

Barbara Roszkowska

**THE LATTICE OF VARIETIES
OF SYMMETRIC IDEMPOTENT ENTROPIC GROUPOIDS**

Consider the following set of the axioms for a set G with a binary operation \circ .

(S)	$(x \circ y) \circ y = x$	(Symmetry)
(I)	$x \circ x = x$	(Idempotence)
(E)	$(x \circ y) \circ (z \circ t) = (x \circ z) \circ (y \circ t).$ (Entropicity)	

An algebra (G, \circ) satisfying all these axioms will be called an SIE-groupoid.

Such groupoids were investigated in many papers. For example in [2] more general algebras so called quandles were considered that have been used to characterization of knots, in [4] in connection with symmetric spaces, in [5] and [6] with reference to groups that are generated by involutions and in [7] as an example of so called modes. Entropic groupoids were investigated in [1], where they were called medial.

The aim of this paper is to describe the lattice of all subvarieties of the variety SIE of all SIE-groupoids. The paper is organized as follows. After some elementary properties of SIE-groupoids presented in Section 1, we describe identities in two variables satisfied in SIE-groupoids in

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Technical University of Warsaw (Wilga), May 22-25, 1986.

Section 2. Then we give a standard form for words in the free SIE-groupoid on a finite set. In Section 4 we investigate identities in n variables satisfied in the variety SIE. We prove that every such identity is equivalent to some identity on two variables. The results of Sections 3 and 4 enable us to describe the lattice of all subvarieties of SIE in Section 5.

1. Preliminaries

We give here some basic properties of SIE-groupoids. In the sequel we write xy for $x \cdot y$. We also use the following convention

$$(1.1) \quad x_1 \dots x_n := (x_1 \dots x_{n-1}) \cdot x_n$$

for every $n \geq 2$ and

$$xy \cdot zt := (x \cdot y) \cdot (z \cdot t).$$

The product (1.1) is called left associated.

D e f i n i t i o n 1.2. A groupoid (G, \cdot) is called left distributive if the identity

$$(i) \quad x(yz) = xy \cdot xz$$

holds in (G, \cdot) . (G, \cdot) is right distributive if

$$(ii) \quad (xy)z = xz \cdot yz$$

holds in (G, \cdot) . Finally (G, \cdot) is distributive in the case it is both left and right distributive.

P r o p o s i t i o n 1.3. [7] Every SIE-groupoid (G, \cdot) is distributive and satisfies the partial associative law

$$xy \cdot x = x \cdot yx,$$

Note that in general SIE-groupoids are not associative.

The axiom of symmetry for SIE-groupoids implies that for every $a \in G$ the mapping $S_a: G \rightarrow G$, $S_a(b) = ba$, is a bijection and has the property $S_a^{-1} = S_a$. By the axiom of idempotency every mapping S_a has a fixed point, namely a , since $S_a(a) = a \cdot a = a$. By the right distributivity each mapping S_a is

a homomorphism. The entropic law means that $f : G \times G \rightarrow G$, $f(a, b) = ab$, is a homomorphism too.

Proposition 1.4. The following identities are satisfied in every SIE-groupoid for each natural number n :

$$(i) \quad xyzt = xtzy,$$

$$(ii) \quad x_1y_1 \dots x_ny_n = x_1y_{\sigma(1)} \dots x_ny_{\sigma(n)}$$

for each permutation σ of the set $\{1, \dots, n\}$,

$$(iii) \quad x \cdot y_1 \dots y_n = x_1y_n \dots y_2y_1 \dots y_n.$$

Remark. By (iii) each SIE-groupoid word can be represented in a left associated form.

Proof. (i). By the distributive, entropic and symmetry laws

$$xyzt = xy \cdot zt = (xt \cdot yt) \cdot zt = (xt \cdot z)(yt \cdot t) = xtzy.$$

(ii). It follows from (i) because every permutation is a composition of transpositions.

(iii). The proof goes by induction on n . The case $n = 1$ is obvious. For $n = 2$, $xy_2y_1y_2 = x \cdot y_1y_2$ holds by symmetry and distributivity. Now assume that (iii) holds for every natural number less than or equal to n . Then by the first part of the proof and the induction hypothesis

$$\begin{aligned} x \cdot y_1 \dots y_{n+1} &= x \cdot (y_1 \dots y_n)y_{n+1} = xy_{n+1}(y_1 \dots y_n)y_{n+1} = \\ &= xy_{n+1}y_n \dots y_2y_1y_2 \dots y_ny_{n+1}. \end{aligned} \quad \square$$

The operation of an SIE-groupoid may be geometrically interpreted as a reflection on the real line R (see [7]). For $G = R$ and $xy := 2y-x$, (R, \cdot) is an SIE-groupoid and xy is the reflection of x in y .

