

Anna Romanowska, Barbara Roszkowska

ON SOME GROUPOID MODES

In [P1] J. Płonka has shown that there are exactly four types of algebras having exactly n n -ary operations depending on all its variables for each $n = 1, 2, \dots$. One of these types form so-called 2-cyclic groupoids satisfying the following axioms

$$(L) \quad (x \cdot y) \cdot z = (x \cdot z) \cdot y \quad (\text{Left normal law}),$$

$$(I) \quad x \cdot x = x \quad (\text{Idempotent law}),$$

$$(R) \quad x \cdot (y \cdot z) = x \cdot y \quad (\text{Reduction law}),$$

$$(C_2) \quad (x \cdot y) \cdot y = x \quad (2\text{-cyclic law}).$$

More general, k -cyclic groupoids satisfy the axioms (L), (I), (R) and

$$(C_k) \quad (\dots((x \cdot y) \cdot y) \dots) \cdot y = x \quad (k\text{-cyclic law}).$$

k -cyclic groupoids were investigated in [P2].

In this paper we study more general LIR-groupoids that satisfy only the axioms (L), (I) and (R). In Section 1 we show that they are modes i.e. they are idempotent and entropic as defined in [RS]. So our investigations belong to the recently quickly developed theory of groupoids modes. (See e.g. [JK] and references there, [LM], [P1], [P2], [R] and [RS]). In Section 2 we prove that a groupoid is a LIR-groupoid if and only if it can be constructed by means of a construction we describe there, that generalizes a similar construction given by Płonka [P1] for k -cyclic groupoids. Section 3 is devoted

to free LIR-groupoids and Section 4 to properties of identities satisfied in LIR-groupoids. Finally, in Section 4 we describe the lattice of all varieties of LIR-groupoids.

1. Preliminaries

In the sequel we write xy for $x \cdot y$ and xy^i for $\dots((x \cdot y) \cdot y) \dots \cdot y$ where y is repeated i times. Sometimes we write also xy^0 for x .

The variety of LIR-groupoids is denoted by LIR. The subvariety of LIR that satisfies the identity

$$(g_{i,i+p}) \quad xy^i = xy^{i+p},$$

where $i = 0, 1, \dots$ and $p = 1, 2, \dots$ is denoted by $G_{i,i+p}$. For basic algebraic notions we refer the reader to [C] and [RS]. The notation is similar to this used in these books.

Recall that a groupoid mode is a groupoid satisfying the idempotent law and

$$(E) \quad (xy)(zt) = (xz)(yt) \quad (\text{Entropic law}).$$

(See [RS] and [JK] and references there. In [JK] groupoid modes are called idempotent medial groupoids). Note that together the idempotent and entropic laws imply distributive laws

$$(D_R) \quad (xy)z = (xz)(yz),$$

$$(D_L) \quad x(yz) = (xy)(xz).$$

In [R] groupoids modes were investigated that additionally satisfy the symmetric law

$$(S) \quad x \cdot xy = y.$$

(See [RS] and [LM] as well). Instead of the symmetric law the following identity plays an important role in the theory of LIR-groupoids

$$(A) \quad x \cdot xy = x.$$

1.1. Proposition. The following sets of identities are equivalent

- (i) (L), (I) and (R),
- (ii) (E), (I) and (R),
- (iii) (E), (I) and (A).

Proof. (i) \Rightarrow (ii). It follows by (L) and (R) that

$$xy \cdot zt = xy \cdot z = xz \cdot y = xz \cdot yt,$$

whence the entropic law holds.

(ii) \Rightarrow (iii). It follows by (R) and (I) that

$$x \cdot xy = x \cdot x = x,$$

whence (A) holds.

(iii) \Rightarrow (i). It follows by (A) and (E) that

$$x \cdot yz = (x \cdot xy)(yz) = (xy)(xy \cdot z) = xy,$$

whence (R) holds. Now by the distributive law and (R)

$$xy \cdot z = xz \cdot yz = xz \cdot y,$$

whence the left normal law is satisfied.

