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SOME FIXED POINT AND COINCIDENCE POINT THEOREMS 
FOR MULTIVALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES 

0. Notations, definitions and preliminaries 
In the recent time there is an increasing interest in the 

fixed point theory in not necessarily locally convex topolo-
gical vector spaces (see [ l ] - [ 9 ] , [11], [13], [16]). 

Some further results in this direction wi l l be proved 
in this paper. 

First, we shall give some useful definitions and results. 
D e f i n i t i o n 1 [ i l ] . A convex space means a 

convex set in a vector space with any topology that induces 
the Euclidean topology on the convex hull of i ts f in i te 
subsets. 

Every convex subset of a Hauedorff topological vector 
space is a convex space. 

D e f i n i t i o n 2 [11]. L e t X b e a convex spaoe 
and K a nonempty subset of X. The set K is said to be c-com-
pact i f for each f in i te subset ? of X there is a compact 
convex subset K^ of X such that K u ? c 

I f X is a convex subset of a Hausdorff topological vector 
space then every nonempty convex compact subset of X is c-com-
pact. In any convex space every f in i te set and every convex 
hull of a f in i te set is c-compact. 

D e f i n i t i o n 3 [ i l ] . Let Y be a topological 
spaoe and B cY. The set B is said to be compactly closed 
(open, respectively) in Y i f for every compact subset L of Y 
the set BnL is closed (open, respectively) in L. 
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B 
By 2 we shall denote the family of a l l nonempty subsets 

of a nonempty set E. 
In [11] the following theorem i s proved: 
T h e o r e m . Let X be a convex space, Y a topologi-Y 

cal space and S:X 2 so that the following conditions are 
s a t i s f i e d : 
( i ) For each x e X, S(x) i s compactly open in Y. 
( i i ) For each ye Y, S~1(y) i s nonempty and oonvex. 
( i i i ) For some c-compact subset K of X the set Y \ U S(x) vgK 

i s compact. 
Then for each continuous mapping 8 of X into Y there ex i s t s 
an x e X such that s(x) e S(x) . 

D e f i n i t i o n 4 [8]. Let X be a topological veo-
tor space and KcX. The set K i s said to be of Zima's type i f 
for every neighbourhood V of zero in X there ex i s t s a neigh-
bourhood U of zero ,in X such that : 

co(U n(K-K))cV (co P - the convex hull of F) . 

Some fixed point theorems f c r multivalued mappings which 
are defined -on subsets of Zima's type are proved in the pa-
pers [6] , l7l. 

In [8] an example of a non locally convex space X and 
K c x i s given, where K i s of Zima's type. I f (B, II II*) i s a 
paranormed space and K 4 0 i s suoh that [16J: 

i t e i * < t C(K) » x i r , 

f o r every t e [ 0 , 1 ] and every x e K-K, then co(U n ( K - K ) ) c u 
r 

"cTKJ 
for every r > 0 (where Up = { x | x e X,Hx||*< r } ) , which means 
that K i s of Zima's type. 

I f X i s a Hausdorff topological vector space and K i s 
of Zima's type then, in [Gj, the following implication i s 
proved: 
(1) Ac K, A i s precompact co A i s precompact. 
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D e f i n i t i o n 5 [15] . Let X be a subset of a 
topological vector space, and f o r every xe X, Tx cX. A point 
xQ ie said to be a maximal element of T i f TxQ = 0 . 

All topological vector spaces in t i l ls paper w i l l be assum-
ed to be Hausdorff. I f F cE and E i s a topological vector 

tji 
6pace, by 2" we denote the family of a l l nonempty convex C 0 
subsets of F. 

Using the Theorem we sha l l prove the following c o i n c i -
dence theorem. 