Example 1.5. More general the set R^n with $(i_1, \dots, i_n) \cdot (j_1, \dots, j_n) := (2j_1 - i_1, \dots, 2j_n - i_n)$ is an SIE-groupoid for every $n \in N$ and (Z^n, \cdot) where Z is the set of all integers, is a subgroupoid of (R^n, \cdot) .

E x a m p l e 1.6. Let (G, \cdot, e) be a nilpotent group of class at most 2. (This means that for all $a, b \in G$, $[a, b] := a^{-1}b^{-1}ab$ is in the center of (G, \cdot, e)). Let $x \circ y := yx^{-1}y$. Then (G, \circ) is an SIE-groupoid.

2. Identities in two variables

The aim of this section is to describe identities in two variables satisfied in the variety SIE.

The free SIE-groupoid $F(x, y)$ on two generators x and y was described by Lindner, Mendelsohn in [3] and by Romanowska, Smith in [7]. It is isomorphic to the SIE-groupoid (Z, \cdot) , where $xy := 2y - x$. In [3] Lindner, Mendelsohn defined an infinite class of words in the free groupoid on two generators x and y in the following way

$$w_0(x, y) = x, \quad w_1(x, y) = y \quad \text{and}$$

$$w_i(x, y) = w_{i-2}(x, y)w_{i-1}(x, y) \quad \text{for } i \geq 2.$$

Multiplying the last equation on the right by $w_{i-1}(x, y)$ and using the axiom of symmetry one obtains

$$w_i(x, y)w_{i-1}(x, y) = w_{i-2}(x, y).$$

We use the last equation to extend the definition of $w_i(x, y)$ to the case of negative indices. In what follows we abbreviate $w_i(x, y)$ to w_i if no confusion can arise.

Now let (Z, \cdot) be the SIE-groupoid from Example 1.4. It was proved in [3] that each element of $F(x, y)$ may be expressed as w_i for some integer i and that the mapping $h: Z \rightarrow F(x, y)$, $h(i) := w_i$ is an isomorphism. In this way a standard form of words in $F(x, y)$ is given. In [7] Romanowska, Smith described words in $F(x, y)$ in a different way. They proved the following proposition [7, Proposition 4.14].

P r o p o s i t i o n 2.1. In $F(x, y)$ each element may be expressed in the standard form $a_1(a_2 \dots (a_{n-1}a_n)) \dots$ with $a_i \neq a_{i+1}$ and $a_i \in \{x, y\}$, $i = 1, \dots, n-1$.

Corollary 2.2. Let $i \geq 1$. Then in an SIE-groupoid

$$w_i(x, y) = a_{i-1} \dots a_2 a_1 y,$$

where $a_1 = x$, $a_k \in \{x, y\}$, $a_k \neq a_{k+1}$ for $1 \leq k \leq i-1$ and

$$w_{-i}(x, y) = a_i \dots a_1 x,$$

where $a_1 = y$, $a_k \in \{x, y\}$, $a_k \neq a_{k+1}$ for $1 \leq k \leq i-1$.

Proof. The proof goes by induction on i . The cases $i = 1, 2$ are obvious. Let $w_{i-2} = a_{i-3} \dots a_1 y$, $w_{i-1} = a_{i-2} \dots a_1 y$ and $a_1 = x$, $a_k \in \{x, y\}$, $a_k \neq a_{k+1}$ for $1 \leq k \leq i-3$.

Then by distributivity and idempotency

$$\begin{aligned} w_i &= w_{i-2} w_{i-1} = a_{i-3} \dots a_1 y \cdot a_{i-2} \dots a_1 y = (a_{i-3} \dots a_1 \cdot a_{i-2} \dots a_1) y = \\ &= (a_{i-3} \cdot a_{i-2} a_{i-3}) a_{i-4} \dots a_1 y, \end{aligned}$$

and since by Proposition 1.3,

$$a_{i-3} \cdot a_{i-2} a_{i-3} = a_{i-3} a_{i-2} a_{i-3},$$

it follows that

$$w_i = a_{i-3} a_{i-2} a_{i-3} \dots a_1 y.$$

Moreover $a_{i-3} \neq a_{i-2}$. Let us define $a_{i-1} := a_{i-3}$. Then $w_i = a_{i-1} a_{i-2} a_{i-3} \dots a_1 y$, where $a_1 = x$, $a_k \in \{x, y\}$, $a_k \neq a_{k+1}$, for $1 \leq k \leq i-2$.

The second equality is proved similarly; it is also a consequence of the first one and Lemma 2.3(i) below.

Lemma 2.3 [3]. Let r and s be integers. Then the identities

$$(i) \quad w_r w_s = w_{-r+2s},$$

$$(ii) \quad w_{-r}(x, y) = w_{r+1}(y, s)$$

hold in SIE. □

The next two obvious consequences of Lemma 2.3 will be used several times.

Corollary 2.4. For every integer r the identities

$$(i) \quad w_{-r} = w_r w_0,$$

$$(ii) \quad w_{2r} = w_0 w_r$$

hold in SIE.

