

Chavdar Lozanov

**ON THE NONEQUIVALENCY OF THE THEOREM OF MIQUEL M_8
WITH A FOUR-POINT CASE OF THE THEOREM M_4^2**

The configurational Theorem of Miquel has analogous significance in inversive planes as the Theorem of Pappus in projective planes.

An inversive (Möbius) plane is an incidence structure $I = (\mathcal{P}, \mathcal{B}, \mathcal{Z})$, such that for every point $P \in \mathcal{P}$, the internal structure I_p is an affine plane and whose blocks are called circles ([1], 6,1).

In the fundamental paper on the axiomatics of the geometry of circles [2] van der Waerden and Smid proved that an inversive plane is miquelian (satisfies the Theorem of Miquel) if, and only if, it can be represented by a quadratic extension of a commutative field (or it is an ovoidal plane $I(\delta)$, with δ a non-ruled quadric in a 3-dimensional geometry over a commutative field).

There are different formulations of the configurational proposition known as the Theorem of Miquel [1], [2], [3], [4].

We call "configuration of Miquel" the set of eight points $A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4$ and six circles $c_1, c_2, c_3, c_4, c_A, c_B$ in an inversive plane, such that:

c_i is incident with $A_1, B_1, A_{i+1}, B_{i+1}$ with the subscripts taken mod 4;

c_A is incident with A_1, A_2, A_3, A_4 ;

c_B is incident with B_1, B_2, B_3, B_4 .

Here we use the following formulation of Theorem of Miquel:

If eight points are incident with five of the circles of a miquelian configuration, then the sixth circle of the configuration is incident with four of the points.

The case where A_i, B_i are eight distinct points is called Theorem of Miquel - M_8 .

In [2] van der Waerden and Smid consider the case M_8 (VM) along with the case when A_i coincide with B_i .

Yi Chen in [4] proves that the last case is a consequence of M_8 . He considers the different nontrivial coincidences of the points A_i, B_i , called k -point degenerations of the Theorem of Miquel according to the number k of the points in the configuration. There exist exactly nine such nonisomorphic miquelian configurations.

We make the following convention: when $A_i = B_i$, c_i is tangent to c_{i+1} ; when $A_i = A_{i+1}$, c_{i+1} is tangent to c_A , and when $B_i = B_{i+1}$, c_{i+1} is tangent to c_B .

There are different notations for these configurations [4], [5], [6]. Here we denote by:

$$M_7 : A_1 = B_1$$

$$M_6^1 : A_1 = B_1; A_{i+1} = B_{i+1}$$

$$M_6^2 : A_1 = B_1; A_{i+2} = B_{i+2}$$

$$M_6^3 : A_1 = B_1; A_{i+1} = A_{i+2}$$

$$M_5^1 : A_1 = B_1; A_{i+1} = B_{i+1}; A_{i+2} = B_{i+2}$$

$$M_5^2 : A_1 = B_1; A_{i+1} = A_{i+2}; B_{i+1} = B_{i+2}$$

$$M_5^3 : A_1 = B_1; A_{i+1} = A_{i+2}; B_{i+2} = B_{i+3}$$

$$M_4^1 : A_1 = B_1; A_{i+1} = B_{i+1}; A_{i+2} = B_{i+2}; A_{i+3} = B_{i+3}$$

$$M_4^2 : A_1 = B_1; A_{i+1} = B_{i+1}; A_{i+2} = A_{i+3}; B_{i+2} = B_{i+3}.$$

In all cases i is one of 1, 2, 3, 4 and the subscripts taken mod 4.

In the papers [4], [5], [6] is investigated the equivalency of the above configurations. H. Shaeffer proves that M_7 implicates M_8 , and both M_6^1 and M_6^3 implicate M_8 [6].

So it is natural to investigate the problem of realization of miquelian configurations in non-miquelian inversive planes, i.e. inversive planes which do not satisfy the Theorem of Miquel M_8 . The possibility of realization of some miquelian configuration in such plane enables us to come to conclusion about its equivalency with M_8 .

There are known two classes of finite inversive planes $M(q)$ and $S(q)$, which are isomorphic to an egglike inversive plane $I(6)$, where 6 is non-ruled quadric in $P(3, q)$ and ovoid $t(\psi)$ respectively ([1], 2, 4).

We investigate in [7] the realization of the configuration M_4^1 in finite non-miquelian inversive planes $S(q)$. In that paper we call M_4^1 "Little Theorem of Miquel".

Here we shall investigate the realization of the other possible four-point miquelian configuration M_4^2 in the same plane.

We use for our investigation a representation of $S(q)$, which we introduced before [8]. The points of $S(q)$ are the points (x, y) of the corresponding affine plane $A(2, q)$ and the symbol (∞) . The circles of $S(q)$ are the special ovals $D\psi(x, y) + Ax + By + C = 0$ in $A(2, q)$, where $\psi(x, y) = x^{6+2} + y^6 + xy$ and $D, A, B, C \in GF(q)$ -Galois field of q elements, $q = 2^e$, e odd and > 1 , and 6 is the unique automorphism of $GF(q)$ satisfying $x^{6^2} = x^2$ for all $x \in GF(q)$. The point (∞) is incident only with circles with $D = 0$.

