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ON SOME GROUPOID MODES

In [P1] J.Pronka has shown that there are exactly four
types of algebras having exactly n n-ary operations depending
on all its variables for emch n = 1,2,... One of these types
fora so=ocalled 2~0yeclic groupoids satisfying the following
axioms

(L) (xey)es = (xez)ey (Left normal law),

(1) XX = X (Idempetent law),

(R) Xe(yoz) = Xy (Reduction law),

(c,) (xey)ey = x (2-0yclic law).

Mere general, k-oyclic groupoids satisfy the axioms (L), (I),
(R) and

(CE) (eeel{(xXey)eF)ace)ey = x (k-oyolic law),

K-eyclic groupoids were investigated in [P2].

In this paper we study more general LIR-groupoids that
satisfy only the axioms (L), (I} and (R). In Section 1-‘we show
that they are modes i.e. they are idempotent and sntropic as
defined in [RS] o So our investigations belong to the recently
qulckly developed theory of groupoids modes. (See s.g. [JK]
and referencee there, [LM], [P1], [P2], [R] and [RS]). In Sec-
tion 2 we prove that a groupoid is a LIR-groupoid if and only:
if it can be constructed by meams of a construction we de-
seribe there, that generalizes a similar construction given
by Ptonka [P1] for k-eyolic groupoids. Section 3 is devoted
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to free LIR-groupoids and Section 4 to propertiaes of identi-
ties satisfisd in LIR-groupoids., PFinally, in Section 4 we de~
scribe the lattice of all varieties of LIR=-groupoids.

1. Preliminaries

In the sequel we write xy for x.y and xyi for
{eeo({x*y)eF)eee)sy where y is repeated 1 times. Sometimes
we write also xy° for x.

The veriety of LIR-groupoids is denoted by LIR, The sub~
variety of LIR that satisfies the identity
(85,14p) ot = l*P,
where 1 = 0,1,ees and p = 1,2,+4s 18 denoted by gi j4pe For
basic algebraic notions we refer the reader to [C] and [RS].
The notation is similar to this used in these books.

Recall that a groupoid mode is a groupoid satisfying the
idempotent law and

(E) (xy)(zt) = (xz)(yt) (Entropic law),

(See [RS] and [JK] and references there. In [JK] groupoid
modes are called idempotent medial groupoids). Note that
together the idempotent and entropic laws imply distributive
laws

(D) (xy)z

(%z)(yz),

]

(xy)(xz).

In [R] groupoids modes were investigated that additionally
satisfy the symmetric law

(D;) x(yz)

(s) XXy = Je

(see [RS] and [1M] as well). Instead of the ,symmetric law
the following identity plays an important role in the theory
of LIR-groupoids

(a) X*Xy = X

1e¢le Proposition, The following sets of
identities are equivalent
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(1) (L), (I) and (R),
(11) (), (I) and (R),
(ii1) (E), (I) and (4).
Proof. (i) =>(ii). It follows by (L) and (R)
that

xyezt = Xyez = x2°y = xz°+y%,

whence the entropic lew holds.
(1i) = (1ii). It follows by (R) and (I) that

X+Xy = X*X = X,

whence (4) holds.
(1ii) == (1), It follows by (A} and (E) that

xeyz = (xexy)(yz) = (xy)(xy°2) = xy,
whence (R) holds., Now by the distributive law and (R)
Xy*2 = X2°yZ = XzZ°*J,

whenoce the left normsl law is setisfied.
‘By Proposition 1.1, each LIR=-groupoid is a mode.