By Proposition 1.1, each LIR-groupoid is a mode.

2. The structure of LIR-groupoids

2.1. Definition. Let I be a non-empty set and for each i in I , let a non-empty set G_i be given. For each pair (i, j) in I^2 , let $h_{i,j}: G_i \rightarrow G_j$ be a mapping satisfying

(i) $h_{i,i}$ is the identity mapping on G_i ,

(ii) $h_{i,j}h_{j,k} = h_{i,k}h_{j,j}$.

Define a groupoid structure on the disjoint union G of G_i , i in I , by

(iii) $a_i \cdot a_j := a_i h_{i,j}$,

where a_i is in G_i and a_j is in G_j . Then evidently, each G_i is a subgroupoid of (G, \cdot) and is a left-zero band. Moreover, the mapping $f: G \rightarrow I$, $a_i \mapsto i$ is a homomorphism and $f(G) = I$ is a left-zero band. The groupoid (G, \cdot) is said to be the sum of left-zero bands (G_i, \cdot) over the left-zero band (I, \cdot) by the mappings $h_{i,j}$, or more briefly LZ-LZ-sum of (G_i, \cdot) .

A similar construction, though formulated in a different language, was considered in [P1], [P2]. It was shown there that each k -cyclic groupoid is an LZ-LZ-sum.

Let us note that by the definition above each LZ-LZ-sum belongs to the Mal'cev product $LZ \circ LZ$ (see [M]), where LZ is the variety of left-zero bands. Now we will show that the class of all such sums is just the variety of LIR-groupoids.

2.2. Theorem. A groupoid (G, \cdot) is a LIR-groupoid if and only if it is a sum of left-zero bands (G_i, \cdot) over a left-zero band (I, \cdot) by some mappings $h_{i,j}$.

Proof. (\Leftarrow) It follows by 2.1(i) and (iii) that the idempotent law is satisfied in the LZ-LZ-sum (G, \cdot) of (G_i, \cdot) . Now let a_i be in G_i , a_j in G_j and a_k in G_k . Then $a_i \cdot b_j \cdot c_k = a_i \cdot b_j \cdot h_{j,k} = a_i \cdot h_{i,j} = a_i \cdot b_j$ implying that the reduction law is satisfied in (G, \cdot) . Since by 2.1, $a_i \cdot b_j \cdot c_k = a_i \cdot h_{i,j} \cdot c_k = a_i \cdot h_{i,j} \cdot h_{i,k} = a_i \cdot h_{i,k} \cdot h_{i,j} = a_i \cdot h_{i,k} \cdot b_j = a_i \cdot c_k \cdot b_j$ it follows that the left normal law holds in (G, \cdot) .

(\Rightarrow) Let us define a relation R in (G, \cdot) by the formula $a R b$ if and only if $xa = xb$ for each x in G . Obviously R is an equivalence relation.

Now let us denote G/R by I and let $\{G_i \mid i \in I\}$ be the set of all R -classes of (G, \cdot) . Let a_i be in G_i and b_j and b'_j in G_j . Then obviously $a_i \cdot b_j = a_i \cdot b'_j$. Define $h_{i,j}: G_i \rightarrow G_j$, $a_i \cdot h_{i,j} := a_i \cdot b_j$ for $i \neq j$ and $h_{i,i}: G_i \rightarrow G_i$, $a_i \cdot h_{i,i} = a_i$. Then the left normal law implies that $a_i \cdot h_{i,j} \cdot h_{i,k} = a_i \cdot b_j \cdot c_k = a_i \cdot c_k \cdot b_j = a_i \cdot h_{i,k} \cdot h_{i,j}$, where c_k is in G_k .

It follows that the groupoid (G, \cdot) is the LZ-LZ-sum of subgroups (G_i, \cdot) over the left-zero band (I, \cdot) by the mappings $h_{i,j}$. \square

Remark. The Theorem 2.2 can be generalised to obtain a characterisation of all groupoids satisfying the identities (I) and (R). Let us drop the condition (ii) in the Definition 2.1 of LZ-LZ-sum. Let us call the sum obtained in this way a general LZ-LZ-sum. Then the following may be proved in the similar way as Theorem 2.2.