T h e o r e m 1. Let C be a nonempty closed and con-
vex subset of a topological vector space E, C1 a nonempty 

c 1 C. 
subset of a topological vector space F,T:C 2 Q 0 , S:C -*• 2 
so that the following conditions are s a t i s f i e d : 
( i ) For each x e C , S(x) i s compaotly open in C1 and there 

e x i s t s y e C1 so that x e int T (y ) . i * 
( i i ) For each y eC^, S (y) i s nonempty and convex. 
( i i i ) For some c-compact subset K of C the set C., \ l^J S(x) 

Tflf 
i s compact. ' 

( iv ) There e x i s t s a ' f i n i t e set U cC^ and a compact set 
L c C such t h a t : 

O [ int r 1 ( j c ) ] ° c l . 
xeM 

Then there e x i s t s xQe C such t h a t : 

S (x 0 ) n T ( x 0 ) 4 0 . 

P r o o f . F i r s t , we sha l l prove that there e x i s t s 
a continuous mapping stC — C 1 suoh that s(x) e T(x) for 
every x e C . Prom ( i ) i t follows that L c int T~ 1 (y ) , and 

yeC1 

since L i s compact there e x i s t s a f i n i t e set N cC^ such that 
L c U int T ~ 1 ( y ) . Further, ( iv) implies that C= U int O^fy)» 

ycN y.cNuM 
l e t NuM = { y 1 » y 2 » . . . » y n } . 
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By | f 1 , f 2 , . . . , f n | we sha l l denote a par t i t ion of unity 
subordinated to the open covering { int T~1 and l e t 

n 
8 ( X ) = 

i=1 

for every x e C. Then s(x) = X j f H ( x ) y . and since 
i i f ^ x J / O 1 1 

•i 
f ^ ix ) i 0 implies that x i s in int T~ (y^) , we obtain that 
fj_(x) ^ 0 implies that y. e l f x ) . From thi s we have that 
s (x) eco T(x) . Since T(x) i s convex for every x e C i t follows 
that s (x) eT(x) for every x eC. Prom the Theorem we conclude 
that there e x i s t s x Q e C such that s ( x 0 ) e S ( x Q ) , since s i s 
a continuous mapping from C into C1 . Then s (x Q ) e S ( x 0 ) nT(xQ) 
and so Theorem 1 i s proved. 

C o r o l l a r y 1. Let B, P, C and S be as in Theo-
rem 1, C1 a nonempty, convex subset of P and for every x e C, 
Tx c C.j so that the following conditions are s a t i s f i e d : 
( i ) For every x e C such that Tx 0 there e x i s t s y € Ĉ  so 

that x e int(co T ) " 1 ( y ) , where (co T) " 1 (y ) = 
= { x | y e co Tx}. 

( i i ) There e x i s t s a f i n i t e set M cC1 and a compact set Lc C 
such that 

n [int (co T ) - 1 ( x ) ] c c l . 
xeM 

( i i i ) For every x e C , Sxnco Tx = 0. 
Then there e x i s t s xQ e C so that TxQ = 0. 
P r o o f . Suppose that Tx 4 0 for every x e C. Then 

the mapping G:x i-» co Tx (xe C) s a t i s f i e s a l l the conditions 
for T in Theorem 1 and so there e x i s t s x e C such that 
Sxnco Tx 4 0. But th i s contradicts to ( i i i ) . So {x | Tx = 0} 4 0. 

R e m a r k . I f B = F and C1 cC, Corollary 1 i s , in 
f a c t , a r e su l t on the existence of a maximal element of T 
( [ 1 5 ] ) . 
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C o r o l l a r y 2. Lat 2 , P, C, C1 and T be as in 
'Theorem 1, A an arbi t rary set in a space Z and g:CxC1 i — Z 
so that the following conditions are s a t i s f i e d : 
( i ) For each f ixed x e C , the set {y |y e C.j , g ( j , j ) t i } i s 

compactly open in C^. 
( i i ) For each f ixed y e C ^ the set { x |x e C , g(x ,y ) e A } i s 

convex. 
( i i i ) For some c-compact subset K of C the s e t : { y | y e C ^ , 

g (x ,y ) i A for a l l x e k } i s compact. 
Then the mapping g s a t i s f i e s at l e a s t one of the fol low-

ing proper t i e s : 

(1) There e x i s t s yQ e Ĉ  such that g (x ,y Q ) 4 A fo r a l l x e C. 

