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A MONADIC APPROACH TO THE MODAL THEORY

In the present paper the concepts of monads and morphisms
of monads are applied to the investigation of some relations
between modals, modss and semilatiices. The key to our theoxry
is the observation that the construction of a modal of non-
-ampty subalgebras of a mode (A,F) is very similar to the con-
struction of a compact space of oclosad subsets of a compact
space. The latter produces .a Vietoris monad on tans category
of ocompact spaces [3], whioch is a restrioction of a powerset
monad to closed subssets, We introduce several monads on modes
similar to the Vietoris monad, among tham the monad of non~
-empty subalgebras and monad of sinks, The main aim of this
note is to describe modals, oomplste modals and complete di=-
stributive F-lattices as Eilenberg-Moore categories of monads
on modes, In partioular, we obtain a category of complete
Heyting algebras as category of algebras for a monad of sinks
on category of meet semilattices.

1. Preliminaries

A mode (A,P) is an algebra that is both idempotent (mean-
ing that for each element x of A, tha singleton {x} is a sub-
algebra of (A,F)) and entropic (meaning each n-ary operation

This pager is based on the lecture presented at the Con-
ference on Universal Algebra held at the Technical University
of Warsaw (wilga), May 22-25, 1986,
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2 A Kurplel-

t : A"——A in F is a homomorphism). A modal (4,F,+) is an
algebra for which the reduct (A,F) is a mode, (A,+) is a
join-semilattice, and the operatione F distributive over +.
Such structure yields a partial order = on the set A on sett-
ing x Sy iff x +y = y. A join semilattice (A,+) for whioch
every non-empty sukset has a supreaum (sup) is called a com-
plete join semilattice. An algebra structure (A,F) on a set

is said to be completely distributive over a complste join
gemilattioe structure (A,+) on A iff for each n-ary operation
fin P, 1=£j=n, and non-smpty subset X of A,

f(x1 geee ,13_1 ’Bupx’xj+1 X XX ,In) =

= lup{f(x1 ,...,xj_,l,x,xj+1,...,xn); Xe I}.

A modal (A,F,+) is called a eomplete modal iff (A,+) is a com-
plete join semilattice and {A,F) is completely distributive
over (A,+). A modal morphism h : (A,F,+)— (C,P,+) is said
to be complete if h preserves suprema of non-empty subsets,

A monad T = (T,p,u) on a category A consists of a functor
T : A —A and two natural transformations ) : IdA—>'1‘ and
4 3 T — T sueh that

U opp = 1dp =u<Tp and uedp =Tl

p 1is called the unit and « the counit of T. An algebra (4,a)
for the monad T, or briefly T-algebra, consists of an objeot
A and a morphism a : TA——A4 such that a*p, = zi.dA and a*Ta =
= asll,e. The morphism & is galled the structure of the T-alge~-
bre {A,a). A morphism h : (A,a) — (B,b) of T-algebras is a
morphism h :+ A—= B of A such that hea = beTh., We denote by
AT the category of algebras for this monad, and by UT:AT——A
the forgetful functor, with U (A,a) = A for T-algebra (A,a). .

If two monade T over A and T’ over B are given, then we
define a morphiem (G,7) : ?'— T of monads as a pair con-
sisting of a funotor G : 4 — B and a natural transformation
it TG ——GT such that
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Modal theory 3

mepe = Gp and T oup = GuempeT'ur.

Putting H(A,a) = (GA,Ga.m, ,) for T-zlgebra (A,a), H(h) =
for a morphism of T-algebras, defines a functor H: AT-—*-BT
such that U H=20G U « Conversely, every fanotor H: AT-—a-BZ
such that UTH = G UT for some G:A — B is of this form.
We denote by P the covariant powerset functor on the category
Set of sets and mappings, with PA = set of all non-empty sub-
sets of A, tor a set A, and Ph(X) the direct image of X by h,
for h:A—=B and X<A. Singletons and set unions define na-
tural transformations e:IdSGt-———P and u:PP —= P, This define
a mopnad P = (P,8,u) en sets whioch we call the powerset monad,

A mopnad P, of finite non-empty subsets is obtained by re-
stricting the data of the powerset monad to finite subsets,
We denote by o¢JSL the category of P~algebras; this is the ca-
tegory of complete join semilattices. An algebra structure
8:PA— A on a set A is a sup map with a(X) = sup X for non=-
~empty subset X of A, A morphism of P-algebras is a map which
preserves suprema of non-empty subsets, The category of Pf-al-
gebras is the category JSL of join-semilattices and semilattioce
Bomomorphisms,

For all amexplained terms concerning category theory the
reader is referred to [1].

