

Nazdar Ismail

ON (m,n) -DISTRIBUTIVITY OF PSEUDO BOOLEAN ALGEBRAS

In this paper, it has been proved that in the case of a complete pseudo Boolean algebra, the idea of complete meet distributivity and join distributivity are equivalent. We show also that if a complete pseudo Boolean algebra A is (n^m, m) -meet distributive, then A is (m, n) -join distributive. This theorem is a generalization of the Tarski theorem for Boolean algebras (see [4]). The notation and terminology of this paper is consistent with [3] and [4], see also [1].

1. (m,n) -meet and (m,n) -join distributivity

Definition 1.1. A pseudo Boolean algebra A is said to be (m,n) -meet distributive iff for every (m,n) -indexed family $(a_{st})_{s \in S, t \in T}$ of elements of A , where $\bar{S} \leq m$, $\bar{T} \leq n$, such that:

$$(i) \quad \bigcup_{t \in T} a_{st} \text{ exists for all } s \in S,$$

$$(ii) \quad \bigcap_{s \in S} \bigcup_{t \in T} a_{st} \text{ exists,}$$

$$(iii) \quad \bigcap_{s \in S} a_{s\varphi(s)} \text{ exists for all } \varphi \in T^S,$$

then for all $\varphi \in T^S$, $\bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}$ also exists and we have

$$\bigcap_{s \in S} \bigcup_{t \in T} a_{st} = \bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}.$$

A pseudo Boolean algebra A is said to be (m, n) -join distributive iff for every (m, n) -indexed family $(a_{st})_{s \in S, t \in T}$ of elements of A , where $\bar{s} \leq m$, $\bar{t} \leq n$, such that:

(i)' $\bigcap_{t \in T} a_{st}$ exists for all $s \in S$,

(ii)' $\bigcup_{s \in S} \bigcap_{t \in T} a_{st}$ exists,

(iii)' $\bigcup_{s \in S} a_{s\varphi(s)}$ exists for all $\varphi \in T^S$,

then for all $\varphi \in T^S$, $\bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)}$ also exist and we have

$$\bigcup_{s \in S} \bigcap_{t \in T} a_{st} = \bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)}.$$

Definition 1.2. A pseudo Boolean algebra A is said to be complete meet (join) distributive, if it is (m, n) -meet (join) distributive for arbitrary cardinal numbers m and n .

2. Complete distributive algebras (see [2]).

Definition 2.1. A pseudo Boolean algebra A is said to be complete distributive if it is complete meet and join distributive.

Theorem 2.2. If for arbitrary elements a, b of a pseudo Boolean algebra A , $a \leq b$ or $b \leq a$, then A is complete distributive.

Proof. We will prove that

$$\bigcap_{s \in S} \bigcup_{t \in T} a_{st} = \bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}$$

for arbitrary cardinal numbers m and n . Let $(a_{st})_{s \in S, t \in T}$ be a set of elements of a chain such that $\bigcup_{t \in T} a_{st}$ exists for all $s \in S$, and also $\bigcap_{s \in S} \bigcup_{t \in T} a_{st} = b$ and $\bigcap_{s \in S} a_{s\varphi(s)}$ for all $\varphi \in T^S$. We will show that $\bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)} = b$.

Let s be given, we have $a_{s\varphi(s)} \leq \bigcup_{t \in T} a_{st}$, hence

$$\bigcap_{s \in S} a_{s\varphi(s)} \leq \bigcap_{s \in S} \bigcup_{t \in T} a_{st}.$$

Then for all $\varphi \in T^S$, $\bigcap_{s \in S} a_{s\varphi(s)} \leq b$. We have

(1) Let $\forall \varphi (a \geq \bigcap_{s \in S} a_{s\varphi(s)})$ and $b \not\leq a$. Hence $a < b$,

$$a < \bigcap_{s \in S} \bigcup_{t \in T} a_{st} = b.$$

(2) For all $s \in S$, we have $a < \bigcup_{t \in T} a_{st}$.

