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A MONADIC APPROACH TO THE MODAL THEORY 

In the present paper the concepts of monads and morphisms 
of monads are applied to the i n v e s t i g a t i o n of some r e l a t i o n s 
between modals, modes and s e m i l a t t i c e s . The key to our theory 
i s the observation that the construct ion of a modal of non-
-empty subalgebras of a mode (A,F) i s very s imi lar to the con-
s t r u c t i o n of a compact space of c losed subsets of a compact 
space. The l a t t e r produces a V i e t o r i s monad on tns category 
of oompact spaces ¡J3], which i s a r e s t r i c t i o n of a powerset 
monad to closed subsets* We introduce several monads on modes 
s imi lar to the V i e t o r i s monad, among them the monad of non-
-empty subalgebras and monad of s inks . The main aim of t h i s 
note i s to describe modals, oomplete modals and complete d i -
s t r i b u t i v e P - l a t t i o e s as Eilenberg-Moore ca tegor ies of monads 
on modes. In part iou lar , we obtain a category of complete 
Heyting algebras as category of algebras f o r a monad of s inks 
on category of meet s e m i l a t t i c e s . 

1. Prel iminaries 
A mode (A,?) i s an algebra that i s both idempotent (mean-

ing that for each element x of A, tha s ing l e ton {x} i s a sub-
algebra of (A,F)) and entropic (meaning eaoh n-ary operation 

This paper i s based on the l ec ture presented at the Con-
ference on Universal Algebra held at the Technical Universi ty 
of Warsaw (Wilga), May 22-25, 1986. 
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2 A.Kgrplal-

X : An—-A in F is a homomorphism). A modal (A,F,+) is an 
algebra for which the reduot (A,F) is a mode, (A,+) is a 
join-semilattice, and the operations F distributive over +. 
Suoh structure yields a partial order ^ on the set A on sett-
ing x = y i f f x + y * y. A jo in 8emllattice (A,+) for whioh 
every non-empty subset has a supremum (sup) is called a com-
plete join semilattioe. An algebra structure (A,F) on a set 
is said to be completely distributive over a complete join 
semilattioe structure (A,+) on A i f f for each n-ary operation 
f in F, and non-empty subset I of A, 

A modal (A,F,+) is called a complete modal i f f (A,+) is a com-
plete join semilattioe and (A,?) i s completely distributive 
over (A,+). A modal morphism h j (A ,F f + )—- (C,F,+) is said 
to be complete i f h preserves supreme of non-empty subsets. 

A monad T = ( T o n a category A. consists of a functor 
T : A —-A and two natural transformations ¡? : IdA—— T and 
pi : TT — T sueh that 

fi = idT ' fx* Hp and ¡u «(u*T(u. 

q is called the unit and p- the counlt of T. An algebra (A,a) 
for the monad T, or brief ly T-algebra, consists of an objeot 
A and a morphism a : TA——A such that a*pA « idA and a*Ta » 
* b'^a* morP^ i s in 11 oalled the structure of the T-alge-
bra (A,a). A morphism h : (A ,a )—- (B,b) of T-algebras is a 
morphism h : A — B of A such that h«a = b*Th. We denote by 
^ the category of algebras for this monad, and by U T : A T — A 
the forgetful functor, with UT(A,a) « A for T-algebra (A,a). 

I f two monads T over A and T' over B are given, then we 
define a morphism (Gtw) s T'—~ T of monads as a pair con-
sisting of a funotor G : A—— B and a natural transformation 
j t : T'G —- GfT suoh that 

f , . . . »Xj..) »SUP I»X j+1 »• • •» 
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Modal theory 3 

jr*2\j • G p and jt <* Gfi'jr^'1'jr. 

Putting H(A,a) - (GA,Ga«jrJ for T-algebra (A,a), H(h) = Gh A m m' 
for a morphism of T-algebras, defines a functor H:A — — B m' m T Z' such that O H = G U . Conversely, every fano'tor H;A — B m' m 
euoh that U H « G D for some G:A—- B is of this form. 
We denote by F the covariant powerset functor on the category 
Set of sets and mappings, with PA = set of all non-empty sub-
sets of A, for a set A, and Ph(X) the direct image of X by h, 
for h:A—»B and XSA. Singletons and set unions define na-
tural transformations s:Idg e t—-P and u : P P — P . This define 
a monad P * (P,s,u) en sets which we call the powerset monad. 

