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ON SOME GROUPOID MODES 

I n [?1] J . P i o n k a h a s shown t h a t t h e r e a re e x a c t l y f o u r 
t y p e s of a l g e b r a s hav ing e x a c t l y n n - a r y o p e r a t i o n s depending 
on a l l i t s v a r i a b l e s f o r each n * 1 , 2 , . . . One of t h e s e t y p e s 
f o r « s o - c a l l e d 2 - o y e l i c g r o u p o i d s s a t i s f y i n g t h e f o l l o w i n g 
axioms 
(L) (x»y)*s « ( x ' t ) ' j ( L e f t normal l a w ) , 

( I ) x*x « x ( Idempeten t l a w ) , 

(S) x»(y»a) > x*y (Reduc t ion l a w ) , 

(C2) (x»y)»y » x ( 2 - o y c l i o l a w ) . 

Mere g e n e r a l , k - o y c l i o g r o u p o i d s s a t i s f y the axioms ( L ) , ( I ) , 
(R) and 

(C j ) ( . . . ( ( x » y ) ' y ) . . . ) * y = x ( k - c y c l i o l a w ) . 

K - e y c l i c g r o u p o i d s were i n v e s t i g a t e d i n [P2] . 
I n t h i s paper we s tudy more g e n e r a l LIR-groupoids t h a t 

s a t i s f y only the axioms ( L ) , ( I ) and (R) . I n S e c t i o n 1'we show 
t h a t they a re nodes i . e . t hey a r e idempotent and e n t r o p i o a s 
d e f i n e d i n [RS] . So our i n v e s t i g a t i o n s be long t o t h e r e c e n t l y 
q u i c k l y developed t h e o r y of g roupo ids modes. (See e . g . [ jkJ 
and r e f e r e n c e s t h e r e , [lm] , [pi] , [P2] , [ r ] and [RS]) . I n S e c -
t i o n 2 we prove t h a t a g roupoid i s a LIR-groupoid i f and on ly • 
i f i t oan be c o n s t r a e t e d by means of a c o n s t r u c t i o n we d e -
s c r i b e t h e r e , t h a t g e n e r a l i z e s a s i m i l a r c o n s t r u c t i o n g i v e n 
by Pionka [Pi] f o r k - e y o l i c g r o u p o i d s . S e o t i o n 3 i s devoted 
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to free LIR-groupoids and Seotion 4 to properties of ident i -
t i e s sst is f i3d in LIR-groupoids. Final ly, in Seotion 4 we de-
scribe the l a t t i ce of a l l var i e t i es of LIR-groupoids. 

1. Preliminaries 
In the sequel we write xy f o r x»y and xy1 f o r 

( . . . ( ( x * y ) « y } . . . ) « y where y i s repeated i times. Sometimes 
we write also xy° f o r x. 

The variety of LIR-groupoids is denoted by LIR. The sub-
variety of LIR that sa t i s f i es the identity 

( 6 i > i + p ) xy1 = xy i + ? , 

where i = 0 , 1 , . . . and p = 1 ,2 , . . . i s denoted by Ĝ  ^ . For 
basic algebraic notions we r e f e r the reader to [ c ] and [ R S ] . 

The notation is similar to this used in these books. 
Recall that a groupoid mode i s a groupoid sat is fy ing the 

idempotent law and 

(E) ( x y ) ( z t ) = ( x z ) ( y t ) (Entropic law). 

(See [RS] and [JK] and references thefce. In [JK] groupoid 
modes are called idempotent medial groupoids). Note that 
together the idempotent and entropio laws imply distr ibutive 
laws 
(D r ) (xy )z = (xz) ( y z ) , 

(D1) x (yz ) = ( x y ) ( x z ) . 

In [R] groupoids modes w„ere investigated that additionally 
sat is fy the symmetric law 

(S) x«xy = y . 

(See [RS] and [LM] as we l l ) . Instead of the .symmetric law 
the fol lowing identity plays an important role in the theory 
of LIR-groupoids 

(A) x*xy = x. 