(3) $\bigvee_{s \in S} \exists \varphi_a(s)$ such that $a < a_{s\varphi_a(s)}$ let $\varphi_a(s) = t$.

Let s be given. If $\bigvee_t (a_{st} \leq a)$, then $\bigcup_{t \in T} a_{st} \leq a$. This is a contradiction with (2). Hence from (3) we get $a \leq \bigcap_{s \in S} a_{s\varphi_a(s)}$.

We also have

$$(4) a = \bigcap_{s \in S} a_{s\varphi_a(s)}.$$

(5) If $a \leq a' < b$, then $a = a'$.

Using (3) to a' , we obtain $a' = \bigcap_{s \in S} a_{s\varphi_a(s)}$. From (1) $a \geq \bigcap_{s \in S} a_{s\varphi_a(s)} = a'$, hence $a = a'$.

Let s be given. We have $a < a_{s\varphi_a(s)}$, but from (5) we see that it is impossible to be $a < a_{s\varphi_a(s)} < b$ and so $b \leq a_{s\varphi_a(s)}$ for all $s \in S$. Thus $b \leq \bigcap_{s \in S} a_{s\varphi_a(s)} = a$, but this is a contradiction with the hypothesis that $a < b$.

By the same method we can prove that

$$\bigcup_{s \in S} \bigcap_{t \in S} a_{st} = \bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)}.$$

This ends the proof.

Theorem 2.3. For every complete pseudo Boolean algebra A , if A is a complete meet distributive, then A is a complete join distributive.

Proof. Let

$$\bigcap_{s \in S} \bigcup_{t \in T} a_{st} = \bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}$$

for all S and T . We will prove that

$$\bigcup_{s \in S} \bigcap_{t \in T} a_{st} = \bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)}$$

for any cardinal numbers m and n , $\bar{S} = m$, $\bar{T} = n$.

For all $s \in S$ and $\varphi \in T^S$ we denote $a_{s\varphi(s)} = b_{\varphi s}$. We have

$$\bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)} = \bigcap_{\varphi \in T^S} \bigcup_{s \in S} b_{\varphi s} = \bigcup_{\psi \in S(T^S)} \bigcap_{\varphi \in T^S} b_{\varphi \psi(\varphi)}.$$

Moreover

(*) For all $\psi \in S(T^S)$, the family $\{b_{\varphi \psi(\varphi)}\}$ contains a subfamily $\{a_{st}\}_{t \in T}$ for a certain $s \in S$.

Let for $s \in S$, ψ_s be a constant function from T^S in to S such that $\psi_s(\varphi) = s$ for all $\varphi \in T^S$.

Proof of (*): Assume that it is not true. This means that there exists $\varphi_0 \in T^S$ and $\psi_0 \in S(T^S)$, such that $a_{s\varphi_0(s)} \notin \{b_{\varphi \psi_0(\varphi)}\}_{\varphi \in T^S}$ for all $s \in S$. Take $s_0 = \psi_0(\varphi_0)$ then $a_{s_0\varphi_0(s_0)} = b_{\varphi_0 s_0 \psi_0(\varphi_0)}$, this is a contradiction. Next we continue the proof of Theorem 2.3. We have

$$(1) \quad \{b_{\varphi \psi_s(\varphi)}\}_{\varphi \in T^S} = \{b_{\varphi s}\} = \{a_{s\varphi(s)}\} = \{a_{st}\}_{t \in T},$$

$$\forall_{\psi \in S(T^S)} \exists_{s \in S} \{b_{\varphi \psi(\varphi)}\}_{\varphi \in T^S} \supset \{a_{st}\}_{t \in T}.$$

Then

$$\forall_{\psi \in S(T^S)} \exists_{s \in S} \bigcap_{\varphi \in T^S} b_{\varphi \psi(\varphi)} \leq \bigcap_{t \in T} a_{st}.$$