2. Some properties of modals

Let M be a variety of modes of type P satisfying a given
set of linear identities, Here and in what follows we will
identify classes of algebras with their corresponding full
subcategories of a category of all algebras of type F and
F-homomorphisms. We denote by M1 and oMl classes (categories)-
of all modale (complete modals) whose mode reducts are in M.

It (A,P) is a mode, let SA (SfA) denote the set oif all
non-empty (finitely generated) subalgebras of (A,F). For n-ary
operation £ of P, denote by f!B1,Bz,...,Bn) the complex f=proe-
duct of elements B1,B2,....Bn of ShA. By entropicity,
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4 A Kurpiel

f(B1,...,Bn) is itself a non-empty subalgebra of (4,F). If
every subalgebra Bi is finitely generated by a finite set Xi
(ioeo Bi = clA(Xi)) then

f(B‘l'...’Bn) = clA f(x1,...,Xn).

This makes SA and Sgh into an algebra (SA,F) and (Sp4,F),

Proposition 2.1 (cf. Proposition 313 and
335 of [2])e Lot (A,F)e M, Then

{i) (SfA,F,-A-)em.. where By + B, = clA;(X1 sz) for B; =
= °1A(Xi) and finite subsets X; (1 =1,2).

(i1) (SA,F,+)e€ cMl, where for every non-empty subset Z
of Sh, sup 2 = clA(UZ).

Proposition 2.,2. If (A,F,+)e Ml and
t(x1,...,xn) is a term of type F, then for every a;,c..,8,
from 4, t(a.l,...,an)é 8q + ese t+ 80

Proof. It suffioces to apply sum=-superiority Lea~
ma 318 of [2] and induction on degree of t.

Proposition 2.3. If B = clA(X) is a subalge=-
bra of a modal {A,F,+), generated by a non-empty subset X
of A, and ae A then B is upper bounded by a iff X is upper
bounded by =a.

Proof. The "only if" part is obvious. Conversely,
if beB, thern b = t(x1,...,xn) for some term t and X,,...,x ek
Then by 2.2, b3 xy + «eo + X 52,

This proposition gives us a motivation to consider the
sup maps sup : SA—= A and sup : SfA—>A for a complete modal
and modal respectively,

Corollary 2e4.

(1) If (A,¥,+)e M1 then tor every Be SpA with B = el,(X)
and X-finite, sup B exists in A and sup B = sup X. Moreover,
the sup map sup : Sph —=4 is a mocal homomorphism.

(ii) If (4,F,+)e cMl, then for every Be SA with B=cl,(X),
sup B = sup X, and sup : SA—= A is a compleis modal homomor-

phism,
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Modal theory 5

Proof. We prove only the first part of Corollary.,
Let us observe that sup : Sp4 —= 4 is well definsd, by 2.3..
Let f be an n-ary operation and B, = olA(Xi)e Sph for a finite
subssts X, (i = 1,¢e09n)s Then, using Proposition 2.3

sup f(B1,...,Bn) = sup clA(f(X1;...,Xn)) = sup(X1,...,Xn) =

sup{f(x1,...,xn); x;€ X; for 3= 1,...,n} =

f(sup Xy y8up Zgyese,ysup X)) = f(sup Byyess,sup Bn).

3. Monads of subalgebras over modes

We introduce a modal monad §f and a complete modal monad S
on the catsgory M of modes. We show that subalgebras generatad
by subsets provide a morparism of monads, from ths powsrset
monad P to the modal monad S, and we show that the categorics
of S~algebras and cMl are isomorphio,

Proposition 3.1. If (A,F)e M, then putting
QA(x) = {x} for xe A defines a homomorphism QA:(A,F)-———(SA,F),
and set unions of subalgebras define a homomorphism
yA:(SSA;F)——*-(SA,F). Moreover,(AA(C) = clA(U Z) if C =
= CISA{CIA(I)"XG Z} for some subset Z of Pa,

Proof. Since (4,F) is an idempotent alge¥ra, it
follows that p, ie well-defined homomorphism. If K is a sub-
algabra of SA, then for every n~ary operation f of F and
XiyeeesXy € U K there are subalgebras ByseeeyB e K of A such
that x;e¢ By for 4 = 1,...,n, and then f(x1,...,xn)e
€ £(By,..+,B,) €K, Thus U K is a subalgebra of (4,F) and
yAxSSA-—*-SA is well-defined map, Directly from Corollary
2.4{ii), for a oomplete modal {SA,F,+), we obtain that My
is a complete modal homomorphism, ‘