1.1. P r o p o s i t i o n . The fol lowing sets of 
ident i t i es are equivalent 
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On soma groupoid modes 3 

( i ) (L) , ( I ) and (R), 
( i i ) (E) , ( I ) and (R), 
( i i i ) (E) , ( I ) and (A). 

P r o o f . ( i ) =i> ( i i ) . I t follows by (L) and (R) 
that 

x y z t = xy«z = xz«y = xz»yt, 

whence the entroplc law holds. 
( i i ) =a» ( i i i ) . I t follows by (R) and ( I ) that 

x«xy = x* x = x , 

holds. 
=s>(i). I t follows by (A) and (B) that 

x»yz = (x«xy)(yz) '= ( x y ) ( x y z ) = xy, 

holds. How by the distributive law and (R) 

xy«z = xz*yz = xz*y, 

whenoe the l e f t normal law i s sa t i s f ied . 
By Proposition 1 .1 , each LIR-groupoid i s a mode. 

2. The structure of LIR-groupoids 
2 . 1 . D e f i n i t i o n . Let I be a non-empty set 

and for each i in I , l e t a non-empty set G., be given. For o 1 

each pair ( i , 3 ) in I , let h^ j 5 0 ! - ^ G i b e a mapping sa-
tisfying 
( i ) h^ ^ i s the identity mapping on G^ 
( i i ) ^ h ^ = 
Define a groupoid structure on the disjoint union G of Gif 

i in I , by 
( i i i ) ». a ^ ^ , 
where a^ i s in Ĝ  and â  is in Gj. Then'evidently, each Ĝ  
i s a subgroupoid of (G,») and i s a lef t -zero band. Moreover, 
the mapping f : G — - I , i i s a homomorphism and f(G) = I 
i s a lef t -zero band. The groupoid (G,*) is said to be the cum 
of lef t -zero bands (G l f *) over the lef t -zero band ( I , * ) by 
the. mappings hĵ  or more briefly LZ-LZ-sum of (Ĝ ,̂ •). 
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4 A.Romanowska, B.Roszkowska 

A similar construction, though formulated in a di f ferent 
language, was considered in [Pi] , [P2] . I t was show there 
that each k-cyclic groupoid is an LZ-LZ-sum. 

Let us note that by the def init ion above each LZ-LZ-sum 
belongs to the Mal'cev product LZ 0LZ (see [M ] ) , where LZ is 
the variety of l e f t -zero bands. Now we w i l l show that the 
class of a l l such sums is just the variety of LIR-groupoids. 

2.2. T h e o r e m . A groupoid (G,*) is a LIR-groupoid 
i f and only i f i t is a sum of l e f t - zero bands (G i,•J over a 
le f t - zero band ( I , * ) by some mappings j . 

P r o o f . (<*= ) I t follows by 2 . l ( i ) and ( i i i ) that 
tha idempotent law is satisf ied in the LZ-LZ-sum (G,»J of 
(G^, • ) . How let aĵ  bo in G i t â  in Ĝ  and ak in Gk. Then 
a i * b j c k = k = a i % j = a i b j implying that the reduc-
tion law is satisf ied in (G , » ) . Since by 2.1, a^ j 'C j j * 

= a i h i , j * c k- = a i h i , j h i , k " • i h l , k h i , J " a i h i , k # b j " a i c k ' b j 
i t follows that the l e f t normal law holds in (G t>). 

( ) Let UB define a re lat ion R in (G,*) by the f o r -
mula a R b i f and only i f xa - xbl for each x in G. Obviously 
R i s an equivalenoa relat ion. 