Thus

$$(2) \quad \bigcup_{\psi \in S} \bigcap_{\varphi \in T^S} b_{\varphi\psi}(\varphi) \leq \bigcup_{s \in S} \bigcap_{t \in T} a_{st}$$

by (1) we obtain

$$\forall_{s \in S} \exists_{\psi_s} \left\{ b_{\varphi\psi_s}(\varphi) \right\}_{\varphi \in T^S} = \left\{ a_{st} \right\}_{t \in T} \bigcap_{t \in T} a_{st} \leq \bigcup_{\psi \in S} \bigcap_{\varphi \in T^S} b_{\varphi\psi}(\varphi)$$

from here we have

$$(3) \quad \bigcup_{s \in S} \bigcap_{t \in T} a_{st} \leq \bigcup_{\psi \in S} \bigcap_{\varphi \in T^S} b_{\varphi\psi}(\varphi).$$

From (2) and (3) we obtain

$$\bigcup_{s \in S} \bigcap_{t \in T} a_{st} = \bigcup_{\psi \in S} \bigcap_{\varphi \in T^S} b_{\varphi\psi}(\varphi)$$

thus

$$\bigcap_{\varphi \in T^S} \bigcup_{s \in S} a_{s\varphi(s)} = \bigcup_{s \in S} \bigcap_{t \in T} a_{st}.$$

Theorem 2.4. If a complete pseudo Boolean algebra A is (n^m, m) -meet distributive, then A is (m, n) -join distributive, where m and n are infinite cardinal numbers.

Proof. Let A be (n^m, m) -meet distributive and complete. Since A is (n^m, m) -meet distributive, if $(a_{st})_{s \in S, t \in T}$ is a family of element of A which satisfies the conditions:

(i) $\bar{S} \leq n^m$, $\bar{T} \leq m$,

(ii) $\bigcup_{t \in T} a_{st}$ exists for all $s \in S$, and $\bigcap_{s \in S} \bigcup_{t \in T} a_{st}$ also exists,

(iii) $\bigcap_{s \in S} a_{s\varphi(s)}$ exists for all $\varphi \in T^S$,

then $\bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}$ also exists

and

$$\bigcap_{s \in S} \bigcup_{t \in T} a_{st} = \bigcup_{\varphi \in T^S} \bigcap_{s \in S} a_{s\varphi(s)}.$$

Suppose that $\bar{U} \leq m$, $\bar{V} \leq n$. We get from the completeness of A that if $(a_i)_{i \in I} \subseteq A$ then $\bigcap_{i \in I} a_i$ and $\bigcup_{i \in I} a_i$ exists for all I .

Let $(b_{uv})_{u \in U, v \in V} \subseteq A$, we will prove that

$$(**) \quad \bigcup_{u \in U} \bigcap_{v \in V} b_{uv} = \bigcap_{f \in V^U} \bigcup_{u \in U} b_{uf(u)}.$$

Let

$$(1) \quad a_{fu} = b_{uf(u)}$$

then

$$(2) \quad \bigcap_{f \in V^U} \bigcup_{u \in U} b_{uf(u)} = \bigcap_{f \in V^U} \bigcup_{u \in U} a_{fu} = \bigcup_{\varphi \in U(V^U)} \bigcap_{f \in V^U} a_{f\varphi(f)}$$

for all $u \in U$. Define the mapping $\varphi_u : V^U \rightarrow U$ as follows:
 $\varphi_u(f) = u$ for all $f \in V^U$. We have

$$\forall_{\varphi' \in U(V^U)} \left[\bigcap_{f \in V^U} a_{f\varphi'(f)} \leq \bigcup_{\varphi \in U(V^U)} \bigcap_{f \in V^U} a_{f\varphi(f)} \right],$$

therefore from the definition of φ_u

$$\forall_{u \in U} \left[\bigcap_{f \in V^U} a_{f\varphi_u(f)} \leq \bigcup_{\varphi \in U(V^U)} \bigcap_{f \in V^U} a_{f\varphi(f)} \right].$$

Then

$$(3) \quad \bigcup_{u \in U} \bigcap_{f \in V^U} a_{f\varphi_u(f)} \leq \bigcup_{\varphi \in U(V^U)} \bigcap_{v \in V^u} a_{f\varphi(f)}.$$