2.2'. Theorem. A groupoid (G, \cdot) is an IR-groupoid if and only if it is a general LZ-LZ-sum. \square

Note that the variety of IR-groupoids may be equivalently characterised as the class of groupoids (G, \cdot) in LZ \circ LZ having the following property: if θ is a congruence relation on (G, \cdot) such that $(G, \cdot)/\theta$ and all θ -classes are in LZ, and if for a, b, c in G , $b \theta c$, then $a \cdot b = a \cdot c$.

3. Free LIR-groupoids

3.1. Lemma. The identity

$$x_1^{j_2} x_2^{j_r} \dots x_r^{j_r} = x_1^{j_{2\pi}} x_2^{j_{r\pi}} \dots x_r^{j_{r\pi}}$$

holds in LIR for each permutation π of the set $\{2, \dots, r\}$.

Proof. It follows by (L). \square

3.2. Theorem. In the free LIR-groupoid $F(X)$ on a set X each element may be expressed in the standard form

$$x_1^{k_2} x_2^{k_s} \dots x_s^{k_s}$$

where x_j is in X for each $j = 1, \dots, s$ and $x_i \neq x_j$ for $i \neq j$.

Proof. Let $w(x_1, \dots, x_s)$ be a groupoid word with variables in the set X . The proof goes by induction on s . If $s = 2$, then $w(x_1, x_2)$ equals $x_1 x_2$ or $x_2 x_1$ and it is already in the standard form. Now suppose the theorem holds for all $s < n$ and consider a word $w(x_1, \dots, x_n)$. Then

$$w(x_1, \dots, x_n) = w_1(y_1, \dots, y_p) w_2(z_1, \dots, z_q)$$

where both p and q are less than n and $\{y_1, \dots, y_p\}$, $\{z_1, \dots, z_q\} \subseteq \{x_1, \dots, x_n\}$. By induction we may assume that

$$w_1(y_1, \dots, y_p) = y_1^{i_2} y_2^{i_p} \dots y_p^{i_p} \text{ and } w_2(z_1, \dots, z_q) = z_1^{j_2} z_2^{j_q} \dots z_q^{j_q}.$$

Hence by (R)

$$w(x_1, \dots, x_n) = (y_1^{i_2} y_2^{i_p} \dots y_p^{i_p})(z_1^{j_2} z_2^{j_q} \dots z_q^{j_q}) = (y_1^{i_2} y_2^{i_p} \dots y_p^{i_p})z_1.$$

In the case $z_1 = y_m$ for some $m = 1, \dots, p$, (L) implies that

$$w(x_1, \dots, x_n) = y_1 y_2^{i_2} \dots y_m^{i_m+1} \dots y_p^{i_p}.$$

It follows that $w(x_1, \dots, x_n)$ may be expressed in the standard form. \square

3.3. Corollary. In the free LIR-groupoid $F(x_1, \dots, x_n)$ on the generators x_1, \dots, x_n each further element may be expressed in the standard form

$$x_{i_1}^{k_1} x_{i_2}^{k_2} \dots x_{i_s}^{k_s},$$

where x_{i_j} is in $\{x_1, \dots, x_n\}$ for $j = 1, \dots, s$, $x_{i_p} \neq x_{i_q}$ for $p \neq q$ and $i_1 < \dots < i_s$. \square

3.4. Corollary. In the free $G_{i,j}$ -groupoid $F_{i,j}(x_1, \dots, x_n)$ on the generators x_1, \dots, x_n each further element may be expressed in the standard form

$$x_{i_1}^{k_1} x_{i_2}^{k_2} \dots x_{i_s}^{k_s}$$

where x_{i_p} is in $\{x_1, \dots, x_n\}$ for $p = 1, \dots, s$, $x_{i_p} \neq x_{i_q}$ for $p \neq q$, $i_1 < \dots < i_s$ and $k_p < j$ for all $p = 2, \dots, s$. \square

3.5. Corollary. Let $A_{i,j}(n)$ be the set of the words $x_p x_1^{k_1} \dots x_{p-1}^{k_{p-1}} x_{p+1}^{k_{p+1}} \dots x_n^{k_n}$, where $p = 1, \dots, n$, $0 \leq k_s < j$.

