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PARTIAL GREECHIE DIAGRAMS FOR MODULAR ORTHOLATTICES

1. Introduction

We shall develope a new diagram technique which permits an
easy reference to certain kinds of modular ortholattices.
Thosé diagrams are very helpful in modular ortholattice theory
because order-graph presentation as well as Greechle diagrams
tende to get rather complicated already for relatively simply
algebras. The idea of this new technique 1s more or less im-
plicitely included in G.Bruns’s paper [1].

In this paper such new diagrame are introduced under the
name "partial Greechle diegrams" (abbreviated pGd). Using
these diagrama we shows somé fact from orthoamodular lattice
theory, namely we prove that the equality TSFSSA MOL = [lOoﬂ
holde in the lattice of all subvarieties of the veriety of
orthomodular lattices.

2+ Basic definitions and properties

As in [3], an orthomodular lattice is considered as an
universal algebra (L;V,A,’' ,0,1) such that a reduct
(L4v,A,0,1) 18 a bounded lattloce and the following holds

(om1) (a') =a

(om2) (avd)' =a'Ad

(om3) ava' =1

(om4) avd = av[a’ A (avb)]

We write a1 b if a<b ; axb if not aLb,

A modular ortholattice is an orthomodular lattice whica is
modular, The variety of all modular ortholattices is denoted
by ¥OL. A commutator of elements a,be¢L is defined as follows:
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c(a,b) =: {avd)a(avd' )A.(a’v d)Aa(a'vDb').

By MOw we denote a modular ortnolattice of length 2 consisting
031 and a countable set of atoms {31,33,32,35,...}. The va-
riety [MOw] generated by MOw can be characterized by the squa-
tions charaoterizing MOL and the equetion C(x,C(y,z)) = 0.

A Greeohis diagram associated with an orthomodular lattice
L of length 3 consist of a set P of points and a set Q of lines,
where Q< P (P). The points are in one-to-one correspondence
with the atoms of L; the lines are in one-to~one oorrespondencb
with the blocks (maximal Boolean subalgebras) of L such that
every line 1 = {p,‘ t te T} oorrespondes to a block generated
by the set of atoms corresponding to the set of points
{pt : te T} (for details see [3]}.

An example of Greechie diagram is presentied on Figure 1,
left side, This is the diagram G of the produot MO2 x 2, whers
MO2 is the six-~element modular ortholattlice and 2 is a two-
-element Boolean algebra, The Hasse diagram of this algebra
is presented on the right,

Figure 1

Observe that we can desoribe every point of G. This desorip-
tion is given in Figure 2.

a aAf(avbd) .
° o— anb

bA(avb)
b

Figure 2
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A state on a modular ortholattioce L is a real map
m:L — {031 such that the following conditions hold:

(81) m(1) = 1

(s2) 4if a1b then m(avd) = m(a) + m(b)
A state 1s two-valued if m(L) = {0;1}. & set {m, : t ¢ T}
of two-valued states on L is said to be full if for any

a,bels
afb=—23te? mila) = m(b) = 1,

By TSFSS we denote the class of orthomodular lattices with
a full set of two-valued states. As it is shown in [2] the
oclass TSPSS forms a varliety.

3. Partial Greechie diagrams

Definition 1. A partial Greechie diagram
(abbreviated pGd) G for a modular ortholattice L consist of
a get P of points and a set Q of lines sUch that the follow-
ing conditions hold:

(pG1) Bvery line is a three-element subset of P.

" {pG2) BEvery poinht lies on (belongs to) some line,

(pG3) EBvery two differsent lines are éither disjoint or
neighbouring, 1,6, having an one-point intersection.

KpG4) Triangles and quadrangles do not occur in @.

(pG5) The pointe of G are in one-to-one correspondence
with some non-zero elements of L., Moreover, avery
$wo neighbouring lines form a Greechie diagrams
for subalgebras of L.

Observe that the condifions (pG1)-(pG4) mean that G is a
Greechie diagram for some orthomodular (in general not modu~
lar) lattice of length 3.