How le t us denote G/R by I and let {G^ | i e l ) be the sat 
of a l l R-clasaes of (G f>). Lot aA ba in G i and b^ and b'j 
in Gj. Then obviously a^bj = »^'.j» D«fina k^sG.^ — 6 i » 

a i ^ i j s " a i b j f o r 1 ^ a n d h i i : G i ~~"" ®i» a i h i i " a i * 
Then the l e f t normal law implies that a . ^ ^h^ ^ = a i l , j , 0 k " 

• a i V b j - H h ± ^ ± f y w h 8 r e °k i B Gk-' 
I t follows that the groupoid (G,*) is the LZ-LZ-sum of 

subgroupoids (G^,•) over the l e f t - zero band ( I , * ) by the 
mappings h^ • 

R e m a r k . The Theorem 2.2 can ba generalised to 
obtain a characterisation of a l l groupoids satisfying the 
identit ies ( I ) and (R). Let us drop the condition ( i i ) in 
the Definition 2.1 of LZ-LZ-sum. Let us ca l l the sum obtained 
in this way a general LZ-LZ-sum. Then the following may be 
proved in the similar way as Theorem 2.2« 
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On some groupoid modes 5 

2 . 2 ' . T h e o r e m . A groupoid (G,*) i s an IR-grou-
poid i f and only i f i t i s a general LZ-LZ-sum. • 

Note that the variety of IR-groupoide may be equivalent].? 
characterised as the class of groupoids (Gt*) in LZ °LZ having 
the following property: i f 9 i s a congruence re la t ion on IG,•) 
suoh that (G,*)/e and a l l 8 -c l a s ses are in LZ, and i f for 
a, b, o in G, be c, then a*b * a*c. 

3. Free LIR-groupoids 
3.1. L e m m a . The identity 

¿2 ¿r ¿rir 
" m X r " x1x2JT " * * t j t 

holds in LIB for each permutation jt of the set { 2 , . . . , r } . 
P r o o f . It follows by (L). • 
3.2. T h e o r e m . In the free LIR-groupoid F(X) on 

a set X eaoh element may be expressed in the standard form 

where x^ i s in X for each j « 1 , . . . , s and x^ / x^ for i ji j . 
P r o o f . Let w(x.|,.. . ,xB) be a groupoid word with 

variables in the set X. The proof goes by induction on s . 
If b = 2, then wix^xg) equals x-jXg o r X2X1 a n d ** i s a l r e a d 7 
in the standard form. How suppose the theorem holds for a l l 
s<n and consider a word w(x^ , . . . t x Q ) . Then 

w ( x 1 , . . . , x n ) •» w1 (y^ , . . . ty p)w2(z1 

where both p and q are l e ss than n 
induction we may assume that 

w 1 ( 7 1 . . . . . 7p i = J - i^ •••7pP a n d W1{Z 

Henoe by (R) 

i 2 3. 
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In the case z^ = ym for some m « 1 , . . . ,p , (L) implies that 

1 2 V " 1 i D w(x 1 f . . . , x n ) - y ^ g . . .ym • 

I t follows that w ( x 1 f . . . t x n ) m j be expressed in the standard 
form. o 

3.3. C o r o l l a r y . In the free LIB-groupoid 
P ( x 1 f . . . , x n ) on the generators x . j , . . . ,xn eaoh further element 
may be expressed in the standard form 

k2 ke 
x i n V * x v 

where x. i s in j x 1 , . . . , x n } tor j = 1 , . . . , s , x., 4 x., for* 
i j 1 1 n ) XP \ 

p 4 q and i 2 < . . . < i f l . • 
3.4. C o r o l l a r y . In the free fi^j-groapoid 

P i o n t h e generators x 1 , . . . , x n each further e le-
ment may be expressed in the standard form 

v k 2 s Xj Xj . . »XJ 

2 xs 

where is in |x 1 t . . . , x n | for p a l t . . . , s t x i 4 x ^ for 

p 4 q, ± ? < . . . < i e and kp< j for a l l p = 2 , . . . , s . • 3.5. C o r o l l a r y . Let Aĵ  ^(n) be the set of the 
k k k k ' 

words xpx1 1 . . .xp£-1xpP+1 . . .xn n , where p = 1 , . . . ,n , O g k B < j . 
k1 A k 

Let us denote such word by xpx1 . . . x p . . , x n and define 

k1 * kn h - Xn 
xpx1 • , , x p , , * x n *xrx1 • • • x r " * x n : " 

k i a kn 
V i " ' V , , x n i f p - r 

x p x ( 1 1 . . . i p . . . x / . . . x n n i f k T + - \ < i rnd r ^ p 

k1 a JL kn • • • 3C-. • • • • • I t I • A P i P 
x£...xR n i f kp+1 - j and r 4 p. 
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On some groupold nodes 7 