A monad P f of finite non-empty subsets is obtained by re-
stricting the data of the powerset monad to finite subsets. 
We denote by oJSL the category of P-algebras; this is the ca-
tegory of oomplete join semilattices. An algebra structure 
a:PA—•»A on a set A is a sup map with a(X) = sup X for non-
empty subset X of A. A morphism of P-algebras is a map which 
preserves supreme of non-empty subsets. The category of P^-al-
gebras is the category JSL of join-semilattices and semilattioe 
homomorphisas. 

For all »«explained terms concerning category theory the 
reader 1b referred to [l], 

2. Some properties of modals 
Let M be a variety of modes of type F satisfying a given 

set of linear identities. Here and in what follows we will 
identify olasses of algebras with their corresponding full 
subcategories of a category of all algebras of type F and 
F-homomorphisms. We denote by Ml and oMl classes (categories)* 
of all modals (complete modals) whose mode reduots are in M. 

If (A,F) is a mode, let SA (SfA) denote the set or all 
non-empty (finitely generated) subalgebras of (A,F). For n-ary 
operation f of F, denote by f(B1,B2,...,Bn) the complex f-pro-
duct of elements B1fB2,...,Bn of SA. By entropicity, 
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4 A.Kurplel 

f (B 1 t . . . ,B n ) ia i t se l f a non-empty subalgebra of (A,F). I f 
every subalgebra B̂  is f in i te ly generated by a f in i te set X̂  
( i . e . B± « c l A ( X i ) ) then 

f ( B v . . . , B n ) = olA f ( X 1 t . . . , X n ) . 

This makes SA and SfA into an algebra .(SA,P) and (S fA,F). 
P r o p o s i t i o n 2.1 ( c f . Proposition 313 and 

335 of [2 ] ) . Let (A.FjeM. Then 
( i ) (S fA,F,+)e IO. where B1 + B2 « clA(X.,UX2) for B± = 

= clA(X^) and f in i te subsets X.̂  ( i = 1,2). 
( i i ) (SA,F,+)e cMl, where for every non-empty subset Z 

of SA, sup Z = clA (U Z). 
P r o p o s i t i o n 2.2. I f (A,F,+)e Mi and 

t ( x 1 , . . . , x n ) is a term of type F, then for every a^, . . . ,an 

from A, t(a-|,... ,an ) § a1 + . . . + aQ. 
P r o o f . I t suffioes to apply sum-superiority Lea-

ma 318 of [2] and induction on degree of t . 
P r o p o s i t i o n 2.3. I f B « clA (X) is a subalge-

bra of a modal (A,F,+)# generated by a non-empty subset X 
of A, and ae A thera B is upper bounded by a i f f X is upper 
bounded by a. 

P r o o f . The "only i f " part is obvious. Conversely, 
i f b e B, then b = t (x . j , . . . ,xn ) for some term t and x^,. . . ,xneX. 
Then by 2.2, b « + . . . + x i a. 

This proposition gives us a motivation to consider the 
sup maps sup s SA—»-A and sup : S^A—"A for a complete modal 
and modal respectively. 

C o r o l l a r y 2.4. 
( i ) I f (A,F, + ) eMl then for every BeS fA with B = clA (X) 

and X-f inite, sup B exists in A and sup B = sup X. Moreover, 
the sup ,nap sup : SfA — A is a modal homomorphism. 

( i i ) I f (A,F, + ) t cMl, then for every B € SA with B=c l A (X ) , 
sup B = sup X, and sup s SA—-A is a complete modal homomor-
phism. 
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Modal theory 5 

P r o o f . We prove only the first part of Corollary. 
Let us observe that sup : S f A — — A is well defined, by 2.3». 
Let f be an n-ary operation and Bi = olA(X^)€ SfA for a finite 
subsets X^ (i = 1,...,n). Then, using Proposition 2.3 

sup f(B1t...,Bn) = sup clA(f(X1 ,-...,Xn)) = sup{X1 ,...,Xn) = 

= supjf ( x ^ . . ,xn); x ^ i j for i = 1,..., n } = 

= f(sup X^sup X2,...,sup Xn) = f(sup B1t...,8up 3n). 

3. Monads of subalgebras over modes 
We introduce a modal inonad S f and a complete modal monad 5 

on the category M of modes. We show that subalgebras generated 
by subsets provide a morphism of monads, from the pow9rset 
monad P to the modal monad S, and we show that the categories 
of S-algebras and cMl are isomorphic. 

