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IMPROVEMENT THEOREMS
FOR POLYADIC GROUPS H-DERIVED FROM GROUPS

1. Introduction

The papers [15]-[17], [6] have been devoted to the basis
of a general theory of derived polyadic groups {for the no-
tion of a derived polyadic group {in various Eeanings) ctf.
also e.g. [3], [18], [19], [8], [4]-[7], [9]-[13]). In par-
tioular, in [17] we introduced the notion of a C-modification
of a system with respect to a group. 4s will 56 pointed out
in this paper, the so=callad modification theorems related
with that notion enable us to strengthen some basic results
of the polyadic group theory, such as the Hosszu theorem and
the Dornte criterion for an n-group to be derived from a group.

2., Preliminaries

We shall use the notions, the terminology and notation
of [15]-[17] where one can find the definitions of C~-systems
over (k+1)-groups, of C-derived (n+1)=-groups and of other re-
levant notions. Mozt of the fheorems to which we refer in
this paper can be found in [15]-[17].

The symbol (G,f) will always denote an (n+1)-group, and
(G,«) and (G,o) will denote groups. By x> we mean the i-th
power of x in (G,e), whereas x<i) denotes the i-th power
of x in (G,e). By X we mean the element skew to x in
(G,f). We denote by Cent(G,+) the centsr of (G,*).

- 309 -



2 J.Michalskl

Let a be an element of an (n+1)Lgroup>(G,f) and let 1%

be an intager. The symbol a 1l 15 due to Post [18]. Namely,
1] ((1+211) )ns1-2111) (2110}
a f(i+2[il)( a , a ) forn>1, and

i+

a[i] = al+1 for & = 1, where by a we understand the usual

power in tiae (binary) group (G,f) (cf. also [16]).

3. Improvement theorems for the condition H and certain

its strengthenings

To any condition C one can assign the class of (n+1)~groups
C~derived from groups. This class will be denoted by D(C).
For distinct conditions those classes arse usually distinct.
If the condition C is stronger than C’, then the class D(C)
is obviously a subclass of D(C’). The class D(C) often turns
out to be a proper subclass, as it takes place feor H and E,
or E and PE (for the definition of various conditions, e.g.
H, G, P etc., see [15], [16]). But it may happen that thougk
C # C’, the classes D(C) and D(C’) are nevertheless equal.
4 condition C is said to be an (essential) improvement of the
condition C’ if C is (essentially) stronger than C’ and
D(C) = D(C’). It is worthwhile to add that this notion is
meaningful for (n+1)-groups C-derived from (k+1)-groups with
k> 1. But in this paper we are interaested only in the case
k¥ = 1, Hodification theorems formulated in [17] give the ne-.
cescary and sufficilent conditions for two C-systems <(g;bd
~nd <8;3¢)> to be n-C-creating systems of the same group (G,f).
Pixing one of the system, say <g;b>, we may ask in what:why
the second system (i.e., <83;¢>) depends on {g;b>. From Theo-
rem 1 of [17] it follows that <8;0> is constructed from <g;b)
by using an appropriate element d e G. Chodsing the element d
in some special way we can often observe that (§.;c> is al-
ready a C’-system, where C’ is essentially stronger than C.
According to the terminology given above we say that the con-
dition C’ is an essential improvemdnt of C. Theorems resolving
this type of gquestions will be referred to as improvement
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Theorems for polyadic groups 3

theorems, Now we glve such theorems for the condition H and
some of its sirengthenings., Note tLat all systems under con-
sideration are n-systems,

Definition 1. Let <(8§j3¢> ¢H{G,*). The system
<(63c> 18 said to be an L;~system over (G,+) if there exists
an element a ¢G such that:

1% &(a) = a,

20 ¢ = ain+1.

Putting in Corollary 1 of [17] the element b™> in place
of d we get

Proposition 1. If<p;b)eH(G,*), then the
system (83¢)> given by

(1) §(x) = bleg(x)eb~t,

it

(2) ¢ = bi(n+1)+1

is an L;-system over the group (Gyo) = Ret&:?(G,*) (c =a<in+1>,

where a = bi+1)_and
(3) der;;b((},-) = derg;c(G,o).