(2) There e x i s t s x Q e C and yQ c T(x q ) such that g ( x 0 , y 0 ) e A. 

P r o o f . Let S(x) = {y |y e C 1 , g (x ,y ) e A] for every 
x eC. Suppose that (1) i s not s a t i s f i e d . This implies that 
S~ 1 (y) 4 0 for every ye C ^ and so a l l the conditions of Theo-
rem 1 are s a t i s f i e d . l e t y Q e C and y Q e Tx 0n Sx 0 > Then 
g ( x 0 , y 0 ) eA, where yQ e T x q . 

C o r o l l a r y 3. Let C be a compact and convex 
subset of a topolog ica l vector space E, Ĉ  a nonempty subset 
of a topo log ica l vector space F, Z a regular space , C2 a c l o s -
ed subset of Z and iMCg) a b a s i s of open neighbourhoods of 

C 1 
C2 in Z. Let T:C 2 ^ be as in Theorem 1 and l e t g:C«C1 Z 
be a continuous mapping such that f o r every y e C1 and for 
any Ue £(02) the set { x | x eC, g (x ,y ) e U} i s nonempty. 

Then there e x i s t s x e C and y e Tx such that g (x ,y ) e Cg. 
P r o o f . As in [11], l e t U e ^(C^) and A = U. Then 

a l l the condit ions of Corollary 2 are s a t i s f i e d and since (1) 
in Corollary 2 i s not s a t i s f i e d , we conclude that there e x i s t s 
Xy e C such that g txy .a tx j j ) ) e U. The continuous mapping 
s :C — d o e s not depend on U and s ( x ) e T ( x ) , x e C (the e x i -
stence of s i s proved in Theorem 1 ) . As in [ l l ] i t fol lows 
that there e x i s t s x e C such that g ( x , s ( x ) ) e C ? and s (x ) e T ( x ) . 
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T h e o r e m 2. L e t E , P and C.. be as in Theorem 1, 
Ci 

C be a nonempty, convex paracompact subset of E, T:C 2 
C. c o 

and l e t S:C —• 2 s a t i s f y conditions ( i ) - ( i i i ) of Theorem 1. 
Then there e x i s t s xQ e C such that T(xQ) nS [x ) 4 

P r o o f . Since C i s paracompact, from C = 
= u int T" (y) i t follows that there e x i s t s an open l o -

y«c1 

ca l ly f i n i t e refinement & = { V - j J i t j of the covering 
{ i n t T " 1 ( y ) } e C . Let { f . } i e I be a par t i t ion of unity sub-
ordinated to the covering iK For every i e I there e x i s t s 
y ± e C1 so that V ^ int T - 1 (y±) j l e t s(x) = ¿L j f ^ x ) y± f o r 

every x e C. Further, f ^ x ) 4 0 implies that y± e T (x ) , and 
since iJ" i s loca l ly f i n i t e i t follows that s:C C1 i s a con-
tinuous mapping such that s (x) e T(x) . Then from the Theorem i t 
follows that {x|x e C, T(x) n S(x) 4 0 } 4 0. 

2» The following fixed point theorem i s a general izat ion 
of a fixed point theorem proved by Himmelberg [10], 

T h e o r e m 3. Let K be a nonempty convex subset 
K 

of a complete topological vector space L, l e t F:K —» 2 be 
an upper semicontinuous multifunction such that F(x) i s closed 
and convex for a l l x e K and suppose F(K)c C c K, where C i s 
a compact subset of K. I f K i s of Zima's type there e x i s t s 
a fixed point of the mapping F. 