If h:(A,P}— (C,F) is a homomorphism of modes, then the
direoct image Ph maps subalgebras into subalgebras. We define
Sh as the restriction of Ph to subalgebras, and ws note that

Sh(f(B1,.;.,Bn)) = f(Sh(B1),...,Sh(Bn))

i
N
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6 A.Kurpiel

for every n-ary operation f of F and B1,...,Bne SA. This shows
that Sh is a complete modal homomorphism, Thus, we obtain
a fanctor S:M— M,
Theorem 3.2, The functor S and the maps p, and
“y define a monad S on the category M, and subalgebras gene~
rated by subsets in modes define a morphism (U,cl):P — §
of monads, where U:M — Set is a forgetful functfor with
U(A,F) = A for a mode (4,F). _
Proof. The first part follows immediately from the
corresponding facts for the powerset monad P on sets, by re-
striction to. subalgebras., If h:(4,F)— (C,F) is a mode homo~-
morphism, then Sh{el,(X)) = ol,(Pa(X)), thus ¢1, is natural
in (A,F). In our case, the two conditions for a morphism of
monads become

cl,*s, = Up, and cl,-u, = Uy, clg,*S ol, for a mode (4,F).

The first condition is clearly valid, If 2 is a non~empty sub-
set of PA and Be SA, then by Corellary 2.4 we have cl,(UZ)SB
iff vZcB iff clA(x);B for every XeZ iff C<B for avery
Ce olg,{e1,(x)3 xez} 1rf Uelg, {e1,(X)5 xe2}sB and the
second condition is also satisfied,

Remark 3.3, The modal monad Sy is obtaihed by
restriction of Proposition 3.1 and Theorem 3.2 to the fi-
nitely generated subalgebras. In this case, the pair (U,ocl)
forms a morphism of monads from P, to S,. Note that the monad
Sy is induced by a pair of adjoint functore with U': M1— M
-~ the forgetful functor - as a right adjoint (¢f. Theorsm 351
of [2]).

Corollary 3.4, Every S-algebra (Sp-algebra)
((A,F),k) is a complete join-semilattice (join-semilattice)
with sup X = k clA(x) for non-smpty (finite) subset X of A,
Morphisms of S-algebras (Sf-alg-ebras) preserve these supre-
ma.

Proof. The morphism (U,cl) of md>nads induces a fun~
tor HMS——- Setf = ¢JSL (cf. Preliminaries).
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Modal theory 7

Theorenm 3¢50 There 1s an isomorphism of cate-
gories !§ (!Sf) and eMl {M1) which preserves undsrlying mode
siructure and underlying complate join-semilattice (join-se-
milattice) structurs,

Proof. We define a fanctor R:g?-—.-gg; as follows:
R{!&,F),k} = (A,P,+) cf. 3.4 on objeots and R(h) = h on mor-
phisne, Tt is sasy to see that R is well-dofined and injective
om 29ie2v8. We show tha*t R is surjective on objects. Let
(4,F,+je clfl, then the sup map sup : SA—= A is a mode homo-
zorphisn, by Z.4(ii) and it preserves all existing suprema.
Wow eonmnsicder two conditions 8up-p, = idA and supeSsup =
= SUp‘W,e

The first is obvious, Let Ce SSA with C=clg,{c1,(x); XeZ}
for some non-smpty subset Z cf PA, Using 2.4(ii) and 3.2 we
have

sup yA(C) = sup clA(U Z) = sup Uy 2 = sup {sup X3 Xe Z} =

sup{sup clA(X); Xe,i} = sup clSA{sup clA(X); Xe Z}=

sup Ssup clSA{c'lA(X); Xe Z} = sup Ssup C.

As every Ce SSA is of the form olSA{clA(X); Xe Z} for some 2
(for example Z = C), we see that ((A,F),sup) is an S~-algebra.
Prom 3.4 it follows that R{{4,F),sup) = (A,F,+)e

We show now that R is full and faithful., The functor pre-
serves underlying maps, thus it is faithtul., Now consider
a morphism h:R({A,F),k) —= ({C,F),1) in cMl for S-algebras
(tA,?),k) and ((C,F),1). Using the fact that h is a complete
modal homomorphism and 3.4, we have hk(B)‘= h sup B = :
= sup Ph(B) = sup Sh(B) = 1 Sh(B) for every B eSA., Thus R is
fall,

In the similar way one ¢an prove that the categorises !§f
and M1 are isomorphio.