Definition 2.5. [3]. Let n be an integer. The identity of the form $w_n(x,y) = x = w_0(x,y)$ is called an n -cyclic identity. An SIE-groupoid satisfying an n -cyclic identity is called an n -cyclic SIE-groupoid.

Denote by V_n the variety of all n -cyclic SIE-groupoids. By Corollary 2.4(i) and idempotency, $w_n = w_0$ if and only if $w_{-n} = w_0$. Hence V_n is equal to V_{-n} .

Proposition 2.6. Every identity in two variables satisfied in SIE is equivalent to an n -cyclic identity for some n .

Proof. Every identity in two variables has the form $u = v$ where $u, v \in F(x,y)$. This means that there exist integers r, s such that $u = w_r(x,y)$, $v = w_s(x,y)$. Hence the identity $u = v$ has the form $w_r(x,y) = w_s(x,y)$. We consider two cases:

Case 1. r or s is even. We may assume that s is even. (The case r is even is analogous). We multiply the identity $w_r = w_s$ on the right by $w_{s/2}$ and obtain (by Lemma 2.3(i)) $w_r w_{s/2} = w_s w_{s/2} = w_0$ and $w_r w_{s/2} = w_{s-r}$. This shows that the identity $w_{s-r} = w_0$ is a consequence of $w_r = w_s$.

To prove the converse implication, multiply the identity $w_{s-r} = w_0$ on the right by $w_{s/2}$. Using Lemma 2.3(i) and Corollary 2.4(ii) we obtain $w_r = w_s$.

Case 2. r and s are odd. Since by Lemma 2.3(ii) $w_s(x,y) = w_{-s+1}(y,x)$ and $w_r(x,y) = w_{-r+1}(y,x)$ then by the previous part of the proof the latter is equivalent to $w_{r-s}(y,x) = w_0(y,s) = y$ and consequently equivalent to $w_{r-s}(x,y) = x$.

Let $\text{GCD}(n, k)$ denote the greatest common divisor of the integers n and k .

Proposition 2.7. For all positive integers n and k ,

$$V_n \cap V_k = V_{\text{GCD}(n, k)}.$$

Proof. First note that by the proof of Proposition 2.6, if $w_n = w_0$ is satisfied in a variety of SIE-groupoids then $w_{n+i} = w_i$ and hence $w_{in} = w_0$ is satisfied as well for every i in \mathbb{Z} .

Let r, s be natural numbers, $k = \text{GCD}(n, k)r$ and $n = \text{GCD}(n, k)s$. Now assume that an SIE-groupoid G satisfies the identity $w_{\text{GCD}(n, k)} = w_0$ i.e. G is in $V_{\text{GCD}(n, k)}$. Then G satisfies the identities $w_n = w_{\text{GCD}(n, k)s} = w_0$ and $w_k = w_{\text{GCD}(n, k)r} = w_0$, i.e. G is in $V_n \cap V_k$.

Conversely let an SIE-groupoid G satisfy identities $w_k = w_0$ and $w_n = w_0$. Since $\text{GCD}(n, k) = an+bk$ for some integers a, b , $w_{\text{GCD}(n, k)} = w_{an+bk} = w_{an} = w_0$. This means that G is in $V_{\text{GCD}(n, k)}$.

3. The standard form of words in the free SIE-groupoids

The purpose of this section is to describe the standard form of words in the free SIE-groupoid $F(x_0, \dots, x_n)$ on $n+1$ generators x_0, \dots, x_n . Let Q_n be the set of all sequences (k_1, \dots, k_n) in \mathbb{Z}^n such that at most one k_i is odd. It is easy to see that (Q_n, \cdot) is a subgroupoid of (\mathbb{Z}^n, \cdot) from Example 1.5.

Theorem 3.1. (Joyce [2]). The free SIE-groupoid $F(x_0, \dots, x_n)$ is isomorphic to the SIE-groupoid (Q_n, \cdot) . The elements $e_0 = (0, \dots, 0)$, $e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 1)$ are free generators of (Q_n, \cdot) . \square

Note that in [2] SIE-groupoids were called involuntary abelian quandles and were used to characterize knots.

Now we define an infinite class of groupoid words in variables x_0, \dots, x_n that coincides with that given in Section 2 in the case $n = 1$.