P r o p o s i t i o n 3.1. If (A,F>€ M, then putting 
gA(x 1 = {x} for xeA defines a homomorphism ,gA:(A,F)—-(SA,F), 
and set unions of subalgebras define a homomorphism 
¿¿A:(SSA,F)—~(SA,F). Moreover, ,"A(C) = clA(uZ) if C = 
= clSA{clA(X)j X6 z} for some subset Z of PA. 

P r o o f . Since (A,F) is an idempotent algebra, it 
follows that gA is well-define'd homomorphism. If" K is a sub-
algebra of SA, then for every n-ary operation f of F and 
x 1 t... fx n€ UK there are subalgebras B1,...,BQeK of A such 
that Bĵ  for i * 1,...,n, and then f(x1,... fxQ) e 
€ f(B1,...,Bni €K. Thus.U K is a subalgebra of (A,F) and 
¿¿A jSSA——SA is well-defined map. Directly from Corollary 

for a oomplete modal (SA,F,+), we obtain that 
is a complete modal homomorphism. 

If h:(A,F) — (C^F) is a homomorphism of modes, then the 
direot image Ph maps subalgebras into subalgebras. We define 
Sh as the restriction of Ph to subalgebras, and we note that 

Sh{f(Br.¿.,Bfl)) = f(Sh(B1),...,Sh(Bn)) 



6 A.Kurpiel 

for every n-ary operation f of F and B^,...,Bn£ SA. This shows 
that Sh is a complete modal homoaiorphism. Thus, we obtain 
a functor S:M—- M. 

T h e o r e m 3.2. The functor S and the maps and 
fiA define a monad S on the oategory M, and subalgebras gene-
rated by subsets in modes define a morphism (U,cl ) :P —- .S 
of monads, where U:M — Set is a forgetful functor with 
U(A,F) = A for a mode (A,F). 

P r o o f . The f i rs t part follows immediately from the 
corresponding facts for the powerset monad P on s.ets, by re-
striction to subalgebras. I f h: (A,P) '—(C,-F) is a mode homo-
morphism, then Sh(clA (X)) - o l c (Ph(X) ) , thus clA is natural 
in (A,?) . In our case, the two conditions for a morphism of 
monads become 

clA .sA = and * u<uA*clSA*S o lA f o r a ° o d a 

The f i r s t condition ¿s clearly val id. I f Z is a fton-empty sub-
set of PA and BeSA, then by Corollary 2.4 we have elA(U ZjsB 
i f f uZsB i f f c l A (X ) cB for every XeZ i f f CEB for every 
Ce o l S A { c l A (X ) j Xe z} i f f U e l S A { c l A ( X ) | x e z J s B and the 
second condition is also sat isf ied. 

R e m a r k 3.3. The modal monad S f is obtained by 
restriction of Proposition 3.1 and Theorem 3.2 to the f i -
nitely generated subalgebras. In this ease, the pair (U,ol) 
forms a morphism of monads from P f to S f . Bote that the monad 
S f is induced by a pair of adjoint functors with U+ i Ml—— M 
- the forgetful functor - as a right adjoint ( c f . Theorem 351 
of [ 2 ] ) . 

C o r o l l a r y 3.4. Every S-algebra (S f-algebra) 
( (A,F) ,k) is a complete join-semilattice ( join-semilattice) 
with sup X = k clA (X) for non-empty ( f in i t e ) subset ¡X of A. 
Morphisms of S-algebras (S f-algebras) preserve these supre-
ma. 

P r o o f . The morphism (U,cl) of monads induces a fun-
tor HsM^—-Set? = cJSL ( c f . Preliminaries). 
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Modal theory 7 

T h e o r e ¡n 3 .5 . There i s an isomorphism of c a t e -
gor ies ^ («Sf) and cMl (Ml) which preserves underlying mode 
s t r u c t u r e and underlying complete j o i n - s e m i l a t t i c e ( j o i n - s e -
• i l a t t i c e ) s t r u c t o r g . c? 

P r o o f . We def ine a func to r R:KT—- oMl as fo l lows: 
R([A,F),k) = (A,F,+) c f . 3.4 on ob jec t s and R(h) = h on mor-
ph.is-n:-. Tt i s easy to see t h a t R i s wel l -def ined and i n f e c t i v e 
o* ob jec t s . We show tha t R i s s u r j e c t i v e on o b j e c t s . Let 
(A,F, + )6 cMl, then the sup map sup : SA—»-A i s a mode homo-
¡norptei3T,f by 2 . 4 ( i i ) and i t preserves a l l e x i s t i n g suprema. 
¥ow consider two condi t ions 3up.^A = idA and sup«Ssup = 
= sup-<«A. 