2. The structure of LIR-groupoids

2%« Definition, Let I be a non-empty set
and for each i 1n I, let a non-empty set Gy be given, For
each pair (i,J) in 12, let hi,j’Gi'_"Gi be .a mapping sa~-
tisfying
(1) hi,i is the identity mapping on Gy,
(11) hi,jhi,k = hi,khi,j’
Define a groupoid structure on the disjoint union G of Gy
iinI, by
(111) ajeay t= aihi,J' .
where 8y is in Gy and a is in G,. Then evidently, each Gy
is a subgroupoid of (G,*) and is a left-zero band. Moreover,
the mapping f£:G — I, &, +=1 is a homomorphism and £(G) = I
is a left-zero band. The groupoid (G,-) is said to be the sum
of left-zere bands (G;,*) over the lefi-zero band (I,*) by
the mappings hi,j’ or more briefly LZ-LZ=-sum of (Gi,').
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A similar construction, though formulated in a different
languags, was considered in [Pf], [P2]. It was show there
that each k-cyclic groupoid is an LZ-LZ-sum.

Let us note that by the definition above each LZ~-LZ~-sum
belongs to the Mal cev product LZ o LZ (see [M]), where LZ is
the veriety of left-zero bands. Now we will show that the
class of all such sums is just the variety of LIR-groupoids.

22 Theorem. & groupoid (G,*) is a LIR-groupoid
if and only if it is a sux of left-zero bands (Gi,°) over a
left-zero band (I,*) by some mappings hy

Proof. (<= ) It follows by 2 1(1) and (1ii) that
the idempotent law is satisfied in the LZ-LZ-sum (G,s) of
(Gyy*)e Now let &y be in Gy, aj‘in Gj and a, in Gp. Then
ai'bjck = ai'bjhj Kk = aihi = “ibj implying that the reduc~
tion lew is satisfied in (G,n). Since by 2.1, aibj'ck
= aghy geoy = ashy 4hy o= aghy Ghy g o= aghy oDy o= aycyeby
it follows that the left normal law holds in’ (G,e).

( => ) Let us define a relatien R in (G,*) by the for-
mula a R b if and only if xa = xb for each x in G, Obviously
R is an equivalence relation.

Now let us denote G/R by I and let {6, | 1¢ I} be the set
of all R-classes of (G,*). Let ai be in G, and bJ and bd
in Gj‘ Then obviously aibj = 'ibj' Define hi 3 — Gy,
ashy b aibj for 1 # j and hi 1.G1-—~ ¢y, 'ihi 1= 8
Then the left normal law ilplies that aihi jhi k= aibj'ck
= ai°k°bj = aihi khi s Wwhere oy ia in Gk‘

It follows that the groupoid (G,+) is the LZ-LZ~sum of
subgroupoids (Gy,°) over the left-zero band (I,*) by the
mapplings hi,j' a .

Remark, The Theorem 2.2 can be generalised to
obtain a characterisation of all groupoide satisfying the
identities (I) and (R). Let us drop the condition (1i) in
the Definition 2.1 of LZ-LZ~sum. Let us call the sum obtained
in this wey a general LZ~-LZ~-sum, Then the following may bse
proved in the similar way as Theorem 2,2,
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2,2’. Theorem. Agroupoid (G,*) is an IR-grou-
poid if and only if it is a general LZ-LZ-sum, DO

Note that the variety of IR-groupoids may be equivalently
characterised as the clasa of groupolds (G,*) in LZ °LZ having
the following property: if 8 is a congruence relation on (G,*)
such that (G,¢)/6 and all & ~classes are in LZ, and if for
8, b, o in G, be ¢, then a*b = aeo,

3. Pree LIR-groupoids
31« Lemma . The identity
o Ir Jon dear
x112 oooxr = x1x2”_oooxr1r
holds in LIR for each permutation J of the set {2,...,r}.
Proof . It follows by (L), O
3,62, Theorem., Inthe free LIR-groupoid F(X) on
a 86t X oach element may be expressed in the standard form

x1x:2...x:s
wheTe x5 is in X for each §j = 1,...,8 and xy # x4 for 1 # j.
Proof. Let w(x1,....xs) be a groupoid word with
variables in the set X. The proof goes by induction on &,
If s = 2, then w(x1,x2) equals x,X, Or X,X, and it is already
in the standard form. Now suppose the thesorem holds for all
s<n and consider a word .(:1,...,xn;. Then

w(x1,...,xn) = w1(y1,...,yp)w2(z1,...,zq)

where both p and q are less than n and {31,...,yp},
{z1,...,zq}g{x.',....xn}.ihy induction we may assun; thatd
'1(y1,ooo,’p’ = ,1,22000’pp and '1(21,900,Zq) = 212220..zqq0
Hence by (R)

o1, 4 3, 3 1, 1
'(11,ooo'xn) = (’1’22°°.’ppb(z1!22'"sqq) = (31122...3pp)z1.
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In the case 24 = Jp for some m = 1,e..4p, (L) implies that

i, 1.+ i
W(x1,ooo’xn) = y1y2 .ooym oooyp .