The condition L° is just the condition H. For every in-
teger i we have Q(Li) = D(H). Thus, any condition L; is an
improvement of H. 411 conditions Li are stronger than H; so
they are (n,1)-regular (for the definition of the regularity
of a system see [15]j. For certein i and J the conditions
Li and L, ocan be uncomparable. The problem of the comparabi-
11ty of Li and Ly will be investigated in the next section.:
Now, we are going to show’ only the way how for any n-L;~creat~
ing system of a given (n+1)-group (G,f) one can find en
n-Lj-creating system of the same (n+1)-group (G,f). Namely,
putting in Corollary 1 of [17] the element ai'j in place of d
we obtain
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4 J.Michalski

Proposition 2. Let J be an integer. If
(g3 eIH(G,-) {i.ee, b at™*1 ang g(a) = a), then the sys-
tem (8;c) given by

(4) §(x) aj_i°x(x)°ai"j,

(5) ¢ = ajn+j-i+1

is an L -system over the group (G,o) = Ret1igj(G,-) (c=8<jn+1>,
a

where & = ad~1*1) and (3) holds.

The problem of the (n,1)-nonrestrictivity of the condi-
tion Li is closely related to the Hosszld theorem. By the
well-known Hosszidl theorem (cf. [8], [18], [4]) an (n+1)-grou-
poid (G,f) is an (n+1)~group if and only if (G,f) is H-derived
from some (binary) group. Notse that this theorem remains true
when we substitute certain other conditions for the condition
H. Thus, from the definition of the condition G (cf. [15],
[6], [16]) we infer immediately the following theorem:

Let a condition C be stronger than G and weaker than H.
Then an (n+1)-groupoid (G,f) is an (n+1)-group if and only if
(G,f) is C-derived from a group.

The Hosszii theorem is equivalent to the fact that any
such condition C (i.e., between G and H) is (n,1)-nonrestric-
tive (cf. [15), [16]). Let us recall the following stronger
version of Hoeszi theorem (cf. Corollary 4 of [4]):

- An (n+1)-groupoid (G,f) is an (n+1)-group if and only
if for any kln (G,f) is H~derived froa a {k+1)-group.

Thus, any condition C which is stronger than G and weaker
than H is (n,k)~nonrestrictive for kln. Then the question
arisds whether the Hossz{ theorem remains true when we sub-
stitute some condition essentially stronger than H for the
condition H, In other words, is any condition essentially
stronger than H an (n,k)-restrictive condition? In this paper
we assume that k = 1 and in this case the answer is positive.
Taking into account the Hosszil theorem and Proposition 1 we.
get & corollary, which is a stronger version of the original
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Theoremsifor polyadic groups 5

Hossz( theorem. To formulate this corollary we use the nota-
tion of our papers (which differs considerably from the origi-
nal Hosszi’e notation).

Corollary 1. Let (G,f) be an (n+1)-groupoid.
Then the following conditions are equivalent:
1°!(G,f} is an (n+1)~-group; B
2° there exists an integer i such that (G,f) is Li-derived

from a group;
3° for every integer i, (G,f) is L;~derived from a group.

Corollary 2. For any integer 1 the condition
Ly is (n,1)-nonrestrictive.

Thus, the conditions Ly are the strongest from the condi-
tions known so far for which the Hossz( theorem holds (all the
time we consider only the case k = 1).

For a nonrestrictive condition C any of its improvement C’
is also nonrestrictive and, conversely, any nonrastrictive
condition ¢’ which is stronger than C is an improvement of C,
In Section 5 we will show that there is& no (n,1)-nonrestric-
tive condliftion which is stronger than all conditions Ly

Corollaries 2 and 3 of [17] together with Propositions 1
and 2 enable us to give further improvement theorems (for-
mulated below as corollaries}).

Corollary 3. If <b>¢EB(G,*}, then the systenm
<e>, where ¢ 1is given by (2), is an EL;-system over the
group (G,o) = Ret;li(G.‘) {c = a8+ “ynere a = v1*1) and

(6) dery(G,+) = dery(G,o0).

Eorollary 4. If<b>eBL(G,) (L.a., b=al™T,

where a e Cent(G,*)), then the system <c¢>, where ¢ is given
by (5), is an ELj-system over the group (G,o) = Ret1igj(G,-)
a v

(¢ = 398+ Ghere T = ad=*1) and (6) holds.
Corollary 5., If<b>eB(G,+) (1.6., b= b,

where ﬁe.Cent(G,o)), then the system <c>, where c¢ 1is given

by (2), is a BL;-system over the group (G,0) = Rat1:$(G,°)

a-<in+1> i+1 <n> 321n+4)

(o = , where a = b*¥' and ¢ = ¢‘?’, where ¢ =

and (6) holds,. - 313 -



6 Je.Michalski

Corollary 6. If <b>eBLi(G,*) (i.e., b =D

and b = ain+1’ where g,ae Cent(G,*)), then the system <c>,

where ¢ 1is given by (5), is a BLj-system over the group

a<3n+1> ~ J=i+1
?

