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THE LATTICE OF VARIETIES
OF SYMMETRIC IDEMPOTENT ENTROPIC GROUPOIDS

Consider the following set of the axioms for a set G with
a binaﬁy operation ¢,

(s) (xey)ey = x (Symmetry)
(1) XeX = X {Idempotence)
(E) (xey)e(2et) = (xez)e(yet). (Entropicity)

An algebra (G,*) satisfying all these axioms will be
called an SIE-groupoid,.

Such groupoids were investigated in many papsrs., For exam-
ple in [2] more general algebras so called quandles were con-
sidered that have been used to characterization of knots, in
[4] in connection with symmetrioc spaces, in [5] and [6] witi
reference to groups that are genarated by involutions 2nd
in [7] as an example of so ocalled modes. Entropic groupoids
were investigated in [1], where they were called medial,

The aim of this paper is to describe the lattice of all
subvarieties of the variety SIE of all SIE~groupoids. The
paper is organized as follows., After some elementary proper-
ties of SIE~-groupoids presented in Section 1, we describe
identities in two variables satisfied in SIE-groupoids in

This paper is based on the lsctura presentsed at the Con-
ferenos on Universal Algebra held at the Technical University
of Warsaw (Wilga), May 22-25, 1986,
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2 B.,Roszkowska

Section 2, Then we give a standard fora for words in the free
SIE~-groupoid on a finite set. In Section 4 we investigate iden-
titles in n variables satisfied in the variety SIE. We prove
that every such identity is equivalent to some identity on two
variables, The results of Sections 3 and 4 enable us to de-
soribe the lattioce of all subvarieties of SIE in Section 5.

1. Preliminaries

We give here some basic properties of SIE-groupoids. In
the sequel we write xy for xey., We also use the following
oonvention

(1.1) x1...xn = (11."! ’.x

n=-1 n

for every n>2 and
xy*zt 1= (xey)e(zet),
The product (1.1) is ealled left assoclated.
Definition 1.2. A groupoid (G,) is ocalled
left distributive if the identity
(1) x(yz) = xy°xsz
holds in (G,¢). (Gp*) is right distributive if
(14) (xy)s = xs°y3

holds in (G,*). Pinally (G,¢) is distribative in the ocase it
is both left and right distridutive.

Proposaition 1.3. [7] Bvery SIE-groupoid (G,*)
is distributive and satisfies the puﬁtial assooliative law

XY*X = XOYXy

Note that in general SIB-groupolds are not associative.

The axiom of symmetry for SIB~groupolds implies that for
every ac G the mapping S 3G —G, Sa(b) = ba, 18 a bijeotion
and has the property S;’ = Sa. By the axiom of ldeampotency
every mapping S, has a fixed point, namely a, since Sg(a) =
= a4 = a. By the right distributivity each mapping Sa is
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Lattice of varieties 3

a homomorphism. The entropic law means that £ : GxG —G,
f(a,b) = ab, is a homomorphism too.

Proposition 1.4, The following identities
are satisfied in every SIE-groupoid for each natural number n:

(1) xyzt = xtzy,

(ii) x1y1...xnyn>= x1’6(1)oooxny6(n)
for each permutation 6 of the sst {1,...,n},

(iii) x‘31...yn = x1ynoaoy2y1y2-:-yn.

Remark. By (iii) each SIE-groupoid word car be
represerted in a left associated form.

Proof, {i}. By the distributive, entroric and sym~
netry laws

xyzt = Xytezt = (xtoyt)ezt = (xtez)(ytet) = xtzy.

{1i)., 1t follows from (i) because svery perautation is
a composition of transpositions,

{iii). The proof goes by induction on n, The case n = 1 is
ebvious. For n = 2, X¥o¥1¥p = X2¥47> holds by symmetry and
distributivity. Xow assume that (iii) holds for every natural
number lsss than or equal to n. Then ®y the first part of the
proof and the imduction hypothesis

Xe(FqeeoTnl¥npr = g (F4eeedpy¥p4q =

A RRED S
= X netneoT2¥1 20 In¥neee o

The operation of an SIEK-groupoid may be geometrically
interpreted as a reflection on the real line R (ses [7]). For
¢ =R and x3 := 2y-x, {(R,+) is an SIE-groupoid and xy is the
reflection of x in y.