Definition 3.2. For every element $(2r_1, \dots, r_j, \dots, 2r_n)$ of Q_n we define

$$w(0, \dots, 0; x_0, \dots, x_n) := x_0 = w_0,$$

$$w(2r_1, \dots, r_j, \dots, 2r_n; x_0, \dots, x_n) :=$$

$$= \begin{cases} w_{r_j} w_0 w_{r_1} w_0 \dots w_{r_{j-1}} w_0 w_{r_{j+1}} \dots w_0 w_{r_n} & \text{if } r_j \text{ is odd} \\ w_0 w_{r_1} w_0 \dots w_0 w_{r_j} / 2 w_0 \dots w_0 w_{r_n} & \text{otherwise,} \end{cases}$$

where $w_{r_j} := w_{r_j}(x_0, x_j)$ for every $1 \leq j \leq n$. □

In the sequel we write briefly $w(2r_1, \dots, r_j, \dots, 2r_n)$ if no confusion can arise and we abbreviate $w(2r_1, \dots, r_j, \dots, 2r_n)$ to $w_{\underline{r}}$ where $\underline{r} = (2r_1, \dots, r_j, \dots, 2r_n)$ is in Q_n .

Note that, if \underline{r} is in Z , then $w(\underline{r}; x, y) = w_{\underline{r}}(x, y)$.

Remark. By Corollary 2.4(ii) and Proposition 1.4(ii)

$$\begin{aligned} w_0 w_{r_1} w_0 \dots w_0 w_{r_n} &= w_{2r_1} w_0 \dots w_0 w_{r_n} = \\ &= w_{2r_j} w_0 w_{r_1} w_0 \dots w_0 w_{r_{j-1}} w_0 w_{r_{j+1}} \dots w_0 w_{r_n} \end{aligned}$$

for every $1 \leq j \leq n$.

The following is the main result of this Section.

Theorem 3.3. In the free SIE-groupoid $F(x_0, x_1, \dots, x_n)$ on the generators x_0, x_1, \dots, x_n each further element may be expressed in the standard form of $w_{\underline{r}}$ for some \underline{r} in Q_n .

The proof of Theorem 3.3 is divided into several lemmas.

Lemma 3.4. Let $\underline{r} = (2r_1, \dots, r_j, \dots, 2r_n)$ and $\underline{k} = (2k_1, \dots, k_j, \dots, 2k_n)$ be elements of Q_n then

$$w_{\underline{r}} w_{\underline{k}} = w_{2\underline{k} + \underline{r}}$$

holds in SIE.

Proof. By entropic and distributive laws

$$\begin{aligned} w_{\underline{r} \underline{k}} &= w_{r_1} w_0 w_{r_1} \cdots w_{r_{i-1}} w_0 w_{r_{i+1}} w_0 \cdots w_{r_n} \cdot \\ &\cdot w_{k_i} w_0 w_{k_1} \cdots w_{k_{i-1}} w_0 w_{k_{i+1}} w_0 \cdots w_{k_n} = \\ &\left(w_{r_1} w_{k_1} \right) w_0 \left(w_{r_1} w_{k_1} \right) w_0 \cdots \left(w_{r_{i-1}} w_{k_{i-1}} \right) w_0 \left(w_{r_{i+1}} w_{k_{i+1}} \right) w_0 \cdots \left(w_{r_n} w_{k_n} \right). \end{aligned}$$

Using Lemma 2.3(i) we obtain

$$\begin{aligned} w_{\underline{r} \underline{k}} &= w_{2k_1-r_1} w_0 w_{2k_1-r_1} \cdots w_{2k_{i-1}-r_{i-1}} w_0 w_{2k_{i+1}-r_{i+1}} \cdots w_{2k_n-r_n} = \\ &= w_{2k-\underline{r}}. \end{aligned}$$

Lemma 3.5. For all integers i_1, j_2, i_2 , $w_{i_1} w_{j_2} w_{i_2} = w_{i_1} w_0 w_{i_2-j_2}$ holds in SIE.

Proof. In the case $i_2 = 0$ the proof is obvious because by the distributive law and Corollary 2.4(i),

$$w_{i_1} w_{j_2} w_0 = w_{i_1} w_0 w_{j_2} w_0 = w_{i_1} w_0 w_{-j_2}.$$

Now let $i_2 = 1$ and $j_2 \geq 0$. In this case the proof goes by induction on j_2 . If $j_2 = 0$ then the equality is obvious.

Let $j_2 = 1$. Then $w_{i_1} w_{1 w_1} = w_{i_1} = w_{i_1} w_0 w_0$ as required. Now assume that the identity holds for all positive integers less than j_2 . Since $w_{j_2} = w_{j_2-2} w_{j_2-1}$, it follows by distributivity and the induction hypothesis that

$$\begin{aligned} w_{i_1} w_{j_2} w_1 &= w_{i_1} \left(w_{j_2-2} w_{j_2-1} \right) w_1 = w_{i_1} w_{j_2-2} w_1 \cdot w_{i_1} w_{j_2-1} w_1 = \\ &= w_{i_1} w_0 w_{3-j_2} \cdot w_{i_1} w_0 w_{2-j_2} = w_{i_1} w_0 w_{1-j_2} \quad \text{as required.} \end{aligned}$$