The f i r s t i s obvious. Let Ce SSA with C = c l g A { c l A ( x ) j XeZ] 
f o r some non-empty subset Z cf PA. Using 2 . 4 ( i i ) and 3.2 we 
have 

sup (UA(C) = sup clA( U Zj = sup u Z * sup jsup X$ Xe z} * 

= supjsup c l A (X) j X e z } = sup clS A{sup c l A (X) j XeZ} = 

= sup Ssup c l S A j c l A (X){ XcZ} = sup Ssup C. 

As every C€ SSA i s of the form olSA{clA(X)> Xe z} f o r some Z 
( f o r example Z « C), we see tha t ((!A fF),sup) i s an S-a lgebra . 
Pro« 3 .4 i t fo l lows tha t R((A,F),sup) » (A,F,+) . 

We show now tha t R i s f u l l and f a i t h f u l . The func to r p re -
serves underlying maps, thus i t i s f a i t h f u l . Now consider 
a morphism h : R ( ( A , F ) , k ) — - ( ( C , F ) , 1 ) i n cMl f o r S-a lgebras 
((A,P) ,k) and ( (C ,F ) , 1 ) . Using the f a c t tha t h i s a complete 
modal homomorphism and 3 .4 , we have hk(B) = h sup B = 
= sup Ph(B) = sup Sh(B) = 1 Sh(B) f o r every B e SA. Thus R i s 
f u l l . 

In the s imi la r way one can prove tha t the ca tegor ies «Sf 
and Ml are isomorphio. 

We note some consequences of Theorem 3 .5 : 
C o r o l l a r y 3 .6 . Let (A,F)€M and (A, + )e 

6 cJSL((A,+)€ JSL). Tben (A,P,+)€oMl ((A,P,+)e 1Q) i f and 
only i f the fol lowing two condi t ions holdst 
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8 A.Kurpie l 

( i ) sap X = sup c l A ( X ) f o r every non-empty ( f i n i t e ) s u b -
s e t o f A. 

( i i ) the suprema of non-empty ( f i n i t e l y g e n e r a t e d ) s a b -
a l g e b r a s d e f i n e a mode homomorphism s u p : ( S A , F ) — - ( A , F ) 
( s u p : ( S f A , F ) — ( A , F ) ) • 

4 . Monads of . s inks over modes 
Ve show t h a t s i n k s i n modes d e f i n e a monad D on nodds and 

we i n t r o d u c e the oa tegory o f D - a l g e b r a s . 
A l l modes ( A , ? ) i n t h i s s e c t i o n are p l u r a l ( i . e . 7 i s 

non-empty and an a r i t y o f every f o f F i s a t l e a s t t w o ) . 
D e f i n i t i o n 4 . 1 . A s u b s e t S o f A i s bald t o 

be a s i n k i f f o r every n - a r y o p e r a t i o n f and every eA, 
the f o l l o w i n g h o l d s : i f x ^ e S f o r some i = 1 , . . . , n then* 
f f x . j t x a ) e S . D i r e o t l y from t h e d e f i n i n g property o f s i n k s 
and P r o p o s i t i o n 366 of [ 2 ] we have 

P r o p o s i t i o n 4 . 2 . I f (A,FJ i s a mode, then 
( i ) the union and i n t e r s e c t i o n o f s i n k s o f ( A , F ) i s a l s o 

a s i n k , 
( i i ) the s e t o f a l l non-empty s i n k s DA o f (A ,F) i s a 

complete submodal of ( S A , F , + ) w i t h f ( S 1 . . t S Q ) • S.,n . . . n s f l 

f o r every n - a r y o p e r a t i o n f and S ^ , . . . , S n e DA. Moreover , 
(DA,F,U ) i s a complete d i s t r i b u t i v e F - l a t t i c e i . e . (DA,F) 
i s an F - s e m i l a t t i c e and both p a r t i a l o r d e r s = p and = c o -
i n c i d e s ( c f . [ 2 ] ) . 