It follows that w(x1,...,xn) my be expressed in the standard
form, o
3.3, Corollary. In the free LIR-groupoid
F(x1,...,xn) on the generators X,,...,x, each further element
may be aexpressed in the standard form
k k
2 8
X X3 eeeX
i1 12 ¢ 15'
where x; 1is in {x1,...,xn} £0L J = 1500048, X; # x4 for
9

pAqand f,<.n<i. O P
3.4. Corollary. In the free gi,j-groupoid
Fi,j(x1""’xn) on the generators Xy,.essX, ‘sach further ele-

ment may be expressed in the standard form

k k
xi1x12...xis
where x; 1is in {x1,...,xn} £Or D = 15000,8, xip # xiq for
P ¥4, 1,<eee<ig and kp<;j for all p = 2,¢.448., O

35¢ Corollary. Let Ai,j(n) be the set of the

k k k
words xpx1 ...xp211xp£;1...xnn, where p =k1,...,n, 0=k < Jo
Let us denote such word by xpx11...§p...xnn and define
k k 1 " 1
xpx11o'.§p¢..xnn'xrx11oo‘H...xnn =
k “ k
xpx1 --.xp..oxn if p = I
k k.+1 k
1 2 n

] xpﬁ1...xp...;r coeXy if k+1<j end £

k1 X i xkn if +1 = j and T #
prx1 ...xp...xr... n k.l’.‘ Pe
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Then (Ai j(n),°) is the free G, j-groupoid on the generators
? »
X1’Q..’xn. D

4, Identities in LIR=-groupoids
4,1, Lemma. If the identity

3 3 k k
(402) x1x220-0&r = y1322...yss

where x, # 34 holds in an LIR~groupoid (G,*), then {G,*) 1is
trivial,

Proof, Multiplying the identity (4.2) on ths left
by x, and using (R) one gets x; = x,y, what together with ’
(4.2) implies that x; = y4o O

Let GCD(i,j) denote the greatest common divisor of the
natural numbers i and j.

4,3, Lemma., The following hold in the variety LIR.
{1) The identity

r 31 jm km+1 ks
r =xx1 seeX 2 1 --.zs

J Jp d
(4.4) x 1110-oxmmymf*1"'y m o+

where the set {x1,...,xm} may be empty, is equivalent to the
identity
3y =X
where k = GcD(jm+1,oto'jr.km+1,o--,ks)-
(i1) The 1dentity
Iq Ip Iq Ir_dr4q Jg
(4.5) X x1 o.oxr = X x1 -o.xr yr+1 o-oys

is equivalent to the identity

x3° = x
where. k = GCD(Jr+1.¢oo’jB)o
(i11) The identity
J J k
(4.6) X x11.o.&r = X 111000&.
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is equivalent to the set of ldentitics

where p = 1,.0.,1‘0
Proof, 1) Substituting x for all variables dif=-
ferent from Yp in (4.4) one gets

(407) xypp = X

for all p = m+1,e.vyFe In a similar way (4.4) impliss

(4.8) xz 3 = x

for all q = m+l,ses,8. It i8 easy to see that in faet (4.7)
and (4.8) are equivalent to (4.4). On the other hand, by
Ptonka [P2] the set of identities consisting of the identi-
ties (4.7) and (4.8) is equivalent to the unigue identity

ka = X

with k = GCD(jm+1,ooo,.jr,km+1,ooo’ks)c

The proof of (ii) and (iii) is similar to this of {i). O

4,9, Corollazxrye. Let the identity

h| J k k
X 111-‘¢ r = X 311...3. »

where ths set {x1,...,xr} masy be empty, that is not a eonse-
quence of the axioms of LIR, hold in an LIR-groupoid (6,*).
Then (G,+) is in a variety gi,J for some i = 0,1,... and
j> 1. u]

