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THE LATTICE OF VARIETIES 
OF SYMMETRIC IDEMPOTENT ENTROPIC GROUPOIDS 

Consider the following set of the axioms for a set G with 
a binary operation * . 

(S) (x»y)*y * x (Symmetry) 

( I ) x*x = x (Idempotence) 

(E) ( x . y ) » ( z » t ) = ( x » a ) . ( y « t ) . (Bntropicity) 

An algebra (G,<) satisfying a l l these axioms will be 
oalled an SIE-groupoid. 

Such groupoids were investigated in many papers. For exam-
ple in [2] more general algebras so oalled quandles were con-
sidered that have been used to characterization of knots, in 
[4] in conneotion with symmetrio spaces, in [5] and [6] with 
reference to groups that are generated by involutions and 
in [7] as an example of so oalled modes. Entropic groupoids 
were investigated in [1], where they were called medial. 

The aim of this paper i s to describe the l a t t i c e of a l l 
subvarieties of the variety SIE of a l l SIE-groupoids. The 
paper i s organized as follows. After some elementary proper-
t i e s of SIE-groupoids presented in Section 1, we describe 
ident i t ies in two variables sat isfied in SIE-groupoids in 

This paper i s based on the lecture presented at the Con-
ference on Universal Algebra held at the Technical University 
of Warsaw (Wilga), May 22-25, 1986. 
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2 B.Roszkowska 

Sec t ion 2. Then we give a s t andard form f o r words i n the f r e e 
SIB-groupoid on a f i n i t e s e t . I n Sec t ion 4 we i n v e s t i g a t e i d e n -
t i t i e s i n n v a r i a b l e s s a t i s f i e d i n the v a r i e t y SIS. We prove 
t h a t every such i d e n t i t y i s e q u i v a l e n t t o some i d e n t i t y on two 
v a r i a b l e s * The r e s u l t s of Sec t ions 3 and 4 enable us to de -
s c r i b e the l a t t i c e of a l l a u b v a r i e t i e s of SIB i n Sec t ion 5 . 

1 . P r e l i m i n a r i e s 
We g ive here some bas ic p r o p e r t i e s of SIE-groupoids . I n 

the s eque l we w r i t e xy f o r x»y. We a l s o use the fo l lowing 
convent ion 

(1 .1 ) x . , . . . x n :» ( x 1 . . . x n _ 1 ) * x a 

f o r every n > 2 and 
xy*zt := ( x « y M z » t ) . 

The produet (1 .1 ) i s ca l l ed l e f t associated* 
d e f i n i t i o n 1 . 2 . A groupoid (G,*) i s c a l l e d 

l e f t d i s t r i b u t i v e i f the i d e n t i t y 

( i ) x (ys ) « xy*xz 

holds in (G,*}. (Gj,*) i s r ight d i s t r i b u t i v e i f 

( i i ) (xy)« - xs*y$ 

holds in (G (*)• Final ly (Q,*) i s d i s t r i b u t i v e i n the oase i t 
i s both l e f t and r i g h t d i s t r i b u t i v e . 

P r o p o s i t i o n 1.3* [ 7 ] Ivery SIB-groupoid (G,«) 
i s d i s t r i b u t i v e and s a t i s f i e s the par t ia l a s s o c i a t i v e law 

Xf'X - I'JI, 

Note that i n general SIB-groupoids are not a s s o c i a t i v e . 
The axiom of symmetry f o r SIB-groupoids Implies that f o r 

avery a e G the mapping s
a » G ~ ~ ' * t ) a t l s a b i s e c t i o n 

and has the property S~1 = S_. By the axiom of idempotency & O 
every mapping S„ has a f i x e d p o i n t , namely a , s i nce S_(a) -B B 
= aa = a . By the r i g h t d i s t r i b u t i v l t y each mapping SQ i s 
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Lattioe of var iet ies 3 

a homomorphism. The entropic law means that f : G * G —- G, 
f ( a ,b ) = sb, i s a homomorphism too. 