F o r a g i v e n element a o f ( A , F ) l e t [ a ] denote t h e p r i n -
c i p a l s i n k g e n e r a t e d by a . One s e e s e a s i l y t h a t the map 
p A : A — - D A which a s s i g n s t o every a c A the p r i n c i p a l s i n k [a ] 
i s a mode homomorphism. Moreover, every s i n k S i n ( A , F ) has 
a uniq ue form 

P r o p o s i t i o n 4 . 3 . For every mode homomorphism 
h : ( A , F ) — — ( C , P ) , the map Dh: (DA,F,U ) — - - (DC,F,U) w i t h 
Dh(S) 3 L J ( [ h ( a ) ] ; a e s } f o r S e DA i s a complete modal homo-
morphism which p r e s e r v e s f i n i t e i n f i m a . 
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Modal theory 9 

P r o o f . Follows from the Proposition 368 of [2]. 
Let qA:DDA—»DA denote the set-union map for a given 

mode (A,F). 
T h e 0 r e m 4.4. The functor DtM—-M, defined above, 

and the maps qA and pA define a monad D = (D,p,q) on M, and 
sinks generated by subalgebras define a morphism (Idj|,9) rS —» D 
of monads. 

P r o o f . The f i r s t part of theorem follows eas i l y 
from 4.3 and the def in i t ion of q. Bote that qA i s a complete 
modal homomorphism which preserves f i n i t e intersect ions . For 
every mode (A,F) from M, we define 9AsSA —»DA as follows: 
9>a(B) = U { [ b ] j b e B] for every subalgebra B E S A . I t i s easy 
to see that th i s map i s natural in (A,F) and that both con» 
dit ions of monad morphism are s a t i s f i e d . 

Thus we obtain a functor HjM0—-I s» gi^sn by H((A,F),k) -
= ( ( A , F ) f o r an D-algetora ( (A,F) ,kJ , so every D-algebra 
i s a complete modal such that 

k (U{[b]| b fc B| ) • sup B 

for every subalgebra BeSA. Moreover, k preserves a l l non-empty 
suprema and f i n a l l y k(S) - sup S for every sink S t DA. 

P r o p o s i t i o n 4.5 . For every D-algebra 
J ( ( A , F , k ) , k:DA—»A preserves f i n i t e infima. 

P r o o f . A D-algebra structure k of (A,F) must be 
of the form sup, by remarks above. In order to show that 
sup S1 fl S2 • inf jsup S^, sup S 2 j for every S.j,S2 from DA, 
observe that Dsup([s]) = [sup SJ and q A ( [ s ] ) = S for every 
5 e DA. Note f i r s t that sup S^n s 2 i s a lower bounded of 
sup S.j and sup S 2 . Now suppose that z e A i s another lower 
bounded of thep, then sup S^ = »up[z]u [sup S^J for i = 1,2. 
tteing the condition sup*Dsup = sup«qA we have 

sup S1 n s 2 - sup qA( Ls^ n [ S 2 ] ) -

- sup Dsup^[z] U [sup S,] ] n[j_z]u [sup S2]j * 
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10 A.Kurpie l 

= sup( [z] U [sup s j ) n ( [ z ] [sup s2 ] ) = sup Dsup( [[z]]u [S^Sg] ) = 

= sup q A ( [ [ » ] ] u [ s 1 n s 2 ] J = 

= sup [z] U (S1 n S2 ) = supjz, sup S1 n s2 j 

and then z S sup S1 n Sp. 
T h e o r e m 4.6. For a complete modal (A,F,+), the 

following are equivalent: 
( i ) The sup map sup : D A — A is a D-algebra structure. 
( i i ) (A,F,+) is a complete distributive F- la t t ice . 
P r o o f . By 4.5, the sup map preserves f in i t e infima 

for D-algebra ( (A,F),sup). Hence for every n-ary operation 
f and x . j , . , . ,x n e A we have 

fU., = f(sup[x.,] , . . . ,sup[xn ] ) = 

= sup f{[x.j] , . . . , [ x n ] ) x sup[x.,] n . . . n [x n ] -

= inf{sup[x.,] [sup [ x j | = i n f [ x 1 , . . . , x Q | . 

Thus ( i ) implies ( i i ) . I f ( i i ) is sat is f ied, than the map 
sup : DA—- A is a well-defined complete modal homomorphism. 
I t remains to show that sup*pA = idA and sup«Dsup = sup*qA. 
The f i r s t condition is obvious. I f S is a sink in (bA,F), 
then Dsup(^) is a sink in (A,F) generated by the elements 
sup S for Se S and 

sup Dsup(S) = supjsup S; S e S } . 

On the other hand, sup <5A(S) = supit^S). ThiB implies that 
the second condition is also sat is f ied. 