Now let $i_2 = 1$ and $j_2 < 0$. By Corollary 2.4(i) $w_{j_2} = w_{-j_2} w_0$. Hence by the distributive law and the previous part of the proof we obtain

$$w_{i_1} w_{j_2} w_{i_1} = w_{i_1} (w_{-j_2} w_0) w_{i_1} = w_{i_1} w_{-j_2} w_{i_1} w_0 w_{i_1} = \\ = w_{i_1} w_0 w_{i_1+j_2} \cdot w_{i_1} w_0 w_{i_1} = w_{i_1} w_0 w_{i_1-j_2}.$$

Now consider the case $i_2 > 0$ and assume that the identity holds for all positive integers less than i_2 . Then since

$w_{i_2} = w_{i_2-2} w_{i_2-1}$, it follows that

$$w_{i_1} w_{j_2} w_{i_2} = w_{i_1} w_{j_2} \cdot w_{i_2-2} w_{i_2-1} = w_{i_1} w_{j_2} w_{i_2-2} \cdot w_{i_1} w_{j_2} w_{i_2-1} = \\ = w_{i_1} w_0 w_{i_2-2-j_2} \cdot w_{i_1} w_0 w_{i_2-1-j_2} = w_{i_1} w_0 \cdot w_{i_2-2-j_2} w_{i_2-1-j_2} = \\ = w_{i_1} w_0 w_{i_2-j_2},$$

what completes the proof in the case $i_2 \geq 0$.

If $i_2 < 0$, then the proof is similar to the case $i_2 = 1, j_2 < 0$.

Lemma 3.6. Let $\underline{r} = (r_1, 2r_2)$ and $\underline{k} = (2k_1, k_2)$ be element of Q_2 . Then $w_{\underline{r}} w_{\underline{k}} = w_{2\underline{k}-\underline{r}}$ holds in SIE.

Proof. By Definition 3.2 we have $w_{\underline{r}} = w_{r_1} w_0 w_{r_2}$, $w_{\underline{k}} = w_{k_2} w_0 w_{k_1}$, and by Propositions 1.4(iii), (ii) and the axiom of symmetry

$$w_{\underline{r}} w_{\underline{k}} = w_{r_1} w_0 w_{r_2} \cdot w_{k_2} w_0 w_{k_1} = w_{r_1} w_0 w_{r_2} w_{k_1} w_0 w_{k_2} w_0 w_{k_1} = \\ = w_{r_1} w_{k_1} w_{r_2} w_{k_1} w_0 w_{k_2} w_0 w_0 = w_{r_1} w_{k_1} w_0 w_{k_1} w_{r_2} w_{k_2}.$$

Since by Lemma 2.3(i),

$$w_{r_1} w_{k_1} w_0 w_{k_1} = w_{2k_1-r_1} w_0 w_{k_1} = w_{4k_1-r_1}$$

we have $w_{\underline{r}} w_{\underline{k}} = w_{4k_1-r_1} w_{r_2} w_{k_2}$ and by Lemma 3.5

$$w_{\underline{r}} w_{\underline{k}} = w_{4k_1-r_1} w_0 w_{k_2-r_2} = w(4k_1-r_1, 2k_2-2r_2) = w_{2k-\underline{r}}$$

what completes the proof.

Lemma 3.7. Let $\underline{r} = (2r_1, \dots, r_i, \dots, 2r_n)$ and $\underline{k} = (2k_1, \dots, k_j, \dots, 2k_n)$ be elements of \mathbb{Q}_n . Then $w_{\underline{r}} w_{\underline{k}} = w_{2\underline{k}-\underline{r}}$ holds in SIE.

Proof. It remains to prove the Lemma in the case $n > 2$ and $i < j$. In this case Proposition 1.4(ii) implies that

$$w_{\underline{r}} = w_{r_1} w_0 w_{r_1} \cdots w_{r_{i-1}} w_0 w_{r_{i+1}} \cdots w_0 w_{r_j} w_0 \cdots w_{r_n} =$$

$$= w_{r_1} w_0 w_{r_j} w_0 w_{r_1} \cdots w_{r_{i-1}} w_0 w_{r_{i+1}} \cdots w_0 w_{r_{j-1}} w_0 w_{r_{j+1}} \cdots w_{r_n}$$

and analogously

$$w_{\underline{k}} = w_{k_j} w_0 w_{k_1} w_0 w_{k_1} \cdots w_0 w_{k_{i-1}} w_0 w_{k_{i+1}} \cdots w_{k_{j-1}} w_0 w_{k_{j+1}} \cdots w_{k_n}.$$