Then (A^ j ( n ) f * ) i s the f r ee G^ ^-groupoid on the genera tors 
X 1 } • • • Q 

4. I d e n t i t i e s in LIR-gro.upoids 
4 .1 . L e m m a . I f the i d e n t i t y 

h j r k2 k s (4.2) ' ' = * * 

where x1 / holds in an LIR-groupoid (G,*)» then (G,*) i s 
t r i v i a l . 

P r o o f . Multiplying the i d e n t i t y (4.2) on the l e f t 
by and using (R) one ge t s x^ = * 1 y 1 what toge ther with 
(4.2) implies tha t x1 = y^ . Q 

Let GCD(i,j) denote the g r e a t e s t common d iv i so r of the 
na tura l numbers i and j . 

4 .3 . L e m m a . The fol lowing hold in the va r i e ty LIR, 
( i ) The i d e n t i t y 

^m^m+l •'r •'m km+1 k s (4 .4) x x1 . . . y r = x x1 . . . x m zm + 1 . . . z s 

where the set | x 1 , . . . > x j Q | may be empty, i s equivalent to the 
i d e n t i t y 

xyk = x 

where k = GCD{ J B + 1 , 3 , . , ^ , k 8 ) . 
( i i ) The i d e n t i t y 

IA „ Jv „ «¡r Jr+1 

i s eq.uivalent t o the i d e n t i t y 

xyk = x 

where, k - G C D ( j r + 1 , . . . , j s ) . 

( i i i ) The i d e n t i t y 

3 r k1 (4.6) x x^ . . . x ^ = x x^ . . .Xp 
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i s equivalent to the set of ident i t i e s 

i k 
X X P = X X P p p 

where p = 1 , . . . , r . 
P r o o f . ( i ) Substituting x for a l l variables d i f -

ferent from yp in (4 .4) one gets 
¿n 

(4 .7 ) xyp p = x 

for a l l p m+1 , . . . ' , r . In a similar way (4*4) implies 

k (4 .8 ) xzq q = x 
for a l l q = m + 1 , . . . , s . I t ia easy to see that in fact (4 .7) 
and (4 .8) are equivalent to ( 4 . 4 ) . On the other hand, by 
Plonka [P2] the set of ident i t i e s consisting of the ident i -
t i e s (4 .7) and (4 .8 ) i s equivalent to the unique identity 

k „ xy « x 

with k = G C D ( 3 m + 1 , . . . , i r , k m + 1 , . . . , k s ) . 
The proof of ( i i ) and ( i i i ) i s similar to th is of ( ± ) . • 
4 .9 . C o r o l l a r y . Let the identity 

J l 3r k1 k s x x.j . . .x^, = x y1 • • » 

where the set | x 1 , . . . , x r | may be empty, that i s not a eonse-
quence of the axioms of LIR, hold in an LIB-groupoid (G,* ) . 
Then (G,«} i s in a variety G^ ^ for some i = 0 , 1 , . . . and 
d > i . • 

4 .10 . L e m m a . I f the identity 

(4.11) x y i + r - x y 1 

holds in a LIH-groupoid (G , * ) , then so does the id.«0tity 

(4 .12) x y i + k r « x y 1 . 
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On some groupoid modes 9 

P r o o f . The identity (4 .11) implies that x y i + 2 r = 
= xy i + J i y r » x j h * = x y i + r • xy 1 . Now i f tho identi ty (4 .12) 
, . , r x „ i+kr+r i t t o r i r _ i + r holds in (G,•), then xy = xy 7 = xy y = xy = 
= xy 1 . I t follows by induction that (4 .12) holds in (G,•). • 

4 .13 . C o r o l l a r y . Let i be a non-negative 
integer an' p and r natural numbers. I f i g j and p | r , 
t h e n - i , i + p - fij.j«-

P r o o f . I f i = j i t follows by Lemma 4 .10 . Assume 

that i < j . Multiplying the ident i ty 

x y 1 = x 7 i + p 

by y*'"3" on the r ight one gets the identi ty 

x y3 = x y^+P. 