P r o p o s i t i o n 1.4. The following ident i t ies 
art sat is f ied in every SIE-groupoid for each natural number n> 

( i ) xyzt = xtzy, 

( i i ) x l 7 r . . x n y n = * 1 y a ( 1 ) . . . * n y 0 ( n ) 

for each permutation S of the set j l , . . . , n | , 

( i i i ) x ' 7 r . . y n = x 1 y n . . . y 2 y 1 y 2 . . . y n . 

R e m a r k . By ( i i i ) each SIE-groupoid word can be 
represented in a l e f t associated form. 

P r o o f . ( i ) . By the distr ibut ive, entropic and sym-
metry laws 

xyzt = xyt*zt = ( x t » y t ) * z t = ( x t « z ) t y t . t j = xtzy. 

( i i ) . I t follows from ( i ) because every permutation is 
a composition of transpositions. 

( i i i ) . The proof goes by induction on n. The case n = 1 is 
•bvious. For n = 2, xy2y^y2 * by symmetry and 
d is t r ibut iv i ty . How assume that ( i i i ) holds for every natural 
number less than or equal to n. Then ty the f i r s t part of the 
proof and the induction hypothesis 

* - 7 r . . y n + 1 - x - ( ? r . . y n ) ' j n + 1 - ^ n + l ^ r - ^ n ^ n f l = 

= xyn+17n"*3 '2y1y2"*3rnyn+1* D 

The operation of an Sli-groupoid may be geometrically 
interpreted as a re f l ec t ion on the real line R (see [ 7 ] ) . For 
G - R and xy := 2y-x, ( R , 0 is an SIS-groupoid and xy is the 
re f l ec t ion of x in y . 

S x a m p - l e 1.5. More general the set Rb with 
( i 1 , . . . , i n M j 1 , . . . , 3 n ) ( 2 a 1 - i 1 , . . . , 2 J h - i n ) i s an SIB-grou- • 
poid for every neK and (Z n , » ) where Z is the set of a l l in-
tegers, i s a eubgroupoid of (R n , » ) . 
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4 B.Roszkowska 

E x a m p l e 1.6. Let (G»*,e) be a nilpotent group 
of class at most 2. (This means that for all a,beG, [a,b] : = 
j= a"1b"1ab is in the center of (G,*,e)). Let x o j s = yx~1y* 
The: (G, is an SIE-groupoid. 

2. Identities in two variables 
The aim of this section is to describe identities in two 

variables satisfied in the variety SIB. 
The free SiE-groupoid F(x,y) on two generators x and y 

was desoribed by Lindner, Mendelsohn in [3] and by Romanowska, 
Smith in [7]. It is isomorphic to the SIB-groupoid (Z,*), 
where xy := 2y-x. In [3] Lindner, Mendelsohn defined an infi-
nite class of words in the free groupoid on two generators x 
and y in the following way 

Multiplying the last equation on the right by w^ix,-*»; 
and using the axiom of symmetry one obtains 

V:Q use the last equation to extend the definition of w^x.y) 
to the case of negative indices. In what follows we abbreviate 

to w i if no confusion can arise. 
How let (Z,») be the Sli-groupoid from Example 1.4. It. 

wa* p»©¥«d in [3] that each element of F(x,yJ may be expressed 
w^ for some integer i and that the mapping h:Z —^P(x,y), 

h{i) := w^ is an isomorphism. In this way a standard form of 
words in F(x,y) is given. In [7] Romanowska^ Smith described 
words in F(x,y) in a different way. They proved the following 
proposition [7, Proposition 4.14}. 

P r o p o s i t i o n 2.1. In F(x,y) each element may 
ho -in +ho ot.oinfloTi/1 -P.VI»m a (a . . . ( ^a^))...) With 

w0(x.y) = *» = y and 

Wjjx.y) = w i - 2 ( x , y ( x , y ) for i^ 2 

w
i(x,y)wjL_1(x,y) « wlmm2(x,y) 
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Lattice of varieties 5 

C o r o l l a r y 2.2. Let i»1. Then in an SlS-grou-

poid 

^(xjy) = a.^.. .a2a.,y, 

where a., = x, ajgejxyyj, 4 ak+1 for and 
w.^x.y) = a ^ . ^ x , 

where a1 « yf ake{x,y}, ak 4 ak+1 for 1^k<i-1. 
P r o o f . The proof goes by induction on i. The cases 

i * 1,2 are obvious. Let = ai_^...a1y, = 
and a1 = x, ake{x,y}, ak 4 ak+1 for 

Then by distributivity and idempotency 
wi = wi-2wi-1 c ai_3**»ai7*ai_2,,,al3' = ^ai-3* • ,31 *ai-2*' ,a1 ̂  = 