(Gy0) = Ret1 ZJ(G ) (e¢ = , WheTe C = a and

AL where c = 32(3'1)°3) and (6) holds.

It should be emphasized that the condition BLi {(which was
mentioned in Corollaery 5) is not a good improvement of B, Na-
mely, putting in Corollary 4 of [17) the element b in place
of d we get the following corollary (which was proved in
another way in [16]).

Corollary 7. If <b>eB(G,*) (i.e., b7,
where b eCent{G,-)), then the eystem <c>, where ¢ is
8 PE-system over the group (G,o) = Retb 2(G,-) (iee., ¢ 1is

A

b =
= B 1

the nsutral elemsnt of (G,o)) and {6) holds.

4. Lj-systems

In this section we resume the relations between the con-
ditions L; and Lj for 1 # j.

Proposition 3. A condition Lj is strongsr
than 8 condition Ly if and only if there exists an integer t
such that j = (ni+1)}t+i. Moreover, for every t # U the condi-
tion L. is ‘then essentially stronger than Li provided
(i+j)n # -2

Proof. Let j = (ni+1)t+1i for some integer t.
Consider an Lj-system <g;b> over (G,+). Thus there exists an

element a € G such that #(a) = a and b = ad®*1 | ovserve that
adbt1 _ S(tn+1)(in+1) = (g¥B+1yinel oo qrsb> €L, (6,0 ).

Conversely, let for some integers i, J the condition L
be stronger than Li' Consider the additive group of integers
(z,+). The system <b>, where b = jn+1, is an L,-system over
(Z,+) (in fact, <b> is aven an ELjrsystem). Thus, by asgump-
tion, <b> €L,(Z,+), i.e., there exists an element x €2 such
that
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Theorems for polyadic groups 7

(7) jn+1 = (in+1)x.

From {7) we infer that j = {in+1)t+i for some t e Z,
Suppose that for some J = (in+1)t+i, with J # 1 and
(i+j)n # -2, the conditions Lj end L; =re ejuivalent., Fron

(7) we get

(8) in+1]|jn+1.

On the other hand, the condition L; is stronger than Lj (they
are equivalent, by assumption), whencs

(9) Jn+t|inet.

From (8) and (9) we infer that in+t = 3jn+1 (consequently,
i =3) or in#1 = -(jn+1) (consequently, {(i+j)n = -2), which
is impossible. This completes the proof of Proposition 3,

The case (i+j)n = =2 requires s eseparate trsatment,

Proposition 4. For every integer i the
condition L; is equivalent to the condiftion L_, _, provided
n =1, and it is equivalent to L-i-1 provided n = 2,

From Proposition 4 we conclude that for n = 1 it is suf-
ficient to consider only conditions L; with i3 -1, and for
n =2 only L; with 1> 0.

Taking into account Corollary 2, Propositions 3 and 4 we
see that for i # -2, -1, 0 all conditions L, are (n,1)-non~
restrictive and essentially stronger than H. So we get the
solution of Problem 1 of [15].

The main purpose of [16] was to give some characteriza-
tions of n-C-identity elements for various conditions C. Now
we are going to give such a characterization for the condi~
tion Li’ We start with two.easy lemmas.

Leama 1, Given en (n+1)-group (G,f) = derg.c(G,o),
where n>1, let a be an element of G such that 5(a) = a.
Then

(10) cod = a8,
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8 N J.Michalski

"Proof. Indeed,

(n)
a=7(8 a)= aoa<n>oo,
which implies (10).