Hence by the distributive and entropic laws and by Lemma 2.3(i)

$$\begin{aligned} w_{\underline{r}} w_{\underline{k}} &= \\ &= (w_{r_1} w_0 w_{r_j} w_0 w_{k_1}) w_0 (w_{r_1} w_{k_1}) w_0 \cdots (w_{r_{i-1}} w_{k_{i-1}}) w_0 (w_{r_{i+1}} w_{k_{i+1}}) \cdots \\ &\quad (w_{r_{j-1}} w_{k_{j-1}}) w_0 (w_{r_{j+1}} w_{k_{j+1}}) w_0 \cdots w_0 (w_{r_n} w_{k_n}) = \\ &= (w_{r_1} w_0 w_{r_j} w_0 w_{k_1}) w_0 w_{2k_1-r_1} w_0 \cdots w_{2k_{i-1}-r_{i-1}} w_0 w_{2k_{i+1}-r_{i+1}} \cdots \\ &\quad w_{2k_{j-1}-r_{j-1}} w_0 w_{2k_{j+1}-r_{j+1}} w_0 \cdots w_{2k_n-r_n}. \end{aligned}$$

Since in the case $n = 2$

$$w_{r_1} w_0 w_{r_j} w_0 w_{k_1} = w_{4k_1-r_1} w_0 w_{k_j-r_j}$$

then using Lemma 3.6 and Proposition 1.4(ii) we conclude that

$$w_{\underline{r}} w_{\underline{k}} = w_{2\underline{k}-\underline{r}}.$$

This completes the proof Lemma 3.7.

Proof of Theorem 3.3. The proof goes by induction on the length of expression of the element. The shortest ex-

pression of such an element is $x_i x_j$, where $i \neq j$ and x_i, x_j are in the set $\{x_0, \dots, x_n\}$. By previous Section $x_i x_j = w_1(x_0, x_i) w_1(x_0, x_j) = w_1(x_0, x_i) w_0 w_1(x_0, x_j)$ and this is already in the standard form. By induction, a longer element not in standard form may be expressed as $w_{\underline{r}} w_{\underline{k}}$, a product of standard forms. Then by Lemma 3.7 $w_{\underline{r}} w_{\underline{k}} = w_{2\underline{k}-\underline{r}}$ is in the required standard form.

Theorem 3.8. Let

$$W := \{w(r_1, \dots, r_n; x_0, x_1, \dots, x_n) : (r_1, \dots, r_n) \in Q_n\}.$$

For $\underline{k}, \underline{r} \in Q_n$, define $w_{\underline{r}} w_{\underline{k}} := w_{2\underline{k}-\underline{r}}$. Then (W, \cdot) is an SIE-groupoid and the mapping $h: Q_n \rightarrow W$, $h(\underline{r}) = w_{\underline{r}}$ is an isomorphism.

Proof. Obviously the mapping h is surjective and by Lemma 3.7 it is a homomorphism. Now we prove that it is injective. Let $\underline{r} = (2r_1, \dots, r_i, \dots, 2r_n)$ and $\underline{k} = (2k_1, \dots, k_j, \dots, 2k_n)$ be elements of Q_n . Assume that $w_{\underline{r}} = w_{\underline{k}}$. Substituting x_0 for all variables x_s different from x_1 in this identity we get one of the following identities:

- (a) $w_{2r_1}(x_0, x_1) = w_{2k_1}(x_0, x_1)$ in the case $i \neq 1, j \neq 1$,
- (b) $w_{r_1}(x_0, x_1) = w_{2k_1}(x_0, x_1)$ in the case $i=1, j \neq 1$,
- (c) $w_{2r_1}(x_0, x_1) = w_{k_1}(x_0, x_1)$ in the case $i \neq 1, j=1$,
- (d) $w_{r_1}(x_0, x_1) = w_{k_1}(x_0, x_1)$ in the case $i=j=1$.

By [3] the identity $w_p(x_0, x) = w_q(x_0, x)$ is satisfied in the free SIE-groupoid $F(x_0, x)$ iff $p = q$. It follows that the first coordinate of \underline{r} is equal to the first coordinate of \underline{k} . In general substituting x_0 for all variables x_s different from x_p in this identity we get that the p -th coordinate of \underline{r} is equal to the p -th coordinate of \underline{k} for $1 \leq p \leq n$, hence $\underline{r} = \underline{k}$.

4. Identities in $n+1$ variables

The goal of this section is to describe identities in $n+1$ variables satisfied in SIE. Every such identity has the

form $w_{\underline{r}} = w_{\underline{k}}$ for some elements \underline{r} and \underline{k} of Q_n . We shall prove that any such identity is equivalent to one identity in two variables. First we prove that the identity $w_{\underline{r}} = w_{\underline{k}}$ is equivalent to $w_{\underline{p}} = w_0 = x_0$ for some \underline{p} in Q_n .

Proposition 4.1. Let \underline{r} and \underline{k} be in Q_n . Then the identity $w_{\underline{r}} = w_{\underline{k}}$ is equivalent to the identity $w_{\underline{p}} = w_0$ for some \underline{p} in Q_n .