= ^ai-3*ai-2ai-3^ai-4" ,a17' 
and sinoe by Proposition 1.3, 

ai-3*ai-2ai-3 = ai-3ai-2ai-3' 
it follows that 

wi a ai-3ai-2ai-3"*a17* 
Moreover a^^ ^ ai-2* us def3-ne ai_i != ai_3* Tlien = 
= ai_1ai_2ai_3...a1y, where a., = x, ake{x,y}, ak 4 ak+1, 
for 1 «k^i-2. 

The second equality is proved similarly; it is also a con-
sequence of the first one and Lemma 2.3(i) below. 

L e m m a 2.3 [3]. Let r and a be integers. Then 
the identities 

^ wrw3 = w-r+2s' 
U D - wr+1(y,s) 

hold in SIS. • 
The next two obvious consequences of Lemma 2.3 will be 

used several times. 
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6 B.Roszkowska 

C o r o l l a r y 2 . 4 . For every i n t e g e r r the i d e n -
t i t i e s 

w _ r = V o ' 

( i i ) w 2 r =» w0wr 

hold i s S I B . 

D e f i n i t i o n 2 . 5 . [3^» Let n be an i n t e g e r . 
The i d e n t i t y of the form w n ( x , y ) = x = w 0 ( x , y ) i s c a l l e d an 
n - c y c l i c i d e n t i t y . An SIB-groupoid s a t i s f y i n g an n - c y c l i c 
i d e n t i t y i s c a l l e d an n - c y c l i c S IB-groupoid . 

Denote by Vn the v a r i e t y of a l l n - c y c l i c S I B - g r o lipoids. 
By C o r o l l a r y 2 . 4 ( i ) and idempotenoy, wQ = wQ i f and only i f 
w_n = wQ. Hence Vn i s equal t o V_n» 

P r o p o s i t i o n 2 . 6 . Every i d e n t i t y in two v a -
r i a b l e s s a t i s f i e d i n S IB i s e q u i v a l e n t t o an n - c y c l i o i d e n t i t y 
f o r some n . 

P r o o f . Every i d e n t i t y i n two v a r i a b l e s has the f o r « 
u = v where u,v where u , v e p ( x , y ) . T h i s means t h a t t h e r e e x i s t 
i n t e g e r s r , s such t h a t u = w r ( x , y ) , v = w s ( x , y ) . Hence the 
i d e n t i t y u = v has the form w r ( x , y ) = w g ( x , y ) . We c o n s i d e r 
two c a s e s : 

C a s e 1 . r o r s i s even. We may assume t h a t s 
i s even. (The ease r i s even i s a n a l o g o u s ) . We mul t ip ly the 
i d e n t i t y wp » wg on the r i g h t by ws/2 • n d o b t a i n (by Lem-
ma 2 . 3 ( i ) ) w r w s / 2 " W8WS/2 " wo a n d w r w s/2 * w s - r # T h i s B k o w B 

t h a t the i d e n t i t y « wQ i s a consequenoe o f w r » wB . 
To prove the converse i m p l i c a t i o n , mul t ip ly the i d e n t i t y 

w 8 - r » wQ on the r i g h t by wB/2* Using Lemma 2 . 3 ( i ) and Co-
r o l l a r y 2 . 4 ( i i ) we o b t a i n w r = w a . 

C a s e 2 . r and s are odd. S i n c e by Lemma 2 . 3 ( i i ) 
w B ( x , y ) = w _ s + 1 ( y , * J and w r ( x , y ) = then by the 
previous part o f the proof the l a t t e r i s e q u i v a l e n t t o 
w r _ g { y , x ) = w Q ( y , s ) • y and consequent ly e q u i v a l e n t to 
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Lattice of varieties 7 

Let SCD(n,k) denote the greatest common divisor of tha 
integers n and k. 