We note some consequences of Theorem 3.5:

Corollary 3.6 Let (A,F)e M and (A,+)e
€ ¢JSL{(A,+) € JSL). Then (A,F,+)e cMl ((A,F,+)e M1) if and
only if the following two conditions holds:
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8 A.Kurpiel

(1) sup X = sup clA(x) for every non-smpty (finite) sub-
set of A,

{i1i) the suprema of non-empty (finitely generated) sub-
algebras define a mode homomorphism sup:(SA,F)—= (A,F)
(sup:(SfA,F)——*-(A,F)).

4. Monads of sinks over modes

We show that sinks in modes define a monad D on modés and
we introduce ithe ocategory of D-algebras.

A1l modes (A,F) in this seection are plural (l.e. P is
non~ampty and an arity of every f of P is at least two).

Definition 4.1. A subset S of A 15 mald to
be a sink 1f for every n-ary operation f and every x1,...,xneA,
the following holds: if x;e S for some 1 =1,00eyn them
f(x1,...,xn)e S. Directly from the defining property of sinks
and Proposition 366 of [2] we have

Proposition 4.2, If (A,F) is a mode, then

(i) the union and intersection of sinks of (A,F) is also
a sink,

(ii) the set of all non-empty sinks DA of (A,F) is a
complete submodal of (SA,F,+) with f(s1,...,Sn) = 8,0 ...08
for every n-ary operation f and S1,...,sne DA. Morsover,
(DA,F,U ) is a complete distributive P-lattice i.e. (Da,F)
is an F-gemilattice and both partial orders = p and £ oo-
incides (cf. [2]).

For a given element a of (A,F) let [a] denote the prim-
¢ipal sink generated by a. One sees easily that the map
p,:A—=DA which assigns to every ac A the principal sink [a]
is a mode homomorphism, Morsover, every sink S in (A,F) has
a8 unique form

n

5 = U{[als acs}.

Proposition 4.3. For every mode homomorphism
h:(A,F) —(C,F), the map Dh:(DA,F,u) — (DC,F,U) with
ph(S) = U{[h(a)]; ae S} for Se¢ DA iz a complete modal homo=-
morphism which preserves finite infime,
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Modal theory 9

Proof. Follows from the Proposition 368 of [2].

Let qA:DDA—-DA denote the set-union map for a given
mode (4,F).

Theorem 4.4, The functor D:M —=M, defined above,
and the maps q, and p, define a monad D = (D,p,q) on M, and
sinks generated by subalgebras define a morphism (Idu,tp)a§—>g
of monads, '

Proof, The first part of theorem follows easily
from 4,3 and the definition of g. Note that 9, 1s a complete
modal homomorphism which preserves finite intersecotioms. For
every mode (A,F) from M, we define ¢,:SA —=DA as follows:
¢A(B) =U{[b]; be B} for every subalgebra Be SA. It is easy
to pee that this map is natural in (A,F) and that both con-
ditions of monad morphism are satisfied.

Thus we obtain a functor H:M° —= M°, given by H((4,F),k) =
= ((A,F),k.cpn) for an D-algebra ({(4,F),k), so every D-algebra
is a complete modal such that

k(U{[b]; veB}) = sup B

for every subalgebra Be SA. Moreover, k preserves all non-empty
suprema and finally k(S) = sup S fer every sink Se DA,

Proposition 4,5, For every D-algebra
{(a,F,k), k:DA —= A preserves finite infima.

Proof. A D-algebra structure k of (A,F) must be
of the form sup, by remarks above. In order to show that
sup S1 n 82 = inf{aup 81, sup 82} for every S1,S2 from DA,
observe that Dsup([S]) = [sup S] and q,([s]) = s for every
S e DA. Note first that sup S1ﬂ 82 is a lower bounded of
sup S1 and sup 82. Now suppose that ze A is another lower
bounded of them, then sup S; = sup[z]u [sup S;] for i = 1,2,
Using the condifion supeDsup = supeq, we havse

sup S1n S2 = sup qA([S1] n [52-.]) =

= sup Dsnp[_[_z] U [sup 511] n I:[z]u [sup 82]] =
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10 A.Kurpiel

= sup([z] u [sup 5,]) N ([2] [sup s,]) = sup Dsup([[{ﬂLJ[S1nsz])=
= sup qA([[z]]U [s,n8,]) =
= sup[z] U (540N S,) = sup{z, sup SqN 82}

and then 2 = sup S, N S0
Theoren 4,6, For a complete modal (4,F,+), the
following are equivalent:
{i) The sup map sup : DA— A is a D-algebra structure,
(ii) (4,F,+) 1is a complete distributive F-lattice.
Proof. By 4.5, the sup mep preserves finite infima
for D-algebra ((A,F),sup). Hence for every n-ary operation
f and x1,...,xneA we have