Let us denote such word by $x_p x_1^{k_1} \dots \hat{x}_p \dots x_n^{k_n}$ and define

$$x_p x_1^{k_1} \dots \hat{x}_p \dots x_n^{k_n} \cdot x_r x_1^{l_1} \dots \hat{x}_r \dots x_n^{l_n} :=$$

$$\begin{cases} x_p x_1^{k_1} \dots \hat{x}_p \dots x_n^{k_n} & \text{if } p = r \\ x_p x_1^{k_1} \dots \hat{x}_p \dots x_r^{k_r+1} \dots x_n^{k_n} & \text{if } k_r+1 < j \text{ and } r \neq p \\ x_p x_1^{k_1} \dots \hat{x}_p \dots x_r^i \dots x_n^{k_n} & \text{if } k_r+1 = j \text{ and } r \neq p. \end{cases}$$

Then $(A_{i,j}(n), \cdot)$ is the free $G_{i,j}$ -groupoid on the generators x_1, \dots, x_n . \square

4. Identities in LIR-groupoids

4.1. Lemma. If the identity

$$(4.2) \quad x_1^{j_2} x_2^{j_3} \dots x_r^{j_r} = y_1^{k_2} y_2^{k_3} \dots y_s^{k_s}$$

where $x_1 \neq y_1$ holds in an LIR-groupoid (G, \cdot) , then (G, \cdot) is trivial.

Proof. Multiplying the identity (4.2) on the left by x_1 and using (R) one gets $x_1 = x_1 y_1$, what together with (4.2) implies that $x_1 = y_1$. \square

Let $\text{GCD}(i, j)$ denote the greatest common divisor of the natural numbers i and j .

4.3. Lemma. The following hold in the variety LIR.

(i) The identity

$$(4.4) \quad x x_1^{j_1} \dots x_m^{j_m} y_{m+1}^{j_{m+1}} \dots y_r^{j_r} = x x_1^{j_1} \dots x_m^{j_m} z_{m+1}^{k_{m+1}} \dots z_s^{k_s}$$

where the set $\{x_1, \dots, x_m\}$ may be empty, is equivalent to the identity

$$xy^k = x$$

where $k = \text{GCD}(j_{m+1}, \dots, j_r, k_{m+1}, \dots, k_s)$.

(ii) The identity

$$(4.5) \quad x x_1^{j_1} \dots x_r^{j_r} = x x_1^{j_1} \dots x_r^{j_r} y_{r+1}^{j_{r+1}} \dots y_s^{j_s}$$

is equivalent to the identity

$$xy^k = x$$

where $k = \text{GCD}(j_{r+1}, \dots, j_s)$.

(iii) The identity

$$(4.6) \quad x x_1^{j_1} \dots x_r^{j_r} = x x_1^{k_1} \dots x_r^{k_r}$$

is equivalent to the set of identities

$$x x_p^{j_p} = x x_p^{k_p}$$

where $p = 1, \dots, r$.

P r o o f . (i) Substituting x for all variables different from y_p in (4.4) one gets

$$(4.7) \quad x y_p^{j_p} = x$$

for all $p = m+1, \dots, r$. In a similar way (4.4) implies

$$(4.8) \quad x z_q^{k_q} = x$$

for all $q = m+1, \dots, s$. It is easy to see that in fact (4.7) and (4.8) are equivalent to (4.4). On the other hand, by Płonka [P2] the set of identities consisting of the identities (4.7) and (4.8) is equivalent to the unique identity

$$x y^k = x$$

with $k = \text{GCD}(j_{m+1}, \dots, j_r, k_{m+1}, \dots, k_s)$.