P r o p o s i t i o n 2.7. For all positive integers n 
and k, 

P r o o f . First note that by the proof of Proposi-
tion 2.6, if wfl = w Q is satisfied in a variety of SIB-grou-
poids then = and henoe * w Q is satisfied as well 
for every i in Z. 

Let rt s be natural numbers, k * GCD(n,k)r and n = 
* GCD(n,k)s. Now asstuae that an SIB-groupoid G satisfias the 

= w 0, i.e. G is in V nn Yk. 
Conversely let an SH-groupoii C satisfy identities 

wk = wo a n d wn = wo# s i n e* BCD(n,k) = an+bk for some integers 
a'b' wGCD(n,k) " wan+bk - wan = V T h i* " e a n a t h a t G 1 3 l n 

TGCD(a,k)' 

3. The standard form of words in tha free SIE-groupoids 
The purpose of this section is to describe the standard 

for« of words in the free SIK-groupoid F(x0,...,xn) on a+1 
generators x0,...,xn. Let Q n be the set of all sequences 
(k.|,...,kQ) in Z n such that at aoBt one k^ is odd. It is easy 
to see that (Qn,*) is a subgroupoid of (Zn,*) from Bxample 1.f. 

T h e s r e « 3.1. (Joyee |_2j). Tne free SIB-groupoid 
F(x0,...,xn) is isomorphic to the Sll-groupoid (Qm$')» The 
elements eQ = (0«...,0), e^ = (1,0 0),..., eR = (0,...,1) 
are free generators of (Qn,»). Q 

Note that in [2] SIK-groupoids were called involutary 
abelian quandles and were used to characterize knots. 

How we define an infinite class of groupoid words in va-
riables xQ,...,xn that coincides with that given in Seotion 2 
ia the case n » 1. 

V V k - VGCD(n,k) 

identity w G C D ( n > k ) 

tisfies the identit 
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8 B.Roszkowska 

D e f i n i t i o n 3.2. For every element 
( 2 r 1 , . . . , r ; j , . . . , 2 r n } of Qn we define 

w(0, . . . ,0}x o , . . . ,x n ) := xQ = w0, 

w(2r1 , . . . , r ; j , . . . , 2 r n i x 0 , . . . , x n ) : = 

» r j ' o ' r / o — ' p j . / o ' r j ^ — w o w r n
 i f r J i s o L d 

" o V - V • *wowr • /2wo* ' *wowr otherwise, 
1 3 n 

where w_ : = w_ (x,_fx.,) for every D 

j j ^ 
In the sequel we write briefly w(2r.,,... , r . j , . . . ,2rn) i f 

no confusion can arise and we abbreviate w ( 2 r ^ , . . . , . . . 
to w£ where r = ( 2r. , , . . . .r^ , . . . ,2rn) is in Qn. 

Note that, i f r i s in Z, then w(r;x,y.) = wr(x,y). 
R e m a r k . By Corollary 2.4(ii) and Proposition 1.4(ii) 

wowr1
wo'*,wowrn

 = w2r 1
wo" ,wowrf l

 = 

= W~_ WW w . . .w w_ WW w . . 
i
 0 r i 0 0 0 r j + 1

 0 n 

for every 
The following is the main result of this Section. 
T h e o r e m 3»3. In the free SIB-groupoid 

F ( x . x x j on the generators x 0 , x ^ , . . . , x n eaoix further 
element may be expressed in the standard form of w£ for some r 
in Qn. 

The proof of Theorem 3.3 i s divided into several lemmas. 
L e m m a 3.4. Let r = ( 2 r 1 , . . . . . . . 2 r n ) and 

k = >2kn) be elements of Qn then 

V k = w2k-r 
holds in SIB. 
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La t t i oe of v a r i e t i e s 9 

P r o o f . By ent rop ic and d i s t r i b u t i v e laws 

V k e W r i V r 1 , , , " r i . r < , W r i + r ° , , , W r n * 

• w k i w o w k 1 ' " w k i - 1 w o w k i + 1 w o * " w k a * 

( v ' i H K - r O " » ( v O -

Using Lemma 2 . 3 ( i ) we obta in 

w r w * = W 2 k i - r i W o w e k 1 - r 1 - - w 2 k i _ 1 . r i ^ 1 w o w 2 k i + 1 - r l + 1 " - w 2 k n - r n = 