4,10 Lemma. If the identity

(4.11) X yi*r = X yi
holds in a LIR-groupoid (G,*), then mso does the identity
(4.12) x yi+kr = x yi.
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(Y]

Proof. The identity (4.11) implies that xyi+2r =

= xyt*T = xylyT = it - xyl. Now if tho 1dentity (4.12)
holds in (G,e), then xyi+kr+r - xyi+kryr - xyiyr - x:'1-1»1‘ -

- xyl. It follows by induction that (4.12) holds in (G,+).
4,13, Corolliary. Let i be a non-negative
integer an: p and r natural numbers, If i=j and p| r,

ohen Gy ,14pS &3, 5er
Proof, Ifi=J it follows by Lemma 4.10. Assume
that i <J. Multiplying the identity

by yj'i on the right one gets the identity

x 33 = x yI*P,

Now by Lemma 4,10, if the last identity is satisfied in a
LIR~-groupoid (G,*), then so does the identity
J

Xy’ =x ,J+r. o

4.4, Lemma, Let » and s be natural numbers
and let r <s, Then the identities

(4.15) x yi+r = x yi
and
(4.16) x yi+s = x yi

are satisfied in & LIR-groupoid (G,*) if amrd only if the
identity

i+GCD(r,s) _ x yi

X3
is satisfied in (G,*) as well.
Proof. (== ) It follows by Lemma 4.10.

( =) By the Euclidean Algorythm
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S = Tq,+p,

T = Pq9p%P;

91 = qu 3""?3
Pkmp = Pruq9xtPx

Pyt = Prx41

and pp = Gep{r,s). Now by Lemma 4.10, the identities (4.15)
and (4.16) imply that

i+p
(4.17) Xy 1oz yi

is satisfied in (G,*), (4.15) and (4.17) imply that

i+p
Xy 2 _ yi
is satisfied in (G,*), and so on. Finally, we get that the
identity
i+p
xy kgt
is gatisfled in (G,+) as well, O
4,18, Le mrma., Let 1 bYe a non-negative integer
and j, ry, 8 natural numbers. Let 1<Jj. The identities

(4.15) x yi+r e X yi
and
(4.19) x 73+B = x yj

are savisfied in a LIR-groupoid (G,*) if and only 1if the
identity

(4.20) ryltoeD(r,8) _ Lod

is satisfied in (G,*).
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Proof. (<= ) If the identity (4,20} holds in
(G,+), then by Lemma 4,10 the identities (4.15) ani (4.16)
hold in (G,*) as well, Multiplying (4.16) by y°~* on the
right one gets tha identity (4.19).

{==) If s = ar, then GCD(r,s) = r and {4.20) holds in (G,"}.

Now assume that r fs. Multiplying (4.15) by y9™ or the
right one gets the identity
(4.21) xyj+r = xyj.

By Lemma 4.14, it follows that together (4.19) and {4.21) are
equivalent to

J

j+Gep(r,s) _ xy9.

(4022) Xy
Let j = i+k and k = ar+b tor a, b integers and a20, 0Lb<r,
Multiplying (4.22) by 3 ° and using (4.15) and Lemma 4.10
one gaets (4.20) what completes the proof, ]

4,23, Proposition. Inthe veriety LIR, the
set of identities i i

+r
xy K K _ gk

where k = 1,...,9 and 0§i1§i2,...,iq, is equivalent to the

identit
y i1+GCD(I‘1 ,...,I‘ ) 11
X7y 9 = X3 .