Lemma 2, Given a 2-group (G,f) = der;; (G,0), let

c
a8 be an element of G such that §(a) = a and let & be the
inverse of a in (G,f). Then

(11) : foc = 1 5 o1,

Theorem 1, An element e 1s an n-L,-identity
alement in an (n+1)~group (G,f) if and only if there exists
an element ae G such that e-= a 1 « Moreover, (G,f) =
= derg c(Gt°)’ where <§;¢> is an n-L;-system over (G,o) and
e 1is the neutral element of (G,o}, if and only if

(12)  (G,0) = ret”s2_(c,1),
: a
L
(13) 5(x) = f(z)(a[il,x,a$“‘1),
(1~4:) c = a[i(n+1)]'
where the (2n-1)-ad <§$n—1>>is inverse to the 1-ad (a[i]>
in (G,f). Purthermore, ¢ = E<in+1>, where & = ali*1],

Proof. The unary term operations-in (n+1)-groups
are desoribed by different formulas for n>1 and for n = 1
(cf. [16]). Por this reason this proof differs in details
for n>1 and for n = 1,

Let n> 1. Assume that ¢ = aii], where a €G., By Proposi-
tion 6 of [15], any element of (G,f) (so, in partioular, the
element a) is an n-H-identity element. Thus there exists
a group (G,+) with a as the neutral element and there exists
an H-system ¢7';b) over (G,«) such that (G,f) = der;'b(o,o)r
Using once more Proposition 6'of\[15] we get

(15). (G,*) = ﬁetg(e,f),
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Theorems for polyadic groups 9

(n-2)
(16) 'J"(X) = f(a,x, a 95)’

(17) b =all,

Define a system <8;c¢> as in Proposition 1, i.e., lat & and ¢
be given by (1) and (2). Then <8;¢> is already an L, j-Systen
over (G,o) = Retb'i(G o) (e = "<ln+1>, where @ = bit1) and

{G,£) = der&-c(G'°)' We prove that
1

(18) pt - afil,
Indeed, for i> 0
5 (ne2) _ (n#1) (n=2) _ (n+1)y _ (1]
b = f(i41)(b' a ,a,b) = f(21_1)( a , & ,a, a
1=1 11

For i <0 the proof of (18) is lightly more complicated. Using
Lemma 4 of [16] we get

(n- 2)
1 “1y-1 _ -1, p=1
—imq
(n-2) (n=2) _ (n=2) _ (n-2)
"f( =21~ 1)(39 9Sav3’ 8 8,8, b ,b,a)= f( 1)1( 8y ybya) =
w11 ' -1
{({n=2)(n+1)+1) (n+1) (1=1} (-1)
=)l a - , 8@ ,8) =f( a i, @)=
?1 [
(-in+1421)(-21)
= f(-i)( a+ y 8 ) = altl,

Therefors, (18) holds for any integer i (for i = 0 equality
(18) is evident), It is easy to check that e 1is the neutral
element of {G,o). Observe that
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10 J.Michalski

in+1) (n-2 ~in+1
Sl11,  [-1) f(( n+ )'(na ),3,( n )) .

whence

(19) p~t - g [-1],

Lot & (2n-1)-ad <a2"""> be inverse to the 1-ad <al'!) in
(¢,f). Using (1), (18), (19), (16), and (17) we have

(n-2 {n=2 (n-2
5(X)= bi'ﬂx).b-i= f(3)(a[i]1 na ).a’a)X. na )IED na ).a.a[‘ﬂ)=
(-in=-1)
= f(-i)(a[i] 9 Xy a ) = f(z)(a[i] 'x’asn_‘])’

i.6., (13) holds. Note that

{=in-1)
Xoy = x'b-i-y = f(_i)(xo a yJ) = f(2)(x’8$n-1,y),

which proves that (G,o) is given by (12).
Taking into account (17), (2), and (18) we obtain

- bi(n+1)+1 - (aIi])n+1.a[ﬂ

(in+1) (n=2) _ (n+1) [4(ne1)41]
= f((i+1)(n+1)+1)( a » 8 ,8 4 ) =a .
n+1
By Proposition 1 we have ¢ = 8<in*1), where € =
{in+1) (n=2) (n+1)
= f(i+2)( a ’ a ’E’ a ) = a[i+1].

bi+1 = bi'b =

Conversely, let e be an n-Li-identity element in (G,f).
Then there exists a group (G,o) with e as the neutral ele-
ment, and there exists <5jc¢> e Ly(G,0) such that (G, L) =
= darg;o(c,o). Since ¢8;0> is an L;~system, the element ¢ 1is
of the form o = &1 Lith §(8) = 8. Let a = 81>, Then

a<n>° 8<n>°a<in+1>, .