" w 2k-r* 
L e m m a 3 . 5 . Par a l l i n t e g e r s i 1 t ¿ 2 * i 2 » w i w j w i " 

= w. w w4 4 ho lds i n SIB. 
1 2 
P r o o f . In the case i 2 = 0 the proof i s obvious 

because by the d i s t r i b u t i v e law and Coro l l a ry 2 . 4 ( 1 ) , 

Wj W, m W4 W_ • W4 WW . . 
1 "2 1 ^2 0 1 "J2 

Hour l e t i g » 1 and j g ^ 0 * I n t h i a o e s e t h e P r °° f soee by 
induc t ion on 3 2 . I f J 2 " 0 then the e q u a l i t y i s obvious. 
Let = 1. Then w^ w . ^ = w^ " w i w 0 w o a s r e <3 u^ r 8 ( J* H o w 

assume tha t the i d e n t i t y holds f o r a l l p o s i t i v e i n t e g e r s l e s s 
than J 2 . S ince w^ = w^ ^w^ _ 1 t i t fo l lows by d i s t r i b u t i v i t y 

and the induct ion hypothes i s t h a t 

• 1 / 3 2 * 1 " W i 1 ( " V 2 , V 1 ) W l = " 1 / 3 2 - 2 * 1 , W i r J 2 - 1 W 1 -

" w i / o w 3 - j 2 ' W i / o w 2 - j 2 = w i / o w 1 - j 2 a s 

Now l e t i 2 = 1 and j 2 < 0 . By Coro l l a ry 2 . 4 ( i ) w^ « 

= w . w . Hence by the d i s t r i b u t i v e law and the previous part 
- J 2 

of the proof we obta in 
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10 B.Rosskowska 

w. w. w., » w. (w . w „ ) w i = w, w , w1*w. w w1 = 
i 1 32 2 ' 1 1 

a W. » J , ^ »W. WW. » W. WW, . o 1+02
 1 ' j 0 1 1 0 '~J2 

Now cons ide r the case i 2 > 0 and assume t h a t the i d e n t i t y 
ho lds f o r a l l p o s i t i v e i n t e g e r s l e s s than i 2 . Then s ince 
w.̂  • Wĵ  ^Wj^ i t f o l l o w s t h a t 

W. W. W. = Wi W. *W. 0w. 1 a Wi W. W., _o*W., W. W. .. « 

i 1 ¿2 i 2 i 1 3 2 i 2 " 2 H " 1 i 1 J 2 1 2 2 1 J 2 X1 1 

= w i 1
w o w i 2 - 2 - d 2 * W i 1

W 0 W i 2 - 1 - 3 2
 = w i 1

w o ' w i 2 - 2 - D 2
W i 2 - 1 - j 2 * 

" w l 1
w o w l 2 - j 2 ' 

what completes the proof i n the case i 2 ^ 0 . I f i 2 < 0 , then the proof i s s i m i l a r t o the case i 2 = 1, j 2 < 0 . 
L e m m a 3 . 6 . Let £ = ( r 1 , 2 r 2 ) and k_ « ( 2 ^ , ^ ) be 

elenient o f Q j . Then w ^ = * 2 k - r i < o l d * i n S I E * 
P r o o f . By D e f i n i t i o n ^ . 2 we hate w£ = w

r i
w

0
w

2 » 

w, a wv w w,, , and by P r o p e s i t i o n s 1 . 4 ( i i i ) , ( i i ) the axiom jC_ £ ^ 

o f symmetry 

V k = w r 1
w o w r 2 ' w k 2

w o w k 1 = * r / 0
w r 2

w k 1 " o w k 2
w . w k 1 = 

' w r 1
w k 1

w r 2
w k 1

w o w k 2
w o w o * " r / k / o ' k / r / k g -

Since by Lemma 2 . 3 ( i ) , 

w r 1
w k 1

w o w k 1 = ^ k ^ V k . , " w 4 k 1 ^ p 1 

we have w ^ - w ^ ^ w ^ w ^ and by Lemma 3.5 

V k = w 4 k 1 ^ 1
w o w k 2 - r 2 - * ( 4 ^ , 2 ^ - 2 ^ ) = w ^ 

what eompletes the p r o o f . 
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Lattice of varieties 11 

L e m m a 3.7. Let r = (2r., , . . . 1 r i , . . . , 2 r n ) and 
k = ( 2 k 1 . . , . . . , 2 k n ) be elements of Qn. Then wrwk = » 2k-r 
holds in SIB. 