Proof. Let $\underline{k} = (k_1, \dots, k_n)$ and $\underline{r} = (r_1, \dots, r_n)$ be elements of Q_n . Since

$$\begin{aligned} w(k_1, \dots, k_i, \dots, k_n; x_0, x_1, \dots, x_i, \dots, x_n) &= \\ &= w(k_1, k_2, \dots, k_{i-1}, k_1, k_{i+1}, \dots, k_n; \\ &\quad x_0, x_1, x_2, \dots, x_{i-1}, x_1, x_{i+1}, \dots, x_n) \end{aligned}$$

we can assume that all k_i , $i = 2, \dots, n$, are even and $k_1 \neq 0$. (In the case all k_i equals zero it is nothing to prove).

Recall that $w_{\underline{k}} = w_{k_1} w_0 w_{k_2} / 2 \dots w_0 w_{k_n} / 2$. It is easy to see that the identity $w_{\underline{r}} = w_{\underline{k}}$ is equivalent to

$$w_{\underline{r}} w_{k_n} / 2 w_0 \dots w_{k_2} / 2 w_0 = w_{k_1}.$$

(Multiply the identity $w_{\underline{r}} = w_{\underline{k}}$ on the right first by $w_{k_n} / 2$, then by w_0 , then by $w_{k_{n-1}} / 2$ etc., and finally by $w_{k_2} / 2$ and by w_0 and use the axiom of symmetry).

Moreover by Lemma 3.7 and because w_{k_1} is equal to $w(0, \dots, k_1, \dots, 0; x_0, \dots, x_n)$ the left side of the last identity is equal to $w(r_1, r_2 - k_2, \dots, r_n - k_n; x_0, \dots, x_n)$.

Now we consider two cases:

Case 1. k_1 is even. By Corollary 2.4(ii), $w_{k_1} = w_0 w_{k_1} / 2$. Hence multiplying the last identity on the right by $w_{k_1} / 2$, that equals $w(k_1 / 2, 0, \dots, 0; x_0, \dots, x_n)$, using Lemma 3.7 and the axiom of symmetry we conclude that the identity

$w(r_1, r_2 - k_2, \dots, r_n - k_n; x_0, \dots, x_n) = w_0 w_{k_1}/2$ is equivalent to

$w(r_1 - k_1, \dots, r_n - k_n; x_0, \dots, x_n) = w_0$.

Case 2. k_1 is odd. Then by Lemma 2.3(ii) $w_{k_1}(x_0, x_1) = w_{-k_1+1}(x_1, x_0)$ and $-k_1+1$ is even. By Theorem 3.3

$w(r_1, r_2 - k_2, \dots, r_n - k_n; x_0, \dots, x_n) = w(p_1, \dots, p_n; x_1, x_0, \dots, x_n)$

for some (p_1, \dots, p_n) in Q_n hence we have case 1. This completes the proof.

It is obvious that without loss of generality we can consider only the identities

$$(4.2) \quad w(k_1, 2k_2, \dots, 2k_n; x_0, \dots, x_n) = x_0,$$

where k_i are integers and $i = 1, \dots, n$. Substitute in this identity x_0 for all $x_i \neq x_1$ and x for x_1 . Since $w_p(x_0, x_0) = x_0$ for every integers p and by the axiom of symmetry we obtain $w_{k_1}(x_0, x) = x_0$.

Similarly for every $j \in \{2, \dots, n\}$ we can substitute x_0 for all $x_i \neq x_j$ and x for x_j in (4.2). In this way we obtain $w_0 w_{k_j}(x_0, x) = x_0$ that is equivalent to $w_{2k_j}(x_0, x) = x_0$. As consequences of the identity (4.2) we get n identities in two variables

$$(4.3) \quad \begin{aligned} w_{k_1}(x_0, x) &= x_0, \\ w_{2k_j}(x_0, x) &= x_0 \end{aligned}$$

where $2 \leq j \leq n$.

Conversely, suppose an SIE-groupoid (G, \cdot) satisfies each of the identities (4.3). Therefore by Corollary 2.4(ii) and the idempotency

$$w(k_1, 2k_2, \dots, 2k_n; x_0, \dots, x_n) =$$

$$= w_{k_1}(x_0, x_1) w_0 w_{k_2}(x_0, x_2) \dots w_{k_n}(x_0, x_n) =$$

$$\begin{aligned}
 &= w_0 w_{k_2}(x_0, x_2) \dots w_{k_n}(x_0, x_n) = \\
 &= w_{2k_2}(x_0, x_2) w_0 \dots w_{k_n}(x_0, x_n) = x_0
 \end{aligned}$$

what means that (G, \cdot) satisfies the identity (4.2).

In this way we have proved the following.

Proposition 4.4. Let (k_1, \dots, k_n) be in Q_n . Then every identity in $n+1$ variables $w(k_1, \dots, k_n; x_0, \dots, x_n) = x_0$ is equivalent in an SIE-groupoid to the set of n identities in two variables $w_{k_i}(x_0, x) = x_0$, $1 \leq i \leq n$.