¢ = = Qo
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Note that 5(a) = a, aoc = coa, and {G,f) = dergic(G,o).
Thus for 1> 0 we have

(in+1)
a[i] = f(i)( a ) = a(in+1> °c(i> = 808(i> = @,

The case i <0 is more complicated, Using Lemma 1 we obtain

(~in+1+21) (~21)
il n+1+21 < )

a - f(-i)( a , - a(-in+1+21> oa<-21> °c(-i) -

- a(—in+1+21> °§<-2i) °c<-2i> oc<i>

a(-:I.n+‘l+2i) oa(—21(1’.\-1)) °c(i> -

a<in+1>o c(i) = aoc(i) = a.
Therefore, e = a[i] for any integer i,
Now we pass to the proof of Theorsem 1 for n = 1. By Pro-
position 7 of [15], (G,f) = derx_b(G *}, where a is the
neutral element of (G,*), and <z;b> ¢ H(G,*). Moreover,

(20) (G,+) = Ret]*2(G,£),

(21) 2(x) = f(z)(a,x,d),
(2)

(22) b=1f(a),

where d 1is the inverse of a in (G,f). Define a system

{83¢> as in Proposition 1, i.e., let § and ¢ be given by

(1) and (2). Then <8;c)> is already an L,-system over (G,o) =
Retb'i(G,-) and (G,f) = ders °(G,o). The rest of the proof

is similar to that for the case n>1 (now we use Lemma 4 of
[16] and Lemma 2).

Both the conditions H and L, are {n,1)-nonrestrictive.
However, the former has a certain property which does not beslong
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12 J.Michalski

to the latter. Namely, every slement of an arbitrary (n+1)-
~group is an n~-H-identity element, whereas one can easily
give the examples of (n+1)-groups where there exist elements
which are not n-Li-identity elemants,

Putting together Theorem 1 of [16] with the above Theo-
rem 1 we get

Corollary 8. An element e 1is an n-ELi-iden-
tity element in an (n+1)-group (G,f) if and only if e is
& central element of (G,f) and it is of the form e = al®! for
some a € G,

Note that the condition PH 1s essentiaslly stronger than
the condition Li for every integer 1. Putting together Co-
rollary 10 of [16] with Theorem 1 and taking into account
the following Lemma 3 we can obtain a new criterion for a given
(n+1)=-group to be PH-derived from a group.

Lemma 3. If an (n+1)-group (G,f) has an element a
such that

a[in+1]

(23) = a

for soms integer i, then (G,f) has an idempotent element
(this may be, e.g. a[i]).

" Proposition S. An (n+1)-group (G,f) is
PH-derived from a group if and only if there exists an ele~
ment a e G such that

(24) alll - 4,

where GCD(u,n) = 1 (i.6., 1u = in+t for some integers 1, 1),
Moreover, (G,f) = derg(G,o), whare <5> ¢PH(G,0) and e is
the neutral element of (G,o), if and only if

(25) (6,0) = RetJ(G,2],

(n-1)
(26) 8(x) = t(e,x, o ),
(27) e = 8[11.
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Theorems for polyadic groups 13

Proof. Letal™ - aandlu= int1. Then alint

= a[lu] = a; hence, by Lemma 3, the element e = a[i] is idem-
potent in (G,f). By Corollary 10 of [16], (G,f) = derg(G,o),
where the group (G,o) and § are given by (25) and (26),
which completes the proof.

In a similar way, using Proposition 4 of [16] and Propo-
gition 5 we get

Theorem 2. An (n+1)-group (G,f) is PE-derived
from a group if and only if there exists anh element ae G such
that for any xe¢ G and some integer u with GCD(u,n) = 1 we
have

(u) (u)
(28) {8 ,x>=<x, 8)

In this case, moreover, (G,f) der:(G,o), where e is the
neatral element of (G,o), if and only if (25) and (27) hold
{(where lu = in+1 for some integers 1, i). ,

Proof., Assume that (23) holds for some s e€G and u
with GCD(u,n) = 1 (i.e., lu = in+1). Bquelity (28) is ob-
viously equivalent to