Examgp-le 1e5. More general the aset R® with
(i1,...,in)°(j1,...,jn) t= (231-11,...,23n-1n) is an SIE-grou- -
poid for every ne N and (2%,») where Z is the set of all in-
tegers, is a subgroupoid of (R%,e).
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v,

“xample 1.6, Let (G,*,e) be a nilpotent group
of clase at most 2, (This means that for all a,beG, [a,b] :=
s= a~ " Tab is in the center of (G,*,e)). Let xoy = yx 'y,
The: (G,o; is an SIE-groupoid.

2. Identities in fwo variables

‘The aim of this section is to describe iden¥ities in two
variables satisfied in the variety SIE.

The free SlE-groupoid F(x,y) on two generators x and y
was described by Lindner, Menuelsohn in [3] and by Romanowska,
Smith in [7]. It is isomorphic to the SIE-groupoid (Z,¢),
where xy := 2y-x. In [3] Lindner, Mendelsohn defined an infi-
nite class of worde in the free groupoid on two generators x
and y in the following way

wolx,y) = x, wix,3) =y and
W (x,3) = wi_z(x,y)wi_1(z,y) for i>2,

Multiplying the last equation on the right by wi_1(x,v)
and usipng the axiom of symmetry one obtains

Wi(x’y)wi_1 (x’y) = wi_z(x'y)o

We use the last equation to extend the definition of wi(x,y)
5c the case of negative indices. In what follows we abbreviate
wiix,y) to wy if ro confusion can arise,

Now let (Z,+) be the SIE-groupoid from Exsmple 1.4. Ift,
was ppeved in [3] that each element of F(x,y] may be expressed
e wy for some integer 1 and that the mapping h:2 —PF(x,y),
mii) &= Wy is an isomorphism, In this way a standard form of
words in F(x,y) is given. In [7] Romanowsksa;, Smith desoribed
words in F(x,y) in a different way. They proved the following
rroposition [7, Proposition 4.14}.

Proposition 2.1, In F{x,5) eaoh slement may
be expressed in the standard form a1(az...(an_1an))...) with
a; # 85,4 And a5 ¢ {x,y}, i=1,eee,n=1,
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Lattice of varieties 5

Corollary 22, Let i>1., Then in an SI%-grou-
poid

wi(x,y) = 8y _qeee85847,

where a, = x, ake{x,y}, 8 ¥ 8141 for 1< k<i-1 and

‘ w_i(x,y) = 8jee08,X,
where a, = y, gke{x,y}, a ¥ 8y, for 1<k<i-1,
Proof. The proof goes by induction on i, The cases
1 =1,2 are obvious. Let w; , = Bj_3eeeByFy Wy g4 = 85 _5eee8,Y
ané a, = x, ak.e{x,y}, a8, # 8,4 for 1<k<i-3,
Then by distributivity and idempotency

wi = '1_2w1_1 = 51_30..813'31_2o..a1y = (ai_30-081°ai_2.-.a1)y=

= (81_3081_281_3)81_4..-813,

and since by Proposition 1.3,

81-3"81.081.3 7 81383128130
it follows that
wi = ai_33i_231_301031y-

Moreover a;_, # a;_o. Let us define a; 4 := a;_j. Then wy =
= 85984 _08)_300+8¢7s where a;, = X, 8 € {x,y}, ay # 8y 1,
for 1<k<i-2,

The second equality is proved siailarly; it i3 2l80 3 COL=
sequence of the first one and Lemma 2.3(1i) below,

Lemma 2,3 [3]e Let r and s be integers, Then
the identities

(1) ¥r% = Versos’
(11) w_r(x,y) = 'r+1(3's)
hold in SIE. n}

The next two obvious consequences of Lemma 2.3 will be
used several times,
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Corollary 2.4, For every integer r the iden-
tities

(1) W= WW,
(ii) Wor = WW,

hold is SIE.