Proposition 4.5. The set of identities in two variables $w_{k_i}(x_0, x) = x_0$, $1 \leq i \leq n$ is equivalent to the unique identity in two variables

$$w_k(x_0, x) = x.$$

Proof. By Proposition 2.7 we have $k = \text{GCD}(k_1, \dots, k_n)$.

5. The main theorem

Using the results from the previous sections we here prove the main theorem which characterizes the lattice of all sub-varieties of the variety SIE. Denote this lattice by $L(\text{SIE})$.

Let L be a lattice. We will denote by L^+ the lattice $L \cup \{\infty\}$ in which the element ∞ is greater than all elements of L . Let N denote the lattice of all natural numbers with respect to the partial order \leq_N defined by $k \leq_N n$ if and only if k divides n . Finally let $V_{\underline{r}}$ be the variety of SIE-groupoids satisfying the identity $w_{\underline{r}} = w_0$, where $\underline{r} = (r_1, \dots, r_n)$ is in Q_n .

By Proposition 4.4, $V_{\underline{r}} = V_{r_1} \cap \dots \cap V_{r_n}$ and consequently, by Proposition 4.5 we can easily get the following statement.

Corollary 5.1. For every $\underline{r} = (r_1, \dots, r_n)$ in Q_n , $V_{\underline{r}} = V_{\text{GCD}(r_1, \dots, r_n)}$.

Theorem 5.2. Let V be a variety of SIE-groupoids. Then $V = \text{SIE}$ or $V = V_n$ for some natural number n .

P r o o f . Let V be a nontrivial subvariety of the variety SIE. By Propositions 4.4 and 4.5 the set of all identities satisfied in V is equivalent to a set I of identities in two variables having the form $w_k = w_0$.

Let n be a minimal natural number such that the identity $w_n = w_0$ is in I . By Proposition 2.7, if the identity $w_k = w_0$ is satisfied in V then the identity $w_{\text{GCD}(n,k)} = w_0$ is satisfied in V , as well. Obviously $n = \text{GCD}(n,k)$. This means that n divides all natural numbers k such that the identity $w_k = w_0$ is in I . On the other hand as it was mentioned in the proof of Proposition 2.7 identity $w_n = w_0$ implies $w_{in} = w_0$ for every i in \mathbb{Z} . Consequently $I = \{w_{in} = w_0 : i \in \mathbb{Z}\}$ and each identity of I is a consequence of the identity $w_n = w_0$. It follows that $V = V_n$. \square

R e m a r k . By [3], $V_n = V_k$ if and only if $n = k$.

Finally we describe the lattice $L(\text{SIE})$.

T h e o r e m 5.3. The lattice $L(\text{SIE})$ of all varieties of SIE-groupoids is isomorphic to \mathbb{N}^+ . The variety corresponding to ∞ is SIE. If n is a natural number then the variety corresponding to n is just the variety of SIE-groupoids satisfying the identity $w_n(x,y) = x$.

P r o o f . Let n, k be natural numbers and let $\text{LCM}(n,k)$ denote the least common multiple of n and k .

By Theorem 5.2 and Proposition 2.7 it is enough to prove that the join $V_n \vee V_k$ of V_n and V_k is equal to $V_{\text{LCM}(n,k)}$. First note that by Proposition 2.7 and by above Remark $V_n \subseteq V_k$ if and only if n divides k .

By Theorem 5.2, $V_n \vee V_k = V_m$ for some natural number m . Since $V_n \subseteq V_m$ and $V_k \subseteq V_m$ then n divides m and k divides m . Hence $\text{LCM}(n,k)$ divides m . Otherwise $V_n \subseteq V_{\text{LCM}(n,k)}$ and $V_k \subseteq V_{\text{LCM}(n,k)}$ whence $V_n \vee V_k = V_m \subseteq V_{\text{LCM}(r,k)}$ and m divides $\text{LCM}(n,k)$. It follows that $m = \text{LCM}(n,k)$. \square

Acknowledgements: The author is grateful to A.Romanowska for discussions and comments that influenced the origin and improvement of this paper.

REFERENCES

- [1] J. Ježek, T. Kepka: Medial groupoids, Rozpravy Československé Akademie VĚD, 1983.
- [2] D. Joyce: A classifying invariant of knots and knot quandles. J. Pure Appl. Algebra 23 (1982) 37-65.
- [3] C.C. Lindner, N.S. Mendelsohn: Constructions of n -cyclic quasigroup and applications, Aequationes Math. (1976), 111-121.
- [4] O. Loos: Symmetric spaces, I, Benjamin 1969.
- [5] R.S. Pierce: Symmetric groupoids, Osaka J. Math. 15 (1978) 51-76.
- [6] R.S. Pierce: Symmetric groupoids II, Osaka J. Math. 16 (1979) 317-348.
- [7] A.B. Romanowska, J.D.H. Smith: Modal theory, an algebraic approach to order geometry and convexity, Helderman Verlag, Berlin 1985.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received July 14, 1986.