P r o o f . It remains to prove the Lemma in the case 
n>2 and i < j . In this oase Proposition 1.4(11) implies that 

W_ s w w_w • • • w_w • • .WW w • • • w s 
s r i 0 r i r i - i 0 r i + 1 0 r j 0 n 

= w_ w w_ WW ...w WW ...w w_ WW ...w_ 
r i o ^ ° r i r i> i o r i + i 0 r j _ i o r j + i r n 

and analogously 

* Wi_ WW. W ffv, . . iW.WL W.WI « « »Wu WW» 

V l 1 1-1 k+1 K j-1 0 K3+1 "-n 

Hence by the distributive and entropie laws and by Lemma 2.3(1) 
V k -

v r i 0 rd kd 0 r1 V 0 V r i - 1 ki-lJ r i + 1 k i + W 

= ( " r ^ o ' r j ,wk jwowk i)wow2k1 - r ^o * • *w2ki_1 -r i.1Wo" r2k i+1 - r i + 1 • • * 

Sinoe in the case n • 2 

W W W_ *W. WW. * W _ W Wv. _ 
r i 0 r j d 0 k i 4 k i " r i 0 krTi 

than using Lemma 3.t> and Proposition 1.4(11) we oonclude that 

V k = w2k-r* 
This completes the proof Lemma 3.7. 

P r o o f of Theorem 3.3. The proof goes by induction 
on the-length of expression of the element. The shortest ex-
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12 B.Roszkowska 

pression of such an element is x.= x.,, where i 4 j and x.,, x., {•> i j i 3 

x0,...,xn|. By previous Section x ^ = 
= w1(x0,xi)w1(x0,x;j) = w ^ (x0,xi)wQw1 (x0xj) and this is 
already in the standard form. By induction, a longer element 
not in standard form may be expressed as-WpW^, a product of 
standard forms. Then by Lemma 3*7 " w2k-r i n r e ~ 
quired standard form. 

T h e o r e m 3.8. Let 
W := {w{r1,...trn;x0,x1,...,xn)i(r1,...,rn)e Qn}. 

For k,reQ Q, define wj.w^ s= »2k-r* Tilen i s a n SIE-grou-
poid and the mapping hiQn—•- W, h{£) « w r is an isomorphism. 

P r o o f . Obviously the mapping h is surjective and 
by Lemma 3.7 it is a homomorphism. Now we profve that it is 
infective.'Let r = (2r.j,... ,rit...,2rn) and k * (2^,...,^, 
.,.,2kn) be elements of Q q. Assume that w^ = w^. Substituting 
x. for all variables x_ different from x1 in tnis identity we O 8 1 
get one of the following identities: 

(a) w2r.^xo,:!C1^ = w2k^ ̂ xo*x1' i n t h a o a a e i,i1 • » 

(b) » P ^ X Q . x ^ = w2Jc^(x0,x1) in the case i«1, 

Co) w
2r 1^ xo» x1' = wk.j ̂ xo,x1' in the'case i/1, 3=1, 

(d) w p " wfc (x0,x.,) in the case i-3-1. 
By [ 3 ] the identity wp(x0,x) » wq(x0,x} is satisfied in the 
free SIB-groupoid EJ[x0,x) iff p * q. It follows that the first 
coordinate of r is equal to the first coordinate of k. 
In general substituting xQ for all variables x 8 different 
from x p in this identity we get that the p-th coordinate 
of r is equal to the p-th coordinate of k. for 
hence r = k. 

4. Identities in n+1 variables 
The goal of this section ia. to describe identities in 

n+1 variables satisfied in SIS. ¿¡vary such identity has t'.ia 
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Lat t ice of v a r i e t i e s 13 

form wr = w^ f o r some alem9nts r and k. of i»n. V,'e s h a l l prova 
tha t any such i d e n t i t y i s equivalent to one i den t i t y in two 
v a r i a b l e s . F i r s t we prove tha t the i d e n t i t y wp = wk i s equ i -
valent to wp = w0 • x 0 f o r some j> in Qft. 

