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SOME FIXED POINT AND COINCIDENCE POINT THEOREMS
FOR MULTIVALUED MAPPINGS IN TOPOLOGICAL VECTOR SPACES

O. Notations, definitions and preliminaries

In the recent time there is an increasing interest in the
fixed point theory in not necessarily locally convex topolo~
gical vector spaces (see [1]-[9], [11], [13], [16]).

Some further results in this direction will be proved
in this paper.

First, we shall give some useful definitions and results.

Definition 1 [11]. 4 convex gpace means a
convex set in a vector space with any topology that induces
the Euclidean topology on the convex hull of its finite
subsets.

Bvery convex subset of a Hausdorff topological vector
space is a convex space.

Definition 2 [11)]. Let X be a convex space
and K a nonempty subset of X, The set K is said to be c-com~
pact if for each finite subset ¥ of X there is a compact
convex subset K; of X such that Kuv ¥ ¢ K?.

If X is a convex subset of a Hausdorff topological vector
space then every nonempty convex compact subset of X is c-com-
pact. In any convex space every finite set and every convex
hull of a finite set is c-compact.

Pefinition 3 [11]. Let Y be a topological
space and B cY, The set B is said to be compactly closed
(open, respectively) in Y if for every compact subset L of Y
the set BnL is closed (open, respectively) in L.
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2 O.HadZic

By 2E we shall denote the family of all nonempty subsets
of a nonempty set E.

In [11] the following theorem is proved:

Theorem., Let X be a convex space, ¥ a topologi=-
cal space and S:X —» 2Y so that the following conditions are
satisfied:

(1) For each xe¢ X, S(x) is compactly open in Y.

(i1) For each yeY, S'1(y) is nonempty and convex.

(iii) For some c-compact subset K of X the set Y \ U S(x)
is compact. xeK

Then for each continuous mapping s of X into Y there exists

an x ¢ X such that s(x) ¢ S(x).

Definition 4 [8]. Let X be a topological vec=
tor gpace and K cX. The set K is said to be of Zima’s type if
for every neighbourhood V of zero in X there exists a neigh-
bourhood U of zero in X such thats

co(Un(K-K))cV (co F - the convex hull of F).

Some fixed point theorems fcr multivalued mappings which
are defined on subsets of Zima’s type are proved in the pa-
pers [6], [7]. ' '

In [8]'an example of a non locally convex space X and
KcX is given, where K is of Zima’s type. If (B, Il I*) is a
paranormed space and K # ¢ is suoh that [16]:

ltxfi* <t c(x) Ix|*,

for every te [0,1] and every .x¢ K-K, then co(U. n(K-K))(:Ur,

for every r> 0 (whers U, ={x|xe X,||x|*<r}), wlczilch means
that X is of Zima’s type. ' :

If X is a Hausdorff topological vector space and K is
of Zima's type then, in [6], the following implication is
proved:

(1) AcK, A ls precompact => co & is precompact.
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Some fixed point theorems 3

Definition 5 [15]. Let X be a subset of a
topological vector spacse, and for every xe¢ X, Tx cX, 4 point
X, is sald to be a maximal element of T if Tx, = #.

411 topological vector spaces in this paper will be assum-
ed to be Hausdorff, If FPcE and E is a topological vector
space, by ZF we denote the family of all nonempty convex
subsets of F.

1. Using the Theorem we shall prove the following coinci-

dence theorems.
Theorem 1, Let C be a nonempty closed and con-

vex subset of & topological vector space B, C1 a nonenpty

Cq
S:C —» 2

subset of a topological vector space F,T:C — 2

so that the following conditions are satisfised:

(1) Por each xeC, S(x) is compactly open in C; and there
exists y e C; s0 that xeint T (y).

(1i) Yor each y eC1. s~ (y) is nonempty and convex.

{iii) For some c-compact subset K of C the set C \\k,} S(x)
is compact, P XeK

(iv) There exists a ‘finite set M cC1 and a compact set

LcC such that:

co’

N [int 7% x0)]%c 1.

xeM

Then thers gxists s C such thats

S(xo)r\T(xo) ¥ .