Definition 2.5. [3]. ©Let n be an integer.
The identity of the foram w (x,y) = x = w (x,y) is called an
n=-cyclic identity. An SIE-groupoid satisfying an n-cyclie
identity is called an n-cyclic SIE~groupoid,

Denote by Vn the variety of all n-oyelic SIE-groupoids.
By Corollary 2.4{i) and idempotency, w, = w,-if and only if

n
W= W Henoe Vn is equal to V_

n
Proposition 2.6, BEvery identity in two va-

riables satisfied in SIE is equivalent to an n~-cyclio identity
for some n,

Proof. Every identity in two variables has the form
u = Vv where u,v where u,vePF(x,y). This means that there exist
integers r,s such that u = w (x,y}, v = w(x,y). Henee the
identity u = v has the form wr(x,y) = wo(x,y). We consider
two cases:

Case 1. r or s 1s even., We may assume that s
is even, (The eass r 1is even is analogous). We multiply the
identity w, = w_ on the right by We/2 and obtair (by Lea-
ma 2,3(1)) WWo o = WaWgyp = Wy and wow, o = W, . This shows
that the identity Woer = "o is a consequence of w, = w,.

To prove the converse implication, multiply the identity
Wo.r = W, oOR the right by w .. Using Lemma 2.3(1) and Co-
rollary 2.4(1;) we obtain w, = w.

Case 2, r and s are odd. Since by Lemma 2.3(ii)
wo(x,3) = w_s+1(y,#) and wr(x,y) = w_r+1(y,£) then by the
previous part of the proof the latter is equivalent to
wr_a(y,xﬂ = wo(y,s) = y and consaguently equivalent to

'r-s(x'7) = X
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Lattice of varieties 7

et GCD(n,k) denote the greatest common divigor of tha
integers n and k.

Proposition 2e7e For all positive integers n
and k,

Yo"V = Veen(n,x)*

Proof., First note that by the proof of Proposi-
tion 2.6, if w, =W, is satisfied in a variety of SIE-grou-
poids then LAY and henoce LIT is satisfied as well
for every i in 2,

Let r, 8 be natural numbers, k = GCD(n,k)r and n =
= GCD(n,k)s. Now assume that an SIE-groupoid G satisfias the
identity 'GCD(n,k) =w, i.e. € is in vGCD(n,k)’ Then G sa-
tisfies the identities w, = YecD(n,k)s ® w, end We=WaeD(n ke ©
=W, i.e. G is in VanVk.

Conversely let an SIE-groupoid G satisfy idantities
W =w and w_ = Woe Sinee GCD(n,k) = an+bk for asome integers

o n
a,b, “acp(n,k) = Yansbk = "an = "o* This means that G is in

Vecn(n,k)®

3. The standard form of words in the free SIE-groupoids

The purpose of this section is to deseribe the standard
form of words in the free SIE-groupoid F(xo,...,xn) on n+1
generators xo,...,xn.'Let Q, be the set of all sequencses
(k1,...,kn) in 2@ such that at most one k; is odd, It is easy

to see that (Qn") is a subgroupoid of (Zn,-) from Example 1.5.

Theorenmn 3.1, (Joyes |2]). Tne free SIB-groupoid
P(xo,...,xn} is ispomorphie to the SIE-groupoid (Q.,‘). The
elements e, = (0.eee,0), 04 = (1,05000,0)5000, 0, = (0y,000,1)
are free gensrators of (Qn,o). . ol

Note that in [2] SIE-groupoids were called involutary
abelian quandles and were used to characterize knots.