The proof of (ii) and (iii) is similar to this of (i). \square

4.9. C o r o l l a r y . Let the identity

$$x x_1^{j_1} \dots x_r^{j_r} = x y_1^{k_1} \dots y_s^{k_s},$$

where the set $\{x_1, \dots, x_r\}$ may be empty, that is not a consequence of the axioms of LIR, hold in an LIR-groupoid (G, \cdot) . Then (G, \cdot) is in a variety $G_{i,j}$ for some $i = 0, 1, \dots$ and $j > i$. \square

4.10. L e m m a . If the identity

$$(4.11) \quad x y^{i+r} = x y^i$$

holds in a LIR-groupoid (G, \cdot) , then so does the identity

$$(4.12) \quad x y^{i+kr} = x y^i.$$

P r o o f. The identity (4.11) implies that $xy^{i+2r} = xy^{i+r}y^r = xy^i y^r = xy^{i+r} = xy^i$. Now if the identity (4.12) holds in (G, \cdot) , then $xy^{i+kr+r} = xy^{i+kr}y^r = xy^i y^r = xy^{i+r} = xy^i$. It follows by induction that (4.12) holds in (G, \cdot) . \square

4.13. Corollary. Let i be a non-negative integer and p and r natural numbers. If $i \leq j$ and $p \mid r$, then $G_{i,i+p} \subseteq G_{j,j+r}$.

P r o o f. If $i = j$ it follows by Lemma 4.10. Assume that $i < j$. Multiplying the identity

$$xy^i = xy^{i+p}$$

by y^{j-i} on the right one gets the identity

$$xy^j = xy^{j+p}.$$

Now by Lemma 4.10, if the last identity is satisfied in a LIR-groupoid (G, \cdot) , then so does the identity

$$xy^j = xy^{j+r}. \quad \square$$

4.14. Lemmas. Let r and s be natural numbers and let $r < s$. Then the identities

$$(4.15) \quad xy^{i+r} = xy^i$$

and

$$(4.16) \quad xy^{i+s} = xy^i$$

are satisfied in a LIR-groupoid (G, \cdot) if and only if the identity

$$xy^{i+\text{GCD}(r,s)} = xy^i$$

is satisfied in (G, \cdot) as well.

P r o o f. (\Leftarrow) It follows by Lemma 4.10.
(\Rightarrow) By the Euclidean Algorythm

$$\begin{aligned}
 s &= rq_1 + p_1 \\
 r &= p_1 q_2 + p_2 \\
 p_1 &= p_2 q_3 + p_3 \\
 &\vdots \\
 p_{k-2} &= p_{k-1} q_k + p_k \\
 p_{k-1} &= p_k q_{k+1}
 \end{aligned}$$

and $p_k = \text{GCD}(r, s)$. Now by Lemma 4.10, the identities (4.15) and (4.16) imply that

$$(4.17) \quad x y^{i+p_1} = x y^i$$

is satisfied in (G, \cdot) , (4.15) and (4.17) imply that

$$x y^{i+p_2} = x y^i$$

is satisfied in (G, \cdot) , and so on. Finally, we get that the identity

$$x y^{i+p_k} = x y^i$$

is satisfied in (G, \cdot) as well. \square

4.18. Lemma. Let i be a non-negative integer and j, r, s natural numbers. Let $i < j$. The identities

$$(4.15) \quad x y^{i+r} = x y^i$$

and

$$(4.19) \quad x y^{j+s} = x y^j$$

are satisfied in a LIR-groupoid (G, \cdot) if and only if the identity

$$(4.20) \quad x y^{i+\text{GCD}(r, s)} = x y^i$$

is satisfied in (G, \cdot) .

P r o o f . (\Leftarrow) If the identity (4.20) holds in (G, \cdot) , then by Lemma 4.10 the identities (4.15) and (4.16) hold in (G, \cdot) as well. Multiplying (4.16) by y^{j-i} on the right one gets the identity (4.19).

(\Rightarrow) If $s = ar$, then $\text{GCD}(r, s) = r$ and (4.20) holds in (G, \cdot) .