(Cu+ial)(n=1)) (lul)
a

(lul*(n=1)+a) (lul)
(29) f(u+2|u0( a . a a

1 Xy ’ ) = x.

Putting in (29) the element a in place of x we get (24},
Then, by Proposition 5, (G,f) = derg(G,o), where {G,o) and §

are described by (25), (26), and, furthermore, the element

e = at is an idempotent of (G,f). Hence, using (28) we havs

(n) (Lun)  (1lu)
{xX,8> = { 8 ,%x,8> = < 8 ,X, 8> =
f f f

(lan) (1u) (1u)
< a |, a ,X) ; { a ,x) ; {@,%X),

which proves that e 1is a central element of (G,f). Thus &
1s an identity mapping of (G,o). Consequently, (G,f) is
PE-derived from (G,o}, and so the proof of Theorem 2 is com~-

leta.
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14 J.Michalski

Observe that for u = 1 Theorem 2 takes the form of Pro-
position 4 of [16], which is closely related to the well~known
Dérnte criterion (cf. [3] and [18]).

5¢ Lo =8ystems

In Section 3 we put the question about the existence of
an (n,1)-nonrestrictive condition which would be stronger
than Ly for all integers 1. Now we can come back to that
problem,

As was mentioned in Section 4, the condition L; is essen-
tially weaker than PH for every i, We ars going to define
a new condition, which turns out to be sssentially stronger
than all conditions L; and essentially weaker than PH.

Definition 2, Let (8;¢) eH(G,*). The systenm
¢{8;0¢> 1s said to be an Lo, -system over (G,*) if for every in-
teger 1 there exists an element ae G such that
1° 5(a) = a,
2° ¢ = a[i].

In other words, a system <5jc> 1s an Lo, -system over (G,.)
if and only if <6;c>eL1(G,-) for every i. PFrom the defini-
tion of the condition L., and hy Theorem 1 we get immediately

Corollary 9 An element e 18 an n-Lo, -iden-
tity element in an (n+1)-group (G,f) if and only if for any
integer 1 +there exists an slement ae G such that e = a[i].

Consider an infinite cyeclic (n+1)=-group (i.e., a fres
{n+1)=-group generated by ohe element). This (n+1)-group (G,f)
can be described as the set nZ+1 (f.e., the set of integers
which equal 1 modulo n) with the usual eddition (cf. [1], [12]).
It is easy to cheok that for n>1 (G,f} has no L -identity
element., So (G,f) is an n-Ly, -primitive (n+1)-group (for the
definition of an .n-C-primitive (n+1)-group see [15]). Thus
we have

Corollary 10. The condition Ly 1is (n,1)-re-
strictive for n>1.

Since the condition PE is (1,1)-nonrestrictive (cf. [15]),
‘any weaker condition is also (1,1)-nonrestrictive (and so
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Theorems for polyadic groups 15

is Leo)e The case n = 1 is then very special. For this reason,
further remarks will be done separately for n>1 and n = 1.

Let n> . The condition Lo, 1s essentially stronger than
the conditions L; (which sre (n,1)-nonrestrictive). Therefore,
there is no (n,1)}-r-1restrictive condition stronger than all
conditions Ly (observe that such & condition would be stron-
ger than L., but the latter is (n,1)~restrictive). On the
other hand, it is evident that Lo, is weaker than PH. As we
now prove, this is essentially weaker. Indeed, consider a cy-
clic (n+1)-group of order n (cf. [18]). This (n+1)=-group
can be described as follows (cf. [9], [10], [11]). The

{n+1)-group C = (Zn,¢), where 2, = {0,1,...,n-1},

n,n+1
¢(l?+1) = 11 Foeee + 1n+1 + 1 (mod n), is a cyclic (n+1)-group
generated, e.g., by 0. Observe that the eguation e = x[i] has
a solution for any e ¢ Zy and for any integer 1. Hence, by
Corollary 9 any element e e Z, 18 an n-Loo-identity element

in C C is Lgo ~derived from a group. Never-

“n,ne1? T =n,n+1
theless, C has no idempotent element (cf. [18]), and so

it is not ?ﬁeggrived from a group (cf. Corollary 10 of [16]).
Thus the condition PH is just enough stronger than Lo to be
not even an improvement of the latter (the classes of PH-
and Leg ~derived {(n+1)-groups are different),

This is not the case for n = 1., The classes of groups PH-
and Lo -derived from groups sre aqual (both PH and Lo, are
(1,1)-nonrestrictive conditions), But now the condition PH
is also essentially stronger than Lo, . Indeed, let (G,*) be
the multiplicative group of positive real numbers and let
a # 1 be an element of G. Then <a) 18 an L ~8ystem over
(G,*), whereas it is not a PH-gystem over (G,.).
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