Now we define an infinite class of groupoid words in va-
riables X ,es.,X, that ocoincides with that given in Seetion 2

°
im the cass n = 1,
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Definition 3.2 For every elemaent
(2r1,...,r3,...,2rné of Q, we define

w(O,...,O;xo,...,xn) = xo = Wo,

W(2r1 ,...,1‘3,...,an;xo,...,xn) iE

W, WW W ..0W w W cooW W, if r is oud
) ryoryo Tia1 © Ty4q ory, J
wowr1wo"‘wowrj/2wo“'wowrn otherwise,
where w, := W, (xo,xj) for every 1< j<n, u)

In the sequel we write briefly w(2r1,...,rj,...,2rn) if
no confusion oan arise and we abbreviate w(2r1,...,rj,...,2rn)
to w, where r = (2r1,...,r.,...,2rn) is in Qp.
Note that, if r is in Z, then w(rjx,3) = w,(x,y).
Remar k. By Corollary 2.4(ii) and Proposition 1.4(ii)

W W, W eoeW W =W W_ eoesW W =
or, o or, 21'1 o Orn
= W W W W oo W W W W W eeaW
r .
2rj oryo 0'Ty.q O Ty,q 0 T,

for every 1< j< n.
The tollowing is the main result of this Section.
Theoraem 3.3 In the free SIE=-groupoid
F(xo,x1,...,xn) on the generators X ,X;,s..,X, each further
elemant may be expressed in the standard form of L for soms
in Q.
The proof of Theorem 3,3 is divided into sevsral lemmas,
Lemma 3.4, Letr = (2r1,...,ri,...,2rn) and
k = (2k1""’ki’”"2kn) be elements of Q, then

ek = Wokup

holds in SIE,.
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Lattice of varieties 9

Proof . By entropic and distributive lawa

W, =W WW coeW W W W eoeW .
'k TPy o rg Tty oy 0T,

° W, W W seaW w W W _eeéaW =
kg 0Tky Tt kg g0 ky g0 ey

w_Ww W w W _eeco |W w w_|W w W_ see W W
(1‘1 ki) °é”1 k1> 0 (1‘1-1 k1-1) °(1‘1+1 k1+1) o* <1'n kn)-
Using Lemma 2.3(1) we obtain

=

w.w = W- w_W, oo oW ww ees oW
'k 2y vy 0 Rk, =D, T2k ey 02k Ty 2k -r
L] wzg.—l:o

Lemma 3.5 For all integers i,, Jos 15, Wy wy Wy ®
192 2
=W, WW holds in SIE.
170 15-3p
Proof. In the cass 12 = 0 the proof is obvious
because by the distributive law and Corollary 2.4(1),

'11'32W° = '11'0'32'0 = '11"""32'

How let 1, = 1 and 32230. In this cese the proof goes by
induction on 32. ir 3o = 0 then the equality is obvious.

Let j2 = 1, Then Wy WW, =Wy =W WW, as required., Now
1 1 1
assume that the identity holds for all positive integers less

than J,. Since'w3 =Wy o%5 10 1t follows by distributivity
2 2 2
and the induction hypothesls that

W, W, W, =W <; w )w =W, W W, oW, W, W, =
1357071 7 T V3572035171 7 T Tp=2T T T -1
=Wy VoWl Wi oWy, = Wy LIS as required,
' 1 2 1 2 1 2

Now let 1, = 1 and j, <O, By Corollary 2.4(i) wy =
2

= w_j W, Hence by the distributive law and the previous part
2
of the proof we obtain
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W, W. Wy =W (v.w)w = W, W , W, W, W W, =
11321 11 -3201 11-;]21 i1o1

= W, W *W. = A .
11 ow1+32 11'0‘"1 '11"0'1-32
Now consider the case 1,>0 and assume that the identity
helds for all positive integers less than 12. Then since

w =W w it follows that
.1.2 i2-2 12-1’

W, W, W = W, W w W . = W, W. W w. W. W, =
11755 4p T TiqTdp T1pm270g=1 T TEg TS ,2 Ty T
= W. W W ‘wW. W W = W, W_°*W . W . =
i7o 12-2-32 i1 o 12-1-32 11 o 12-2-32 12-1-32
= W, W W
1,70 1,3,

what completes the proof in the case 1220.