Example 1. The diagram 63 presented on Figure 3

is a pGd for a modular ortholattice L.
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c < d
l
b )
G3
a b
Figure 3

If consist of a seven-elament set of points and a three-ele-

ment set of lines {11,12.13}. It follows from the axiom (pG5)
that the L12 and L23 presented on its Hasse diagrams in Flgu-
re 4 are subalgebras of L.

Figure 4

Observe that C{a,C(b,c)) = C(a,bvec) = C{a,d’) = avd # 0,
Thus L ¢ [MOw]. As a Corollary of ‘G.Bruns’s result in [1] we
obtain the following: ’

Proposition. IfL is a modular ortholattice
not contained in [MOc] then Gy 1s a pGd for L.

4. .The pentagoh Thsorem

In this ¢hapter we prove that if L is a’ modular ortho-~
lattiocs, L ¢ [MOw)], then pentagon is a pGd for L.

Proposition 1. Let G3 (Figure 3) be a pGd
for a modular ortholattice L, Then a’A b # 0 and G, (Figu-
re 5) is m pGd for L too.
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a'a(avb)

Figure 5

Proof. First we prove that a’A b’ # 0, Observe taat
cvbd =1 and c<a’ (Pigure 4). Now from the modulsrity law:
cv(bAaa') = {cvb' )aa’', Hence ev(b'Aa a') = a'. Thus
cv{b'A a') #c. Therefore a’A b # 0., Now we have to prove
that G, is a pGd for L. Becausa c v[(avb)aa'] =
= [ev{avb)]aa’ = a' then a’A (avb) # 0 and it is snough
to prove that 11,14} forms a Greechie diagram four sore sub-
algsebra of L, i.e. that the following hold:

1) cv[a’afavd)] =cv(a’abd ) = {a’Ac’)v[a'A (avd)]=
= (a’Ac' )vi(a’Ad’) = a'

2) ecaf(ave) = {a’'Ac’')Aaavd) = cA[av(a’A b')] =
= (a’ac’)afavia’ar’)] =0

3) (a’Ab JAc = [a’A (avb)]/\c’ = (a’A % ) Aalave) =
= [a'A (avd)]A(ave) = 0.

The proof of any abeve identity is not difficult. ¥e shows
for example that (1a) and (1b) hold.

Because ¢ <a’ than from modularity cv[a’A (avb)] =
= [cv(avb)]Aaa', But (Figure 4) avbvc = avd’ = 1. Hercs
[cv(avb)]aa' = 1Aa’ = a’and (1a) holds, Now c A{avd) =
= (cad’)A(avd) = ca[d' A (avb)]. From the modularity law
d’'A (avb) = (a’Aa)vb, But d'A a = 0 (Mgure 4). Thus
d'A (avb) = b, Hence eA[d A (avb)] = cad = U,

Theorean 1. Let G3 ({Figure 3) be a pGd for a
modular ortholattice L. Then GS (Pigurs 5} is a partial
Greecnie diagram for L too.
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Gs

Figure 6

Proof., It follows from Proposition 1 that {11,14}
and, by symmetry, {13,15} form a Greechie diagram for subalge~-
bras of L. Now we applicate Proposition 1 to diagram {12,13,15}.
Bacause b = d’ A (avb) then {14,15} forms a Greechie diagram
for a suvalgebra of L and the proof is completse.

5. States_on modular ortholattices
It is well known that every modular ortholattice L from
the variety [MOaﬂ has a full set of two~valued states. Now we

prove the converse,
Theorem 2 Let L be a modular ortholattice,

L¢ [MOw]. Then L has no full set of two-valued states.
Proof. Let G (Figure 6) be a pGd for L., It follows
from the previous chapter that (ave)a(bvd) # 0 and G (Ri-
gure 7) is a pGd for L.
c

Figure 7
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In particulary a’A b’ x (avc)a(bvd). Let m be a two-valued
state on L such that m{tave)a(bvd)) = 1. Then nf{a’Ac’) =
= o(b'A d') = 0. If m(a) = 1, then m(a’A b’') = 0. Otherwise
m{a} = m(a’A ¢’) = 0 and hence m{c) = 1. Thus m(d) = 0 and
hence m(b) = 1. Therefore m(a’A b’ ) = 0.

Corollary. In the lattice of all subvarieties
of the variety of crthomodular lattices the following holds:

TSFSS AMOL = [MOwW)
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