P r o o f . The proof i s similar to that of' Theorem 2 
in [10]. Let A • co C and K = A. Since K i s of Zima's type 
from (1) i t follows that K is compact. Let H « i n (Aj*A) and H 
be the closure of H into As in [ic] i t follows that 
there exis ts x e K such that x e H ( x ) and since x e A we have 
that x e F ( x ) . 

T h e o r e m 4« Let I be a nonempty convex and para-
compact subset of Zima's type of a topological vector spaae, 
D a tompact subset of X and T:X 2^0 so that for %very x e X 
there exis ts y eD such that x e int T~1(y). Then there exis ts 
x„ e D suoh that x- e Tx . o o o 
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P r o o f . As i n Theorem 2 i t f o l l o w s t h a t t h e r e e x i s t s 
a c o n t i n u o u s mapping s :X —» D such t h a t s ( x ) e T x . From Theo-
rem 3 i t f o l l o w s t h a t { x | x e D, x = s ( x ) } 4 V and so 
{ x | x e D, x e Tx} 4 0 . 

Let us g ive an a p p l i c a t i o n of Theorem 3 i n economy. 
Let { x ^ j ^ g j be a f ami ly of nonempty s u b s e t s . An a b s t r a c t 

economy or q u a l i t a t i v e game 5 i s a f ami ly j ( X ^ , A i , F i ) } i e I 

T T X i of o rde red t r i o l e s ( X 1 t A . , P - ) where A. ; I I X. —» 2 and 
x
 1 1 1 1 j e i 3 

Pj : TT X^ — » 2 i . An e q u i l i b r i u m f o r E i s an x*e X = TT X-
j e l 3 j e I J 

such t h a t f o r each i e l : 

( i ) x * e A i ( x * ) , 

( i i ) P ^ x * ) n ^ ( x * ) = 0 . 

T h e o r e m 5. Let j ( X i t
 b e an a b s t r a c t 

economy so t h a t the f o l l o w i n g c o n d i t i o n s are s a t i s f i e d f o r 
every i e l : 
( i ) X^ i s a convex, compact , m e t r i z a b l e s u b s e t of Z ima ' s 

type of a t o p o l o g i c a l v e c t o r s p a c e . 
( i i ) A ^ x ) = co A ^ x ) 4 0 f o r a l l x e X. 

x i — ( i i i ) The mapping A^X 2 , where A ^ x ) = A i ( x ) (x e X) , 
i s upper s e m i c o n t i n u o u s . 

( i v ) For each x eX such t h a t g ^ ( x ) 4 t t h e r e e x i s t s y e X^ 

such t h a t x e i n t g j 1 ( y ) , where 

g ^ x ) = A±(x) n co P j ^ x ) , x e X. 

(v) The s e t = { x | x e X , g±{x) 4 0 } i s open i n X. 
( v i ) x ^ c o P ^ x ) , f o r e l l x e X. 
Then B has an e q u i l i b r i u m . 

P r o o f . As i n Theorem 2 i t f o l l o w s t h a t t h e r e ' e x i s t s 
a c o n t i n u o u s mapping —•• X.̂  auch t h a t f ^ x ) e g ^ x ) f o r 
a l l z e U ^ , i e l . Let f o r every i e l 
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*hen F^iX ? " i s an upper s ec i con t inuous napping, l e t 
denote f o r c-vsry ;c e X 

p ( x j = TT s y i x ) . 
i e l 1 

Then F:x >—»- F(x) io e s upper sernicontinuous mapping of X i n t o 
the family of nonempty, closed and convex s u b s e t s of X, which 
i s o? Zima's type [ s ] . Prom Theorem 3 i t f o l l o w s t h a t t h e r e 
i s an x e X such t h a t x e F ( x ) . Such sn element x i s a l s o an 
e q u i l i b r i u x point of 3 . 
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