1f 12<0, then the proof is similar to the case 12 =1, j2<0.
Lemma 3.6, Let p = (r1,2r2) and k = (2k1.k2) bs

element of Q2. Then w wy = "2;—1' Kolds in SIE.

by Y
Proof., By Definmition 3.2 we have w, = wr1w°w2,
W, = w, WW,_ , and by Propesitions 1.4(iii),(ii) amd tias axiom
k ky 07k
of symmetry

ww = W _W W °w, WW =W, WW_W, WW_ WwWW =
Tk ryor, k20k1 r1°r2k1ok20k.‘

= W W,  W.. W, WW, WW =W _ W, WW W W .
r1k1r2k1ok200 r1k1ok1r2 >

Since by Lemma 2.3{i},

w._ W, WWwW, =W ww = W .
r, k1 0 k1 2k1 -r, 0 k1 41(1-»1.1

we heve wow, = "ax, -r1'r2'k2 and by Lemma 3.5

wowy = '4k1 -r1wo'k2~r2 = w(ﬂ,k1 -r1,2k2-2r2) = Wopp

what eompletes the proof.
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Lattice of varieties 11

Lemma 3.7« letrp-= (2r1,...,ri,...,2rn) and
= (2k1,...,kj,...,2kn) be elements of Q. Then Wy = Wopop
holds in SIE.
Proof., It remains to prove the Lemma in the case
n>2 and i <j. In this case Proposition 1.4(ii) implies that

W.=w w W ss oW w W ceeW W W oaeW =
r I‘i [+ 1‘1 ri_1 o] ri+1 o] 'I'J- o rn
=W_ WW_WwWWw ceoW w W ce oW W w W es oW
1‘1' ) I‘j [} 1‘1 I‘i_1 o] 1‘1+1 ] 1‘ -1 0 I':j +1 I‘n
and analogously
Wy = W, WW, WW, ceeW W w.w soeW wWw seeeW, o
k kj 0ky 07k, 0k 40k 4 kj-1 ° kj+1 k

Hence by the distributive and entropic lsws and by Lemma 2.3(i)

"ok *
- (wriwowrj 'wkjwo'ki)wo ('r1'k1>'o‘ .o (wri_1wk1-1) wp(wri+1wki+1 )...
(" 31 K31 " ('r;inw“nn)w*" "w°(w’-'n"kn) i
(" Yo"ry Vi, ovk )"o"zk e Yor "2k, ,-r, Yo"ok, ,-r; .°**

w w W W _eoeW .
.'21:‘,]_1-1.‘:1.__1 o 2k3+1-r3+1 ° 2k -r,
Sinée in the case n = 2

W WW. W, WW, =W ww
ry0 :r.':l kj o ki 4ki-ri o kj-r3

then using Lemma 3,6 end Proposition 1.4(1i) we oonclude that

wgw! = '21£_£c

This completes the proof Lemma 3.7.
Proof of Theorem 3.3, The proof goes by induction
on the length of expression of the element, The shortest ex-~
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12 B.Roszkowska

pression of such an element is xixj, where 1 # j and X4 xJ
are in the set {xo,...,xn}. By previous Section XiXs =
= w1(x°,xi)w1(xo,xj) = w_1(x°,xi)w°w1(x°x3) and this is
already in the standard form, By induetion, a longer element
not in standard form may be expresased as-w,w,, a product of
standard forms. Then by Lemma 3.7 woWy = w2§€! is in the re-
guired standard form,

Theorem 3.8, Let

W= {W(r1,...,rn;x°.x1,...,xn)s(r1,..-,rn)e Qn}o

For k,reQ,, define WWp 1= Wou_ne Then (W,*) is an SIE=grou=-
poid and the mapping hiQ, — W, hir) = w. is an isomorphism.
Proof, Obviously the mapping h is surjective and
by Lemma 3.7 it is a homomorphism, Now we prgve that it is
injective., Let r = (2r1,...,ri,...,2rn) and k = (2k1,...,kj,
...,2kn) be elements of Q.. Assume that W = Wi Substituting
'xo for all variables xg different from x4 in this identity we

get one of the following identities:
{a) w2r1(x°,x1) = w2k1(x°,x1) in the case i#1, j#1,

{b) wr1(x°,x1) = w2k1(x°,x1) in the case 1=1, j#1,
(o) w2r1Yx°,x1) = wk1(x°,x1) in the‘*case i#1, J=1,

(d) w, (xo,x1) = Wy (xo,x1) in the case i=j=1.,

By [3] the identity wp(xo,x) = wq(xo,x) is satisfied in the
free SIE~-groupoid E‘xo,x) iff p = qo It follows that the first
coordinate of r 18 equal to the first coordinate of k.