P r o p~~o s i t i o n 4 .1 . Let r and k be in Qn . 
Then the i d e n t i t y wp = wfc i s equivalent to the i d e n t i t y 
w^ » w0 f o r some p in Qn . 

P r o o f . Let k = ( k 1 t . . . , k n ) and r = ( r 1 , . . . , r n ) be 
elements of QR. Since 

, . . . . . . , » * • ) » • • • »• • • »*q) = 

= w( k ^ , k g , . . . »^•j »^i+i»• • • 

Xq jX^jXg,. • • '^i+i,' * * * 

we can assume tha t a l l k^, i = 2 , . . . , n , are even and k^ 4 0 . 
(In the case a l l k^ equals zero i t i s nothing to prove). 
Recal l t h a t w^ » w^ WgŴ  /2***wowk /2* i e e a s 7 s e e ^ a t 
the i d e n t i t y wp = w^ i s equivalent to 

w r w k n / 2 w o , , # w k 2 / 2 w o = wk^ * 

(Multiply the i d e n t i t y wr * wk on the r i g h t f i r s t by wfc 

then by wQ, then by w^ y 2 ' e t c . , and f i n a l l y by ^ and 

by wQ and use the axiom of symmetry). 
Moreover by Lemma 3*7 and because Wv. i s eque£ to K i 

w ( 0 , . . . . . , , 0 | x Q , . . . , x n ) the l e f t side of the l a s t i d e n t i t y 
i s equal to w ( r 1 . r g - k g , . . . , r n - k n j * 0 , . . . , x n ) . 

Now we consider two casest 
C a s e 1. k1 i s even* By Corollary 2 . 4 ( i i ) , wk -

" wowk /2* H e n o e mult iplying the l a s t i den t i t y on the r i g h t 

by wk t ha t equals w ( k 1 / 2 , 0 , . . . « 0 ; x o , . . . , x n ) , using Lem-

ma 3*7 and the axiom of symmetry we conclude tha t the i d e n t i t y 
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w t r ^ r g - k g , . . . , r n - k n } x 0 , . . . , x n ) wQwk ^ i s equivalent to 

w ( r l " k 1 rn~kn'xo *n) = V 
C a s e 2. k̂  Is odd. Then by Lemma 2 .3 (H) wk (x£(,x1) = 

= .x 0 ) and -k^+1 i s even. By Theorem 3.3 

w ( r 1 t r 2 - k 2 , . . . , r n - k n » * 0 , . . . , x n ) - w ( p 1 . . , p n j x 1 , x 0 , . . . , * n ) 

for some ( p 1 , . . . , p n ) in Qq henoe we have case 1. This com-
pletes the proof. 

It i s obvious that without loss of generality we can oon-
aider only the ident i t i e s 

(4.2) w(k., »2kg»«.. , 2k Q j x 0 , . . . ,XJJ) • x 0 , 

where k^ are integers and i = 1 , . . . , n . Substitute in th is 
identity xQ for a l l 4 and x for x.,. Sinoe wp(*0»*0) • * c , 
for every integers p and by the axiom of symmetry we obtain 
» k (xQ,x) - x 0 . 

Similarly for every j e { 2 , . . . , n } we can substitute xQ for 
a l l ^ i j and x for x^ in (4 .2 ) . In th i s way we obtain 
w0wk {x0 ,xl - x0 that i s equivalent to w2k (*„»*) " As 

consequenoes/of the identity (4.2) we get n ident i t i e s in 
two variables 

wk (x 0 ,x ) - x 0 , 
(4.3) 1 

w 2k^ x o» x ) 3 xo 

where 2 6 j s£ n. 
Conversely, suppose an SIB-groupoid (G,*) s a t i s f i e s each 

of the ident i t i e s (4 .3 ) . Therefore by Corollary 2 . 4 ( i i ) and 
the idempotency 

" ( ^ »2k2, • •. ,2kjj}Xp, • • • »XJJ) * 
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= w o w k 2 { x o ' x 2 , " , w k n ( x o ' x n ) " 

= W2k«^xo , x2'wo"*wk ^ xo , xn' = xo 2 n 

what means that ( G , . ) sat is f ies the identity ( 4 . 2 ) . 
In this way we have proved the following* 
p r o p o s i t i o n 4.4. Let (k , , , . . . ,kn ) be in Qq. 