Now by Lemma 4 .10 , i f the l a s t identi ty i s s a t i s f i e d in a 
LIR-groupoid ( G , * ) , then so does the identi ty 

x y3 = x y 3 + r . D 

4 .14 . L e m m a ' . Let r and s be natural numbers 
and l e t r < s . Then the i d e n t i t i e s 

(4 .15) i j ^ . X J 1 

and 

(4 .16 ) x y i + 8 = x y i 

are s a t i s f i e d in A LIR-groupoid (G,*) i f and only i f the 
identi ty 

„ _i+GCD(rts) , i x y • « x y 

i s s a t i s f i e d in (G,<) as wel l . 
P r o o f . ) I t follows by Lemma 4 .10 . 

( ) By the Buclidean Algorythm 
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s = rq 1+p 1 

r = P1q2+P2 

P1 = P2q3 + P3 

pk-2 = Pk-1qk+Pk 

Pk-1 = pkqk+1 

an' pk = GCD(r,s). Now by Lemma 4 .10 , the i d e n t i t i e s (4 .15) 
and (4 .16) imply that 

i + P l i (4 .17) x y 1 = x 

i s s a t i s f i e d in ( a , * ) , (4 .15) and (4 .17) imply that 

i+P 2 i 
x y = x y 

i s s a t i s f i e d in ( G , * ) , and so on. F ina l ly , we get that the 
identi ty 

i+p k ± 
* y = x j 

i s s a t i s f i e d in (G,*) as w e l l . • 
4 .18 . L e m m a . Let i be a non-negative integer 

and j , r , s natural numbers. Let i < j . The i d e n t i t i e s 

(4 .15) x j ^ . X J 1 

and 

(4 .19) x y d + B - x y 3 

are s a t i s f i e d in a LIR-groupoid (G,*) i f and only i f the 
ident i ty 

(4 .20) ^ H W a X r , . ) = 

i s s a t i s f i e d in (G , * ) . 

- 2 8 6 -



On some groupoid modes 11 

P r o o f . (<s= ) I f the identity (4.20J holds in 
( G , • ) , then by Lemma 4.10 the i d e n t i t i e s (4.15) ani (4.16) 
hold in (G,• ) as well . Multiplying (4.16) by y ' ' " 1 on the 
r ight one gets the identity (4 .19) . 
( =s> ) I f s = ar , then GCD(r,s) = r and (4.20) holds in (G , • ) . 

Now assume that r ^ s . Multiplying (4.15) by y" 5 - 1 on the 
r ight one gets the identity 

(4.21) xyi+T = xy\ 

By Lemma 4.14, i t follows that together (4.19) ana (4.21) are 
equivalent to 

(4.22) ^J+GCDfr.a) = 

Let j = i+k and k = ar+b for a , b integers and a ^ O , Û é b ^ r . 
Multiplying (4.22) by y r ~ b and using (4.15) and Lemma 4.10 
one get s (4.20) what completes the proof. • 

4 .23. P r o p o s i t i o n . In the variety LIR, the 
se t of i d e n t i t i e s 

1 k + r k i k x y = x y 

where k = 1 , . . . , q and 0 ^ i.j ^ i 2 , . . . ,iq , i s equivalent to the 
identi ty 

i^+GCD(r 1 , . . • , r ) i 1 
x y H = x y . 