Now assume that $r \nmid s$. Multiplying (4.15) by y^{j-i} on the right one gets the identity

$$(4.21) \quad xy^{j+r} = xy^j.$$

By Lemma 4.14, it follows that together (4.19) and (4.21) are equivalent to

$$(4.22) \quad xy^{j+\text{GCD}(r, s)} = xy^j.$$

Let $j = i+k$ and $k = ar+b$ for a, b integers and $a \geq 0$, $0 \leq b < r$. Multiplying (4.22) by y^{r-b} and using (4.15) and Lemma 4.10 one gets (4.20) what completes the proof. \square

4.23. P r o p o s i t i o n . In the variety LIR, the set of identities

$$x y^{i_k+r_k} = x y^{i_k}$$

where $k = 1, \dots, q$ and $0 \leq i_1 \leq i_2, \dots, i_q$, is equivalent to the identity

$$x y^{i_1+\text{GCD}(r_1, \dots, r_q)} = x y^{i_1}.$$

P r o o f . It follows by Lemma 4.18. \square

4.24. C o r o l l a r y . Let $0 \leq i_1 \leq i_2, \dots, i_q$. Then

$$G_{i_1, i_1+r_1} \cap \dots \cap G_{i_q, i_q+r_q} = G_{i_1, i_1+\text{GCD}(r_1, \dots, r_q)}.$$

5. The lattice of subvarieties of LIR

Corollary 4.9 shows that each non-trivial variety K of LIR-groupoids different from LIR is contained in some of $G_{i,j}$. Now we show that each K equals some of $G_{i,j}$.

5.1. P r o p o s i t i o n . If K is a variety of LIR-groupoids contained in $G_{i, i+j}$, then K is trivial or $K = G_{p, p+q}$ for some $p \leq i$.

P r o o f . Let us assume that \underline{K} is non-trivial and $\underline{K} \neq \underline{G}_{i,i+j}$. By Lemma 4.3, the set of identities satisfied in \underline{K} , that are not consequences of the axioms of LIR, is equivalent to a set I of identities

$$x^r y^s = x^{r+k+s} y^s$$

where $r+k+s < i+j$. Evidently, this set is finite, say has l elements, and some of r_k , say r_1 , is less than all other. Hence, by Proposition 4.23 the set I is equivalent to the unique identity

$$xy^p = xy^{p+q}$$

where $p = r_1$ and $q = \text{GCD}(s_1, \dots, s_l)$. \square

5.2. P r o p o s i t i o n . $\underline{G}_{i,i+p} \subseteq \underline{G}_{j,j+r}$ if and only if $i \leq j$ and $p \mid r$.

P r o o f . (\Leftarrow) It follows by Corollary 4.13.
(\Rightarrow) If $\underline{G}_{i,i+p} \subseteq \underline{G}_{j,j+r}$, then by Proposition 5.1 and Corollary 4.24, $j = i+k$ and $\underline{G}_{i,i+p} \cap \underline{G}_{i+k,i+k+r} = \underline{G}_{i,i+\text{GCD}(p,r)} = \underline{G}_{i,i+p}$. Hence $\text{GCD}(p,r) = p$ and consequently $p \mid r$. \square

Let N_d be the lattice of the natural numbers with the meet of two numbers i and j being their greatest common divisor $\text{GCD}(i,j)$, and the join of i and j being their least common multiple $\text{LCM}(i,j)$. Let N_o be the chain of the natural numbers with the join of i and j being their maximum and the meet of i and j their minimum. Denote

$$L := N_o \times N_d.$$

Now let $L_{0,1}$ be the lattice obtained from L by adding a new greatest element 1 and a new least element 0.

5.3. T h e o r e m . The lattice $L(LIR)$ of all subvarieties of the variety LIR is isomorphic to the lattice $L_{0,1}$. The isomorphism is given by the mapping

$$h: L(LIR) \longrightarrow L_{0,1}$$

where the image of the trivial variety is 0, the image of the variety LIR is 1 and $\underline{G}_{i,i+p}^h = (i,p)$.