Proof. Pirst, we shall prove that thers exists
a continuous mapping s:C — C, such that s(x) ¢ T(x) for

every x ¢C. Prom (i) it follows that LclJ int T~V(y), and
yeC
since L is compaot there exlsts a finite set N cC1 such that
LcU int 7~V(y). Further, (iv) implies that = \J 1int T(3);
JeN yeNul

let NuM = {y1,32,...,yn}.
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By {f1,f2,...,fn} we shall denote a partition of unity

subordinated to the open covering {int T'1(yi)}§=1 and let

for every x ¢ C. Then s(x) = Z fi(x};yi and since
isf, (x)#0

£,(x) # 0 implies that x is in int T7'(y;), we obtain that
fi(x) # 0 implies that y, € T{x). From this we have that

s(x) eco T(x). Since T(x) is convex for every xe¢C it follows
that s{x) ¢ T(x) for every x ¢ C. From the Theorem we conclude
that there exists x,¢C such that s(xo) eS(xo), since s 1is
a continuous mapping from C into Cye Then s(xo) eS(xo) nT(xo)
and so Theorsm 1 is proved,

Corollary 1. Let B, P, C and S be as in Theo~-
rem 1, C1 a nonempty, convex subset of F and for every xeC,
Txcc1 so that the following conditions are satisfied:

(1)  For every x e C such that Tx # ¢ there exists y e¢C; so
that x e int{co T)'1(y), where (co 'l‘)"1(y) =
= {x|yeco Tx}.

(ii) There exists s finite set McC, and a compact set LcC
such that

m [int (co T)'1(x)]° cL.

xeM

(1ii) For every xe¢C, Sxnco Tx = ¢,

Then there exists x e C so that Ix, = ¢.

Proof ., Suppose that Tx # ¥ for every xe C, Then
the mapping G:X +» co Tx (x ¢ C) satisfies all the conditions
for T in Theorem 1 and so there exists xe C such that
Sxnco Tx # ¥, But this contradicts to (iii). So {x|Tx=¢}+# ¢.

Remark. IfE=FandCycC, Corollary 1 is, in
fact, a result on the sxistence of a maximal element of T

([sh.

- 370 -



Some fixed point thacrems 5

Corollery 2. Let &, F, C, Cy and T be as in
Theorem 1, 4 an arbitrary set in a space Z and g:CxC1+—> 2
so that the following conditions are saticfied:

(1) For each fixed xe C, the set {y\ye Cqs gl{x,y) eA} is
compactly open in C1.

(ii) TFor each fixed ye Cy» the set {x]x eC, glx,y) eA} is
convex.,

(iii) For some c-compact subset K of C the set: {yly eC1,
g{x,y) ¢ A for all x eK} is compact.

Then the mapping g satisfies at least one of the follow-
ing properties:

(1) There exists y_ e C, such that gl(x,3,) ¢ 4 for all xeC.

(2) There exists x, ¢ C and y eT(xO) such that g(xo,yo) €h,

Proof. Let S(x)={ylye Cis &l{x,3) ¢ A} for every
x € C, Suppose that (1) is not satisfied. This implies that
S'1(y) # Y for every ye C,» and so all the conditions of Theo-
rem 1 are satisfied. Let o€ C and y e Txon Sxo. Then
g(xo,yo) €4, where y eTx .

Corollary 3. Let C be a compact and convex
subset of a topological vector space E, C1 a nonempty subset
of a topological vector space F, Z a regular space, 02 a clos~-
ed subset of Z and ﬁ(Cz) a basis of open neighbourhoods of
C, in Z. Let T:C —» 233 be as in Theorem 1 and let g:CxC, — 2
be a continuous mapping such that for every ye C1 and for
any Ue #(C,) the set {x|x eC, g(x,y) e U} is nonempty.

Then there exists xe C and y € Tx such that g{x,y) ¢ C,-
Proof. 4s in [11], let Ueﬂ‘(Cz) and & = U. Then
all the conditions of Corollary 2 are satisfied and since (1)
in Corollary 2 is not satisfied, we conclude that there exists

x;; € C such that g(xU,s(xU)) €U, The continuous mapping

s:C —*-C1 doas not depend on U and s(x)e T(x), xe C (the exi-~
stence of ‘s is proved in Theorem 1). 4s in [11]it follows
that there exists x e C such that g(x,s(x))e C, and s(x) e T(x),
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Theoren 2, Let E, F and Cy be as in Theorem_1,
C be a nonempty, convex paracompact subset of E, T:C —» 2Cl

and let S:C —=2 | satisfy conditions (1)-(1iii) of Thecrem 1.
Then there exists x_ e C such that T(xo) nS(xo) # .
Proof. Since C is paracompact, from C =