P r o o f . I t follows by Lemma 4.18. • 
4 .24. C o r o l l a r y . Let O ^ i ^ i 2 , . . . , i . Then 

^ . i ^ p , n — n > i q + r q = fii1 . i ^ C D i r , r q J « D 

5. The l a t t i c e of aubvarietlae of LIR 
Corollary 4.9 shows that each non-tr ivia l variety K of 

LIE-groupoids d i f f e rent from LIR i s contained in some of j . 
Now we show that each K equals some of G^ 

5 .1 . P r o p o s i t i o n . I f K i s a variety of 
LIR-groupoids contained in Gj then 2Ç i s t r i v i a l or 
K = G for some p < i . Pt P+M 
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F r o o f . Let us assume that K is non-trivial and 
- ^ - i , i + j * ®y lemma 4.3, the set of identities satisfied in 
K,- that are not consequences of the axioms of LIR, is equi-
valent to a set I of identities 

rk rk+ sk x y K = x y * K 

where r k + s k < i + j . Evidently, this set is f in i t e , say has 
1 elements, end come of r^, say r 1 , is less than al l other. 
Hence, by Proposition 4.23 the set I is equivalent to the 
unique identity 

xyP = xy?^ 

where p = r^ and q = G C D ( s 1 , . . . . • 
5.2. P r o p o s i t i o n . G. . s 3, . _ i f and 

111"t't- J , J+-r 

only i f i ^ j anc: - | r . 
P r o o f . { - «= ) I t follows by Corollary 4.13. 

( ) I f Gj j j then by Propoisition 5.1 and Co-
rollary 4.24, i - i+k and G i > i + p " % + k f i + k + r = %,i+GCD( p,r) 
= Ĝ  j_+p» Hence GCD(p,r) = p and Consequently p | r . • 

Let Kd be the lattioe of the natural numbers with the 
meet of two numbers i and j being their greatest commoa 
divisor GCD(i,<j}, and the join of i and j being their 
least oommon multiple LCU(i, j ) . Let NQ be the chain of the 
natural numbers with the join of i and j being their 
maximum and the meet of i and j their minimum* Denote 

L j = y N,. o a 

Now let Lq 1 be the lattioe obtained from L'by adding a new 
greatest element 1 and a new least element 0. 

5.3. T h e o r e m . The lat t ioe L(LIR) of a l l sub-
varieties of the variety LIR is isomorphic to the lattioe 
Lq The isomorphism is given by the mapping 

h-.L(LIR) — 

- 288 -



On some groupoid nodes 13 

where the image of the t r i v i a l variety i s 0, tne image of the 
variety LIR i s 1 and i + p h = ( i ,p ) . 

P r o o f . I t i s evident that the mapping h i s onto. 
We shc-v that i t i s one-to-one. Indeed, i f K = G. . = G. . , 
then _ £ _ = G. . and by Propositions 5.1 and 5.2, 

>1+P J»«J+r 

K = G. . with k g i , k g j , s i p , s | r . On the other hand ~"K j K + l 

- i , i + p = - j , j + r S - = - k , k+ s ' w h e n c e i = k» d ^ k and p | s , q | s . 
I t follows that i = j = k and p = r = s . 

How by Corollary 4.24, for i ^ j 

< S i , i + p n S j , J « ) h - -i,i+GCD{ p,r)^ ' (i,GCD( p , r ) ) . 

On the other hand 

% , i + p h A ^ , j + r h " U . p M U . r ) - ( i ,GCD(p,r)) . 

I t fo l lows that h i s a meet-homomorphism. 

Ve show that 

(5.4) —i,i+p^ —i+k,i+k+r = %+k,i+LCM( p,r) • 

By P ropos i t i on 5.2, i t fo l lows that 

- i , i + p v —i+k,i+k+r =-i+k, i+LCM(p,r)* 

•Sow-if i + p S K and G i + l c K, then by Propos i t ions 5.1 

and 5.2, K = G8 where i i k £ s and p | t and r | t , whence 

LCM(p.r) | t . I t ' f o l l o w s that G i + k i + L C M | ( p t r ) £ Q B t B + t and con-

sequently (5.4) ho lds . 

The equa l i ty (5.4) impl ies that h i s a join-homomor-

phism. Indeed, f o r i ^ j 

( S i , i t p V f i J , 3 + r > h " ^ t j + L C 1 | ( p > r ) h - (J,LCM( p , r ) ) . 

On the other hand 

% , i + p h v 5 i t j + r h " ( i . P ) v ( 3 , r ) = ( j , LC l l (p , r ) ) . 

I t fo l lows that h i s a j oin-homomorphism. • 
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