Proof. It follows by Lemma 4.18. |
4,24 Cor Ollary . Let 0éi1§12,.00,iq. Then

(_} n'oo ﬂg
11,i1+r1 iq,iq+rq

= 911,11+Gcn(r1,...,rq)' o

5. The lattice of subvaristies of LIR-

Corollary 4.9 shows that each non-trivial veriety K of
LIR~groupoids different from LIR is contained in some of gi,J.
Now we show that each K equals some of gi’d.

5¢1e Propositions, If K is a variety of
LIR~-groupoids contaired in Qi,i+j’ then X is itrivial or

K = gp’pﬂ for some p=<1i,
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Proof., Let us assume that K is non-trivial and
K # gi,i+j' By Lemma 4.3, the set of identities satisfied in
K, that are rot consequences of the axioms of LIR, is equi~

valent to a set I of identities

r T, 48
Xy k _ Xy k™ k
where Ty +8, <i+j. Evidently, this set is finite, say has
1l elements, snd come of Ty 88y T4, is less than all other,
Hence, by Proposition 4,23 the set I is equivalent to the
unique identity
xyP = xypﬂ
Where p = 1‘1 and q = GCD(S1’..C ’81)0 D
5¢2, Proposition.,
only if i<J an¢ - | p,
Proof., [«= )} It follows by Corollary 4.i3.
(=) If gi,i+;g éj,j+r’ then by Propoisition 5.1 and Co=-

£1,14p% 3y, 54p 11 20

rollary 4.24, § = i+k and Gy 5 NGy y g0 = 85 1460D(p,r) =
= 91,1+ . Hence GCD(p,r}) = p and consequently p | T o

Let Nd be ‘the lattioce of the natural numbers with the
meet of two numbers 1 and J being their greatest common
divisor GCD(i,j), and the join of 1 and J Dbeing their
least common multiple LCM(1,j). Let N, be the chain of the
natural numbers with the joln of 1 and J being their

maximum and the meet of i and J thelr minimum. Denote
Il = NOXNd'
Now let Ly 1 be the lattice cbtalned from L 'by adding a new
greatest eiement 1 and & new least element 0,
5¢3. T heorem, The lattice L(LIR) of all sub=-

varieties of the variety LIR is isomorphic to the lattilos
Ly qe The isomorphism is given by the mapping
14

h:L(1IR) — L0,1
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where the image of the trivial variety is 0, tne image of the
variety LIR is 1 and Gl 140B = (i,p)e

Proof., It is evident that the mapp ing h 1is ontc.
We shcv that it is one-to-one. Indeed, if K = G, ,idp = —j,j+r'
then _ g, .= G and by FPropositions 5.1 and 5.2,

»y 14D Jed+r
K = _qk Kt w1th k=i, k=Jj, 8| p, 8 |re On the other hand
'

gi'hp = ga,aﬂ,_g Gk,k+s’ whence 1=k, j<k and p| s, q| s,
It follows that L1 = j = k and p =1 = 8,

Now by Corollary 4.24, for 1<

)h = jb = (1,6CD(p,x)).

(gi,i+pr]§j,j+r Gy ,1+GCD(p,r

On the other hand

hl\gj j+1‘h = (ipp)/\(d'r) = (ioGCD(por))'

It follows that h is a meet-homomorphism,
We show that

Gi i+

(5.4) S 34pY Givk,teker = Si4k,1+1CH(p,r)"
By Proposition 5.2, it follows that

83 ,14pY G4k, 1+ker S G14k,1410M(p,r)*

‘Now-1if Gi 14p= = K and G1+k $+ker = € K, then by Propositions 5.1
and 5.2, K = G s+t? where i+k<s and p|[t and r | ¢, whence
LCM(p,r) | t. It ’follows that Gi+k 1+L0M( p,r) S and con=-
sequently (5.4) holds,

The equality (5.4) implies that h 1is a join~homomor~
phism. Indeed, for i<

—s,a+t

}h =G ,h = (J,LCM(p,r)).

(85,54pv &5, 340/ = &y j4rcu(p,r

On the other hand

Gy 44pBY Gy, g4rh = (i,p) v (3,x) = (§,LCH(p,T)).

It follows that h 1s a join-homomorphism, O
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