In general substituting x, for all variables x different
from x_ in this i1dentity we get that the p-th coordinate

of r 1s squal %to the p-th coordinate of k for 1<p<n,
hence r = k.

4, Identities in n+1 variables
The goal of this saction is. to describe identities in
n+1 variables satisfisd in SIEZ, Every such identiiy has tac
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Lattice of varietiss 13

form W = W for some slemsnts r and k of Qn‘ V"eé shall prova
that any such identity is equivalent to one identity in two
variables, First we prove that the identity Wp = Wy is equi=-
valent to w, = w, = X for some p 1in Q..
Proposition 4.1, Let » mwnd k be in Qe
Then the ldentity w, = w is equivalent to the identity
wE =W, for some p 1in Qn.
Proof. let k= (k1,...,kn) and r = (r.l,...,rn) be

elements of Qn' Since

W(k1’.oo,ki'oo. ,kn;xo,x1,...,xi,...,xn) =
= W(ki,kz,.oo ’ki-1 .k1 ’ki+1,oo. ,kn;
xo,ii,xg,...,xi_1,x1,x1+1f...,xn)

we can assume that all ki, 1 =2,e00on, are even and k1 # 0,
(In the case all k; equals zero it is nothing to prove).
Recall that wy = wk1wowk2/2...w°wkn/2,'1t is easy to see that

the identity W, = W is equivailent to
w, . v W eooW w_ =W .
7k, /2%0 k,/2%0 k,
(Multiply the identity Wy = Wy on the right first by wkn/2,
then by Woo then by wkn_1/2‘etc., and finally by wk2/2 and

by w, and use the axiom of symmetry) .
Moreover by Lemma 3.7 and because wki is equgl to

w(o,...,ki,...,O;xo,;..,xn) the left side of the last jdentity
is equal to w(r1,r2-k'2,...,rn
Now we consider two cases:
Cese 1., 'k, is even. By Corollary 2.4(ii), 'k1 =

-knixogoo . ’xn) .

= W W /o0 Hence multiplying the last identity on the right

1
by 'k1/2’ that equals w(k1/2,0,...,0;xo,...,xn), using Lem=-
ma 3.7 and the axiom of symmetry we conclude that the identity
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W(r1 ,1‘2-1(2,...,rn-kn;xo,...,xn) = wowk1/2 is -]] uivalent to

W(r1 "k1 gece ,rn'kn;xo,o o ,xn) = wo
Case 2, k, is odd. Then by Lemma 2.3(ii) w (xo,x1)=
1

*

= w_k1+1(x1,x°) and ~k,+1 is even. By Theorem 3,3

w(r1 ’rz-kagoco'rn-kn‘xo’.'o'xn, - '(p1’ooo,pn;x1,xo’aoa’xn)

for some (p1....,pn) in Q, hence we have case 1. This com-
pletes the proof.

It is obvious that without loss of generality we can ocon-
sider only the identities

(4.2) W(k1.2k2,...,2kn;xo,...,xn) = xo,

where ki are integers and 1 = 1,,..,n, Sutstitute in this
identity x, for all x; # x, and x for x,. Since wp(xo,x°)==x° ,
for every integers p and by the axiom of symmetry we obtain
wk1(x°,x) = X

0
Similarly for every Je {2,...,n} we can substitute X, for
all x; # xi and x for-xj in (4.2). In this way we obtain

= x, that is equivalent to w,, (xo,x) = X,o A8

conséquences/of the identity (4.2) we get n identities in
two variables

LA (xo,x

wk1(x°,x) = Xg,

(4.3)
w2kj(x0’x) = xo

where 2<j<n,

Conversely, suppose an SIBE-groupoid (G,+) satisfies each
of the identities (4.3). Thersfore by Corollary 2,4(ii) and
the idempotency

W(k1 ,2k2,q L] ,QRB;XO,. a0 ’xn) =
= 'k1(xo’x1)Wowk,(Xo'xz)“‘wkn(xo’xn) =
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Lattice of varieties 15

= wowkz(xo,le- . .Wkn(xo,xn) =

'2k2(xo'x2)'o'"'kn(xo’xn) = X,

what means that (G,+) satisfies the identity (4.2).

