Y, e 4}, )<
<&, and P(;nke Ank)'<ank' We define X4 = Y.,

Yhk if xn,k—1e An,k-1’
Lny = c
znk if xn,k-1 eAn,k--1'

kK = 2,000,k;, D> 1. Then 1t is easy to see that {{xnk}} is
row-wise conditionally uniformly assymptotically identically
distributed. '

Theorems 1 and 2 are generalizations of ths results for
row-wise independent double sequence. To obtain the ones from
our theorems it suffices to teke ¥, = {¢, @} for every
k = 1,000yk,, n>1; then the conditions (1), (2} and (9)
change into the ones from Loéve s theorems (see [6]),

There still remains an open question if Lévy s idea is
applicable to the 1limit theorems for rn-th order statistics,

- 384 -



Conditioning in limit problem 9

where r  and kn-rn tend to infinity as n —» oo . Another
guestion, still unsolved also for sums is the following:
describe the class of 6-fields for which the above procedure
of obtaining limit theorems for dependent random variables
from the known results in the independent case works,
Acknowledgement., I wish to express my thanks to Doc.
A. KXopotowski for many materials which direct my interest
to this field. I am also greatly indebted to the referee for
valuable remarks (on the formulation of Theorem 1, on the
example and others). v
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