The elements of $\text{Aut } S(q)$ are explicitly given by

$$\varphi_{abpsr}^\alpha : \begin{cases} x' = \left[a + r \frac{g(p, s, x, y)}{f(p, s, x, y)} \right]^\alpha \\ y' = \left[b + r \frac{r^6 h(p, x) + a^6 g(p, s, x, y)}{f(p, s, x, y)} \right]^\alpha \end{cases}$$

for $(x, y) \neq (p, s)$ and $\varphi_{abpsr}^\alpha(p, s) = (\infty)$, $\varphi_{abpsr}^\alpha(\infty) = (a^\alpha, b^\alpha)$

$$\tau_{klm}^\beta : \begin{cases} x' = [k h(l, x)]^\beta \\ y' = [k^{6+1} g(l, m, x, y)]^\beta, \quad \tau_{klm}^\beta(\infty) = (\infty). \end{cases}$$

We denote by $h(p, x) = p+x$, $g(p, s, x, y) = p^6 h(p, x) + h(s, y)$, $f(p, s, x, y) = \psi(x, y) + sx + py + \psi(p, s)$, also $a, b, p, s, r, k, l, m \in GF(q)$, $r \neq 0$, $k \neq 0$, and α, β are inner automorphisms of $GF(q)$.

$\text{Aut } S(q)$ is doubly transitive on the points of $S(q)$ and transitive on the circles of $S(q)$. Note that in every set of pencils (parabolic pencils) with carrier $L - \Pi^L$, there exists unique pencil π_0^L such that the stabilizer of Π^L is transitive on the circles of π_0^L [9]. We call π_0^L special pencil in the point L .

It is convenient to denote by:

$c(ABC\dots)$ - the circle c is incident with points A, B, C, \dots ; $c A c'$ - the circles c and c' are tangent in the point A .

The Theorem of Miquel for the configuration M_4^2 is:

If A, B, C, D are four distinct points nonincident with a circle and

- i) $c_1(ACD), c_2 A c_1, c_2 B c_3, c_3(BCD), c_A(ABC), c_A C c_4$, $D \in c_4$, then $c_B(ABD)$ and $c_B D c_4$;
- ii) $c_1(ACD), c_2 A c_1, c_2 B c_3, c_3(BCD), c_A(ABC), c_B(ABD)$, then $c_4 C c_A$ and $c_4 D c_B$.

We shall prove the following

Theorem: Every non-miquelian finite inversive plane $S(q)$ satisfies the Theorem of Miquel for the configuration M_4^2 .

Proof. $\text{Aut } S(q)$ is doubly transitive on the points of $S(q)$, so without restriction we can take $A = (\infty)$ and $B = (0, 0)$.

The circles c_1 and c_2 determine a pencil π^A with a carrier A .

I. Let π^A is the special pencil in the point A. Then

$$c_2 : x = 0 \quad \text{and} \quad c_1 : x = m, \quad m \neq 0.$$

But in the subgroup of $\text{Aut } S(q)$ which fixes the points A and B, exists automorphism $\tau_{m-1 \atop m \infty}^1$ such that

$$\tau_{m-1 \atop m \infty}^1(c_1) = c'_1 : x = 1 \quad \text{and} \quad \tau_{m-1 \atop m \infty}^1(c_2) = c_2.$$

So without restriction we put $c_1 : x = 1$.

As $C \in c_1$, $D \in c_1$, so

$$C = (1, c), \quad D = (1, d); \quad c, d \in GF(q).$$

From the condition $c_2 \subset c_3$ we have

$$C_3 : \psi(x, y) + \rho x = 0.$$

But $C \in c_3$, $D \in c_3$ therefore

$$(1) \quad \rho = \psi(1, c) = \psi(1, d)$$

i.e. $(c+d)^{5-1} = 1$ or $d = c+1$.

From the condition c_A (A B C) we obtain

$$c_A : y = cx.$$

i) From $c_4 \subset c_A$, $D \in c_4$ and (1) it follows that

$$c_4 : \psi(x, y) + \psi(1, c) = 0.$$

On the other hand c_B (A B D) i.e. $c_B : y = dx$.
The common points of c_B and c_4 we obtain from

$$\psi(x, dx) + \psi(1, c) = 0.$$

But $d = c+1$ i.e. $(x+d^{\frac{6}{2}})^{6+2} + c^{6+1} = 0$ whence $x = (c+d)^{\frac{6}{2}} = 1$.

Therefore $c_B \in c_4$, q.e.d.

ii) From the condition $c_B \in c_4$ we have

$$c_B : y = dx.$$

But $c_4 \subset c_A$, $D \in c_4$ and therefore

$$c_4 : \psi(x, y) + \psi(1, 0) = 0.$$

From (1), as well as in i) we prove that $c_4 \in c_3$, q.e.d.