In this way we have proved the following. A
Proposition 4.4, Let (k1,...,kn) be in Q.
Then every identity in n+1 variables w(k1,...,kn;x°,...,xn)-xo
is equivalent in an SIE-groupoid to the set of n identities

in two variables wki(xo,x} = X 1€£1<n,

Proposition 4.5. The set of identities in
two variables v, (xo,x) = X0 1<i<n is squivalent to the
i

unique identity in two veriables

wk(xo,x) = x,

Proof . By Proposition 2.7 we have k==GCD(k1,".,kn).

5. The main theorem 4
Using the results from the previous sections we here prove
the main theorem whioh characterizes the lattice of all sub-
varieties of the variety SIE. Denots this lattice by L(SIB).
Let L be a lattice. We will denote by L* the lattioce
L U{CO} in which the element .00 is greater than all elementis
of L. Let N denote the lattice of ell natural numbers with
respect to the partial -order < y defined by k<y n if end
only if k divides n. Finally let V, be the variety of SIE-grou-
poids satisfying the identity w, é—wo, where © = (ry,eee,p)
is in Qn’
By Proposition 4.4, VE = Vr1n eee NV, and consequently,

n
by Proposition 4.5 we can easily get the following statement.
Corollary 5.1 For everyr = (r1....,rn) in

v__l_‘ = vGCD(r1 ,....,rn)'

Theorem 5.2 Let V be a variety of SIB-groa-
polds., Then V = SIE or V = V_ for sotie natural number n.

Qs
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Proof., Let V be a nontrivial subvariety of tne
variety SIE. By Propositions 4.4 and 4.5 the set of all iden-
tities satisfisd in V is equivaleni to a set I of identitiss
in two variables having the form Wy = Woe

Let n be a alnimal natural number suci bthat the identity
W, =W, is in I. By Proposition 2.7, if the identity wy =
is satlsfied in V then the identity %acn(n,k) = w, ic sa~
tisfied in V, as well. Obviously n = GCD(n, k). This means that
n divides all natural numbers k such that the identity
Wy =W, is in I. On the other hand as it was mentioned in the
proof of Proposition 2.7 identity Wp =W, implies Yin = % for
every 1 1in Z, Consequently I = {win =W, ¢ ie.z} and sach
identity of I is a consequence of the identity W, = Woe It
follows that V = V . o

Remark. By [3]V,=V,if and only if n = k.

Finally we describe the lattice L(SIE).

Theorem 5.3. The lattice L(SIE) of all varieties
of SIB-groupoids is isomorphic fto Nt. The variety corresponding
to o is SIE. If n is a natural number then the variety corres-
ponding to n is Jjust the variety of SIE-groupoids satisfying
the identity w,(x,y) = x.

Proof. Let n, k be natural numbers and let LCM(n,k)
denote the least common multiple of n and k.

By Theorem 5.2 and Proposition 2.7 it is enough to prove
that the join an Vy of Vn and V. 1s equal %o VLCM(n,k)' First
note that by Proposition 2.7 and by above Remark Vns;vk.if
and only if n divides k,

By Theorem 5.2, V V’Vi = V, for some natural number m,
Sincse V SV, and V,cV, then n divides m and k divides
m. Hence LCM(n k) divides m. Otherwiss V C:VLCM(n, x) and
vk"vLCM(n k) whence V v Vk =V "‘VLCM(r k) and m divides
LCM{n, k). 1t follows that m= LCM(n k)eo 8
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