F{Xyp0eesky) = f(sup[x1],...,sup[xn]) =

sup £([xq] yoees[x,]) = sup[x;]n .o nfx ] =

]

inf{sup[xﬂ ,,~..,[sup[xn]} = inf{x1,...,xn} o

Thus {i) implies (ii). If (ii) is satisfied, then the map
sup ¢+ DA—= A is a well-defined complete modal homomorphism,
It remains to show that supep, = :i.dA and supsDsup = Bupeq,.
The first condition is obvious, If S is a sink in (Da,F),
then Dsup(S) is a sink in (A,F) generated by the elements
sup S tor Se S and

sup Dsup(S) = eup{sup S; Se §}.

On the other hand, sup g,(S) = sup{l_S). This implies that
the second condition is also satisfied,

Corollary 4¢70 For a category of plural mo=
des M, the category of D-algebras _ILD is the same as the tats~-
gory of complete distributive F-lattices whioh mode reducts
are in M.

Proof. This follows immediately from Theorsm 4.6
for objects. Ons sees easily that a mode homomorphism is
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Modal theory 1

a morphism of D-algebras iff it is a complete modal homomor-
phism of corresponding complete distributive F-lattices.
Remark 4.8, Similar to the modal monad §f we .,
can consider the monad pf of finitely generated sinks., In
this case, the category of Df-algebras is isomorphic to the
category of distributive P-lattises in the sense of [2].

5. BExample
In this section we give a dirsct proof that tne category

oHA of complete Heyting algebras and maps preserving finite
infima and arbitrary suprema 1is isomorphic to the catsgory
MSLD of D=algebras for a monad of sinks on the category of
meet semilattices MSL.

At firast we note that if category of plural modes M is
defined by a given set of balanced identities {i.e. linear
and regular) then the empty sink can be includad in D4 for
a mode (A,F) from M. Let us note that a, partially ordered
set (A,2) is said to be a complete Heyting algebra if it is
a complete lattice and for every subset X of A and an element
a of A the fellowlng distributive law holds

inf{a, sup X} = aup{inf{a,x}; Xe I}.

Let M = MSL be_a category of all semilattices and semi-
lattice homomorphisms, If (A,*)e MSL, then a subset S of A
is a sink iff it is a lower set 1.8, S = {S ={yeA; y£x
for some x¢ S}. Then the functor part D of the monad D= (D,p,q)
on MSL assigns to a semilattice (A,*) the semilattioce of all
lower subsets of (A,*) (the empty set is included). If
bi(A,*) —~ (Cy*) is a semilattice homomorphism, then Dh(S)
is a lower set {yec; y< hx for some xeS}. The unit Py assigns
to x € A the principal lower set [x] = {yeA; yéx}. The co-
unit q, assigns to a lower subset S in {DA,N) the set-union
of elemsnts of S,

Lemma 5.1. Suppose {(4,+),k) is a D-algebra for
a semilattice (A,+), Then k(S} = sup S for a lower subset S
of A, A8 a consequence (A,5) is a complate Heyting algebra.
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12 A.Kurpiel

Proof, Let a = k({(S}). Suppose x=z for every xe S,
Then SS[2] = p,(2), hence a = k(S) Sk p,{z) = id,(z) = 2.
Now let xe¢ 5, then p,(x) = [x]< S, hence x = k p,(x)=k(5) =a,
Thus, svery subset X of 4 has a supremum with sup X = sup {X,
and {4,5) is a complete lati{ice. The sup map sup : DA — A 18
a meet semilattice homomorphism i.s. {A,*)} is completely di=-
stributive over (A,sup). Finally (A,S) is a complate Heyting
algebra.

As a conssquence a semilattice (A,*) admits at most one
D~-glgebra structure, ,

Lemma 5¢2. Suppose (4,5) is a complete Heyting
algsbra, then k:(DA,N)—=(A,*) defined by k(S) = sup § for
Se DA is a D-algebra structurs on (4,%).

Proof, {i) Clearly kep, = id,.

{ii) In order to show that keDK = k'qA, let S be a lower
subset of (DA,N), iie. Se€DDA, then k q,(5) = k(U §) =
- sup{sup S; Ses}. On the other hand, Dk(§) = {xeA; x £k(S)
for some Se_§}; thus k Dk(S) = sup{sup S; Se §}.

It is immediate from the proofs of 5.1 and 5.2 that a se~
milattioe homomorphism h:{4,+)—=(C,*) is a D-morphism iff it
preserves suprema of all subsets, '
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