C o r o l l a r y 4.7. For a category of plural mo-
des M, the category of D-algebras vP is the same as tlte cats-
gory of complete distributive F-latt ioes whioh mode reducts 
are in M. 

P r o o f . This follows immediately from Theorem 4.$ 
for objects. One sees easily that a mode homomorphism is 
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a morphism of D-algebras i f f i t i s a complete modal homomor-
phism of corresponding complete d i s t r i b u t i v e P - l a t t i c e e . 

R e m a r k 4 .8 . Similar t o the modal monad S^ we , 
can consider the monad Lf of f i n i t e l y generated s inks . In 
t h i s case , the category of D^-algebras i s isomorphic to the 
category of d i s t r i b u t i v e P - l a t t i o e s in the sense of [Y]. 

5. Example 
In t h i s sec t ion we give a d i r ec t proof tha t tne category 

oHA of complete Heyting algebras and maps preserving f i n i t e 
infima and a r b i t r a r y suprema i s isomorphic to the category 
MSLD of D-algebras f o r a monad of sinks on the category of 
meet s emi l a t t i c e s MSL. 

At f i r s t we note tha t i f category of p lu ra l modes M i s 
defined by a given set of balanced i d e n t i t i e s ( i . e . l i n e a r 
and regu la r ) then the empty sink can be included in DA f o r 
a mode (A,F) from M. Let us note tha t a , p a r t i a l l y ordered 
se t (A,=i) i s said to be a complete Hey t ing algebra i f i t i s 
a complete l a t t i c e and fo r every subset X of A and an element 
a of A the following d i s t r i b u t i v e law holds 

i n f j a , sup X] = s u p j i n f ( a , x } ; XEX}. 

Let M = MSL be ,a category of a l l s emi l a t t i c e s and semi-
l a t t i c e homomorphisms. If (A,*)eMSL, then a subset S of A 
i s a sink i f f i t i s a lower set i . e . S = i s = | y e A ; y ^ x 
f o r some xe S}. Then the func to r part D of the monad D= (D,p,q) 
on MSL assigns to a s emi la t t i ce (A,.») the semi la t t ioe of a l l 
lower subsets of (A,*)' ( the empty se t i s inc luded) . I f 
h ; ( A , * ) — » ( C , * ) i s a s emi la t t i ce homomorphism, then Dh(S) 
i s a lower se t j y e C ; y i h x f o r some x e s } . The unit pA ass igns 
to X€A the p r inc ipa l lower set [x] = j y e A j y = x j . The co-
unit qA ass igns to a lower subset S in ( D A , D ) the se t -union 
of elements of S. 

L e m m a 5 .1 . Suppose ( ( A , » ) , K ) i s a D-algebra fo r 
a semi la t t ioe ( A , * ) . Then k(S) = sup S f o r a lower subset S 
of A. AB a consequence (A, = ) i s a complete Heyting a lgebra . 
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P r o o f . Let a = k ( S ) . Suppose x = z f o r every x e S . 
Then S c [ a ] = p A ( z ) , hence a = k ( S ) S k P,A(Z) = i d A ( a ) = z . 
Now le t xe S, then PA ( x ) = [ x ] c S » hence x = k P A ( x ) = k(S) = a. 
Thus, every subset X of A has a supremum with sup X = sup 
and {A,= ) i s a complete l a t t i c e . The eup map sup s DA — A i s 
a meet semilattice homomorphism i . e . ( A , » ) i s completely d i -
s t r ibut ive over (A ,sup ) . Final ly (A ,= ) i s a complete Heyting 
a lgebra. 

As a consequence a semilattice (A , * ) admits at most one 
D-algebra structure. 

L e m m a 5*2. Suppose (A ,= ) i s a complete Heyting 
algebra, then k : ( D A , n ) — - ( A , * ) defined by k(S) = sup ¿3 f o r 
Se DA i s a D -a lgebra structure on ( A , * ) . 

P r o o f . ( i ) Clearly k«pA = i d A . 
( i i ) In order to show that k.DK = k»qA , let S be a lower 

subset of ( D A , n ) , i ; e . S £ DDA, then k q A ( S ) = k(U S) = 
= supjsup S; s e s } . On the other hand, Dk(S) = { x e A } x ^ k ( S ) 
f o r some Se s j ; thus k Dk(S.) = supjsup S; S6 £>]•. 

I t i s immediate from the proofs of 5.1 and 5.2 that a s e -
milattioe homomorphism-h:(A,•)—^(C,*) i s a D-morphism i f f i t 
preserves suprema of a l l subsets. 
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