II. Let π^A is a non-special pencil in the point A. Then

$$c_2 : y = 1 \cdot x \quad \text{and} \quad c_1 : y = 1 \cdot x+n, \quad n \neq 0.$$

But in the subgroup of $\text{Aut } S(q)$ which fixes the points A and B exists automorphism τ_{koo}^1 with $k = n^{1-6}$ such that

$$\tau_{koo}^1(c_2) = c'_2 : y = mx,$$

$$\tau_{koo}^1(c_1) = c'_1 : y = mx + 1 \quad \text{with} \quad m = n^{6-2} \cdot 1.$$

So without restriction we put

$$c_1 : y = mx + 1, \quad c_2 : y = mx, \quad m \in GF(q).$$

Since $C \in c_1$, $D \in c_2$:

$$C = (c, mc+1), \quad D = (d, md+1), \quad c, d \in GF(q).$$

From the condition $c_3 \in c_2$ it follows that

$$c_3 : \psi(x, y) + \lambda(mx + y) = 0.$$

But $C \in c_3$, $D \in c_3$ and we obtain

$$(2) \quad \lambda = \psi(c, mc+1) = \psi(d, md+1).$$

Since $c_A(A B C)$, then

$$c_A : (mc+1)x + cy = 0.$$

i) From $c_4 \subset c_A$ and $D \in c_4$, and (2) we have

$$c_4 : \psi(x, y) + \lambda = 0.$$

But $c_B(A B D)$, and therefore

$$c_B : (md+1)x + dy = 0.$$

Let us find the common points of c_B and c_4 . If $d = 0$, then $\lambda = 1$, $D = (0, 1)$ and $c_4 : \psi(x, y) + 1 = 0$, $c_B : x = 0$. So $\psi(0, y) + 1 = 0$ i.e. $y = 1$.

Therefore $D = (0, 1)$ is the unique common point of c_B and c_4 , i.e. $c_B \cap c_4$. If $d \neq 0$ then $c_B : y = \frac{md+1}{d}$ and $\psi(x, \frac{md+1}{d} x) + \lambda = 0$, or

$$\left[x + \frac{md+1}{d} \frac{6}{2} \right] \frac{6+2}{2} = \left(\frac{md+1}{d} \right)^{\frac{6+1}{2}} + \lambda$$

from where

$$(3) \quad x + \left(\frac{md+1}{d} \right)^{\frac{6}{2}} = \left[\left(\frac{md+1}{d} \right)^{\frac{6+1}{2}} + \psi(d, md+1) \right]^{\frac{2-6}{2}}.$$

The equation (3) has unique solution $x = d$ and therefore $c_4 \cap c_B$.

ii) From $c_B(A B D)$ it follows that

$$c_B : (md+1)x + dy = 0.$$

From $c_4 \subset c_A$ and $D \in c_4$ we obtain

$$c_4 : \psi(x, y) + \lambda = 0.$$

Hence as in i) we prove that $c_4 \cap c_B$, q.e.d.

Since the planes $S(q)$ do not satisfy the Theorem of Miquel M_8 [1], [8] we obtain the following:

Corollary: M_4^2 does not imply M_8 , i.e. M_4^2 is not equivalent to M_8 .

BIBLIOGRAPHY

- [1] P. Dembowski: Finite Geometries. Berlin, Heidelberg, New York 1968.
- [2] B.L. van der Waerden, L.J. Smid: Eine Axiomatik der Kreisgeometrie und der Laguergeometrie, Math. Ann. 110 (1935) 753-776.
- [3] W. Benz: Vorlesungen über Geometrie der Algebren. Berlin, Heidelberg, New York 1973.
- [4] Y. Chen: Der Satz von Miquel in der Möbiusebene, Math. Ann. 186 (1970) 81-100.
- [5] H. Schaeffer: Die Sieben-Punkte-Ausartungen des Satzes von Miquel in Möbiusebenen, Math. Z. 137 (1974) 185-196.
- [6] H. Schaeffer: Eine Kennzeichnung miquelischer Möbiusebene. Mitt. Math. Gesellschaft Hamburg 10, No 3 (1974) 179-184.
- [7] Ch. Lozanov: Theorem of Miquel in finite non-miquelian planes. Potsdamer Forschungen Wiss. Schriftenreihe der Päd. Hoch. "Karl Liebknecht". Potsdam, Reihe B. Heft 41 (1984) 91-92.
- [8] Г. Енева; Ч. Лозанов: Инверсные плоскости типа $S(q)$. Докл. БАН, 36, № 6, (1983) 761-762.
- [9] G. Eneva: Über die Büschel in einer $S(q)$ - Möbiusebene. Potsdamer Forschungen. Wiss. Schriftenreihe der Päd. Hoch. "Karl Liebknecht". Potsdam, Reihe B. 41 (1984) 93-94.

INSTITUTE OF MATHEMATICS, BULGARIAN ACADEMY OF SCIENCES,
1126 SOFIA, BULGARIA

Received April 24, 1985.