Proof. It is evident that the mapping h is onto. We show that it is one-to-one. Indeed, if $\underline{K} = \underline{G}_{i,i+p} = \underline{G}_{j,j+r}$, then $\underline{G}_{i,i+p} = \underline{G}_{j,j+r}$ and by Propositions 5.1 and 5.2, $\underline{K} = \underline{G}_{k,k+s}$ with $k \leq i$, $k \leq j$, $s \mid p$, $s \mid r$. On the other hand $\underline{G}_{i,i+p} = \underline{G}_{j,j+r} \subseteq \underline{K} = \underline{G}_{k,k+s}$, whence $i \leq k$, $j \leq k$ and $p \mid s$, $q \mid s$. It follows that $i = j = k$ and $p = r = s$.

Now by Corollary 4.24, for $i \leq j$

$$(\underline{G}_{i,i+p} \cap \underline{G}_{j,j+r})^h = \underline{G}_{i,i+\text{GCD}(p,r)}^h = (i, \text{GCD}(p,r)).$$

On the other hand

$$\underline{G}_{i,i+p}^h \wedge \underline{G}_{j,j+r}^h = (i,p) \wedge (j,r) = (i, \text{GCD}(p,r)).$$

It follows that h is a meet-homomorphism.

We show that

$$(5.4) \quad \underline{G}_{i,i+p} \vee \underline{G}_{i+k,i+k+r} = \underline{G}_{i+k,i+\text{LCM}(p,r)}.$$

By Proposition 5.2, it follows that

$$\underline{G}_{i,i+p} \vee \underline{G}_{i+k,i+k+r} \subseteq \underline{G}_{i+k,i+\text{LCM}(p,r)}.$$

Now if $\underline{G}_{i,i+p} \subseteq \underline{K}$ and $\underline{G}_{i+k,i+k+r} \subseteq \underline{K}$, then by Propositions 5.1 and 5.2, $\underline{K} = \underline{G}_{s,s+t}$, where $i+k \leq s$ and $p \mid t$ and $r \mid t$, whence $\text{LCM}(p,r) \mid t$. It follows that $\underline{G}_{i+k,i+\text{LCM}(p,r)} \subseteq \underline{G}_{s,s+t}$ and consequently (5.4) holds.

The equality (5.4) implies that h is a join-homomorphism. Indeed, for $i \leq j$

$$(\underline{G}_{i,i+p} \vee \underline{G}_{j,j+r})^h = \underline{G}_{j,j+\text{LCM}(p,r)}^h = (j, \text{LCM}(p,r)).$$

On the other hand

$$\underline{G}_{i,i+p}^h \vee \underline{G}_{j,j+r}^h = (i,p) \vee (j,r) = (j, \text{LCM}(p,r)).$$

It follows that h is a join-homomorphism. \square

REFERENCES

[C] F. Cohn : Universal algebra, D. Reidel Publ. Comp., Dordrecht, 1981.

[JK] J. Ježek, T. Kepka : Medial groupoids, Rozpravy Československé Akademie Věd 93, Academia, Praha 1983.

[LM] C.C. Lindner, N.S. Mendelsohn : Constructions of n -cyclic quasigroups and applications, Aequationes Math. 14 (1976), 111-121.

[M] A.I. Mal'cev : Multiplication of classes of algebraic systems (Russian), Sibirsk. Mat. Ž. 8 (1967), 346-365.

[P1] J. Płonka : On algebras with n distinct essentially n -ary operations, Algebra Universalis 1 (1971), 73-79.

[P2] J. Płonka : On k -cyclic groupoids, Math. Japonica 30 (1985), 371-382.

[RS] A. Romanowska, J.D.H. Smith : Modal theory - an algebraic approach to order, geometry and convexity, Helderman Verlag, Berlin, 1985.

[R] B. Roszkowska : The lattice of varieties of symmetric idempotent entropic groupoids, this volume.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received August 19, 1986.