= U int T'1(y) it follows that there exists an open lo-
yeC1

cally finite refinement ¥ = {Vi}ieI of the covering

R -1 . - o

{3.n1: T (7)}yec1' Let {fi}ieI be a partition of unity sub-

ordinated to the covering **. For every ie I there exists
y4¢€ C, so that V,c int T'1(yi); let s(x) = 25 f;(x) y; for
iel

every x € C, Further, fi(x) # 0 implies that Jy€ T(x), and
since ® is locally finite it follows that &:C — C1 is a con-
tinuous mapping such that s(x) e T(x). Then from the Theorem it
follows that {x|xeC, T(x)n S(x) # (d} ¥ ¥.

2, The following fixed point theorem 1s a generalization
of a fixed point theorem proved by Himmelberg [10].

Theorem 3, Let K be a nonempty convex subset
of a completé topological vector space L, let F:K —» 2K be
an upper semicontinuous multifunction such that F(x) is closed
and convex for all x €K and suppose F(K)c Cc K, where C is
a compact subset of K. If K is of Zima’s type there exists
‘a fixed point of the mapping F. ,

Proof . The proof is similar to that of Theorem 2
in [10]. Let & = co C and K = A, Since K is of Zima’s type
from (1) it follows that K 1s compact. Let H = Fn (AxA) and H
be the closure of H into KxK., as in [10] it follows that
there exists x ¢ K such that xeH(x) and since x ¢ A we have
that x ¢ P(x). ' : '

Theorem 4, Let X be a nonempty convex and para-
compact subset of Zima’s type of a topological vector space,
D a ctompact subset of X and.T:X —»220 80 that for qvery xeX

there exists y ¢ D suoh that x eint T'1(y). ‘Then there exists
X, € D suoh that X, ¢ Txo.
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Some fixed point theorems 7

Proof., 4s in Theorem 2 it follows that there exists
a continuous mapping s:X — D such that s(x) € Tx. From Theo-
rem 3 it follows that {x|xeD, x = s(x)} # ¥ and so
{xlxeD, xeTx} # #.

Let us give an application of Theorem 3 in economy.

Let {Xi}ieI be a8 family of nonempty subsets. in sbstract
economy or qualitative game 5 is a family {(Xi’Ai'Pi)}ieI

L.
of ordered triples (Xi,Ai.Pi) where Ay jTTI Xj —=2 1 ang
X €
Py 1 Xy —=2 1, 4n equilibrium for E is an x*e X = JT X,
JeI Jel J
such that for each 1 e¢1I:
(1) xj e Ay (x*),
(i1) By (x¥*) nay(x*) = 4.

Theorem 5., Let {(Xi'AitPi)}ieN be an abstract
economy so that the following conditions are satisfiaed for
every l1el:

(1) Xi is a convex, compact, metrizable subset of Zima’s
type of a topological vector spacs.
(11) Ai(x) = ¢o Ai(x) # ¢ for all xeX.

; - X _
(1ii) The mapping Ay X =2 i, where Ai(x) = Aiix) (x ¢ X),
is upper semicontinuous.
(iv}] For each x eX such that 8;(x) # ¢ there exists y € Xy

such that x e int gf(y), whers

si(x) = Ai(x)nco Pi(x), x e X.

(v) The set U; = {x|xeX, g;(x) # #} 1s open in X.
(vi) Xy ¢ coO Pi(x),' for 81l x ¢ X.
Then E has an equilibrium.

Proof. 4s in Theorem 2 it follows that there exists
a continuous mapping f,:U; -—» X; such that f,(x) e g4(x) for
all eri, iel, Let for every iel
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F.ix: = _
A T
hl\x)’ Y¢Li
Xe
when FyiZ —» 2 7 is sn upper semicontinuous wmapping, let
o derote for everny xeX

(x} = 1T Fi(x).

iel
Then Fix = F({x) is &xn upper sealcontinuous mapping of X into
the femily of zonempty, closed and convex subsets of X, which
is of Zima’s %ype [6)]. From Theorem 3 it follows that thers
is an xe ¥ such that xe P(x)., Such sn element x is slso an
cguilibriur point of &,
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