Then every identity in n+1 variables w(k^, . . . »knJ*0 »••» »*nT" * 0 

is equivalent in an SIB-groupoid to the set of n identit ies 
in two variables w^ (x0 ,x ) = xQ, 

P r o p o s i t i o n 4.5. The set of identit ies in 
two variables w,, (x ,x) = x„ , is equivalent to the Sĵ  o o 
unique identity in two variables 

wk (x0 ,x) - x. 

P r o o f . By Proposition 2.7 we have k= GCL(k1f...,kn). 

5. The nain theorem 

Using the results from the previous sections we her« prove 
the main theorem whioh characterizes the latt ioe of a l l sub-
variet ies of the variety SI6. Denote this lat t ice by L(SIS). 

Let L be a la t t i ce , We w i l l denote by L+ the latt ioe 
L u { ° ° } in which the element .oo is greater than a l l elements 
of L. Let K denote the lat t ice of a l l natural numbers with 
respect to the partial order < ^ defined by k^jf n i f and 
only i f k divides n. Finally l e t Vr be the variety of SIB-grou-
poids satisfying the identity wr where r - ( r . j r a ) 
is in Qn. 

By Proposition 4.4« V_ = 7 n . . . nV_ and consequently, 
- r 1 n 

by Proposition 4.5 we can easily get the following statement. 
C o r o -1- 1 a r y 5.1. For every r a ( r ^ . . . , ^ ) in 

V Vr = V GCD(r l t . . . , r n ) ' 

T h e o r e m 5*2. Let V be a variety of SIB-groa-
poids. then V * SIB or Y • TQ for some natural number n. 
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P r o o f . Let V be a nontrivial subvariety of tne 
variety SIB. By Propositions 4.4 and 4.5 the set of a l l iden-
tities satisfied in V is equivalent to a set I of identities 
in two variables having the form = wQ. 

Let n be a minimal natural number such that the identity 
wR = wQ is in I . By Proposition 2.7, i f the identity w^ = wQ 

is satisfied in V then the identity wGCD(n = wQ ic sa-
tisfied in V, as well. Obviously n = GCD(n,k). This means that 
n divides a l l natural numbers k such that the identity 
w. = w is in I . On the other hand as it was mentioned in the K 0 
proof of Proposition 2.7 identity wR = wQ implies w iQ = wQ for 
every i in Z. Consequently I = { " i n = wQ : i e z ) and each 
identity of I is a consequence of the identity wR = wQ. It 
follows that V = VQ. rD 

R e m a r k . By [ 3 ] , Vn = Vk i f and only i f n = k. 
Finally we describe the lattioe L(SIE). 
T h e o r e m ' 5.3. The lattioe L(SIE) of al l varieties 

of SIB-groupoids is isomorphic to N+. The variety corresponding 
to 00 is SIB. I f n is a natural number then the variety corres-
ponding to n is just the variety of SIB-groupoids satisfying 
the identity wQ(x,y) = x. 

P r o o f . Let n, k be natural numbers and let LCM(n,k) 
denote the least common multiple of n and k. 

By Theorem 5.2 and Proposition 2.7 it is enough to p£ove 
that the ¿oin VQV Vk of VQ and Vk is equal to VLCM (n k j - First 
note that by Proposition 2.7 and by above Remark VnG.Vfc iff 
and only i f n divides k. 

By Theorem 5.2, = Vffl for some natural number m. 
Since V„eVm and Vb.QV„ then n divides m and k divides - n m k m 
m. Hence LCM(n,k) divides m. Otherwise vn&vi,cM(n k) 8,1(3 

Vk£VLCM(n,k) w h e n c e V V k " Vm£VLCM(r,k) a o d m S i v i d 9 8 

LCM(n.k). It follows that m - LCM(n,k). * a 
Aoknowledgementa: The author is grateful to A.Romanowaka 

for disaussions and comenta that influenoad the origin and 
improvement of this paper. 
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