Since for all $u \in U$

$$(b_{uf(u)})_{f \in V^U} = (b_{uv})_{v \in V},$$

hence from (1)

$$(a_{f\varphi_u(f)})_{f \in V^U} = (b_{uv})_{v \in V} \text{ for all } u \in U.$$

Then we have

$$(4) \quad \bigcap_{f \in V^U} a_{f\varphi_u(f)} = \bigcap_{v \in V} b_{uv} \text{ for all } u \in U.$$

From (3) and (4), we have

$$(5) \quad \bigcup_{u \in U} \bigcap_{v \in V} b_{uv} \leq \bigcup_{\varphi \in U^{(V^U)}} \bigcap_{f \in V^U} a_{f\varphi(f)}.$$

We will prove that

$$(6) \quad \bigcup_{\varphi \in U^{(V^U)}} \bigcap_{f \in V^U} a_{f\varphi(f)} \leq \bigcup_{u \in U} \bigcap_{v \in V} b_{uv}.$$

First we prove that

$$(7) \quad \forall_{\varphi \in U^{(V^U)}} \exists_{u \in U} \forall_{v \in V} \exists_{f \in V^U} [u = \varphi(f) \text{ and } v = f(\varphi(f))].$$

Let

$$\exists_{\varphi \in U^{(V^U)}} \forall_{u \in U} \exists_{v \in V} \forall_{f \in V^U} [u \neq \varphi(f) \text{ or } v \neq f(\varphi(f))].$$

From this for a certain $\varphi_0 \in U^{(V^U)}$, we have

$$\forall_{u \in U} \exists_{v \in V} \forall_{f \in V^U} [u \neq \varphi_0(f) \text{ or } v \neq f(\varphi_0(f))].$$

From this we get that there exists a function $f_0 : U \rightarrow V$, such that

$$\forall_{f \in V^U} [u \neq \varphi_0(f) \text{ or } f_0(u) \neq f(\varphi_0(f))].$$

Then $u \neq \varphi_0(f_0)$ or $f_0(u) \neq f_0(\varphi_0(f_0))$ for all $u \in U$. Hence for $u = \varphi_0(f_0)$ we have a contradiction

$$f_0(\varphi_0(f_0)) \neq f_0(\varphi_0(f_0)).$$

From (7) we get

$$\forall_{\varphi \in U(V^U)} \exists_{u \in U} (b_{uv})_{v \in V} \subset (b_{\varphi(f)f(\varphi(f))})_{f \in V^U}.$$

Hence from (1)

$$\forall_{\varphi \in U(V^U)} \exists_{u \in U} (b_{uv})_{v \in V} \subset (a_{f\varphi(f)})_{f \in V^U},$$

then

$$\forall_{\varphi \in U(V^U)} \exists_{u \in U} \left[\bigcap_{f \in V^U} a_{f\varphi(f)} \leq \bigcap_{v \in V} b_{uv} \right].$$

Therefore

$$\forall_{\varphi \in U(V^U)} \left[\bigcap_{v \in V} a_{f\varphi(f)} \leq \bigcup_{u \in U} \bigcap_{v \in V} b_{uv} \right]$$

and

$$\bigcup_{\varphi \in U(V^U)} \bigcap_{v \in V} a_{f\varphi(f)} \leq \bigcup_{u \in U} \bigcap_{v \in V} b_{uv}.$$

From (6) and (5) using (2) we obtain (**).

BIBLIOGRAPHY

[1] T. Traczyk : Introduction to the theory of Boolean algebras (in Polish). Warszawa 1970.

- [2] G.N. R a n e y : Completely distributive lattices,
Proc. Amer. Math. Soc. 3 (1952) 677-680.
- [3] R. B a l b e s , P. D w i n g e r : Distributive
lattices. Missouri 1974.
- [4] R. S i k o r s k i : Boolean algebras. Berlin-Heidel-
berg-New York, 1964.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONSTANTINE,
CONSTANTINE, ALGERIA

Received December 22, 1986.

