DEMONSTRATIO MATHEMATICA

Vol. XX No 1-2 1987

Leszek Rudak

DEFINITION OF PARTIALITY

We call definition of partiality a condition whioa is
satisfied in a class of partial algebras if the class contains
no nontrivial total algebras, In other words one can say that
the condition of partiality is a condition, which cannot be
satisfied by a nontrivial total algebra.

The aim of this paper is to foramulate the definition of
partiality for a variety (i.e. an equationally definable
class) of partial algebras, We introduce this definition in
the form of a Mal’cev condition,

When dealing with equations in partial algebras one must
decide what kind of equations will be considered. We have
ohosen s0 called weak equations. For strong and existence
equations our problem is easily solvable (see end of tais
paper),

A signature is a pair (F,nD>with F a set of operation sym-
bels and n a mapping from P into the set of hnonnegative
integers, A = (A,(f=:fe F))> is a partial algebra of signature
{(F,n> if A is a nonempty set and £t a partial n{f)-~ary ope=-
ration in A, Fix a signature {F,n). In the following we deal
with partial algebras of signature (P,n) only and thus the
term "algebra™ will always be used in the sense "partial alige-
bra of signature {F,n>, If for some reasoh we will need an

This paper is based on the lecture presented at the Con=-
ference on Universal Algebra held at the Technical Universiity
at Warsaw (Wilga) May 22-25, 1386,
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2 L.Rudak

algsbra in the usual sense we will use the teram "total alge-
bra¥. Ws call an algebra discrete if all its operations are
empty. If p is a polynomial symbol (see e.g. [3]) pd will
denote the partial function induced in an algebra A by p and
don(pi) will be its domain., In the case that p is n-ary and
g_edom(pAJ where a 1is a n-tuple of elements of A, we will
say that p is defined on a in the algebra A,

Definition. Let p and q be n-ary polynomial
symbols and let A = <A,(fA:fe F)> be an algebra, An squation
p =g is a weak esquation in an algebra A (or is weakly sa-

tisfied in A), in symbols p z q (A=p z q), if for any
n-tupla a of elemants of A we have: if gedom(pi) ndom(qi‘-)
then pi(a) = oi{a).

Let for a class of algebras K:

Eq'K ={p!q : Al=p'=’q for all AeK}.

A class of algebras V is a WE-variety if it is the class
of all algebras satisfying all weak equations from a set E
of eguations, that 1is

v ={A_: A}:p!q for all p!qu}.

Exampla. Let A= (A,(fA:feFD be an algebra and
p an neary polynomial symbol, Let x be a variable with no
occurence in p, Then if A is nontrivial we have: Ak:p!x
iff dom(pé) = . Indeed, assume _a_edom(pé) and let b, ¢ be
any slsments of A with b # c. Then we have p-A-(g) ='b and
pA(a) = ¢, a contradiction. The "if" part is obvious. a

It is easy to see that all weak equations reduce to usual
equations in total algebras. It means that if A is a total
algebra then A= p‘:'q 1ff A=p = q. Hence ws have:

Proposition 1, IfV is a WE-variety then
the class P(V) = {Q_-: AecV and A is a total algebra} is a va-
riety of total algebras.

Proposition 2, If V 18 a WE-variety, then
all one-~elerents total algebras are in V, : ]
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Definition of partiality 3

It is easy to see that in every weak variety there 1is a
discrete algedbra; it follows from the observation that eny -
discrete algebra satisfies all weak equations exept, the
following: x‘ly with x and y different varisbles and any dis-
crete one-eloment algebra satisfies all weak equations.

In the example above we have shown that it is possible
to express the fact that a polynomial function is never de-
fined, except possibly for the trivial one-slement algebras
using a weak equation, We can consider an equation of the
form p ¥ x with x a variable not in p, 88 a definition of
pdrtiality, but it is not enough, There ars varieties contsin-
ing no nontrivial total slgebras - such that no equation of
the above form is satisfied in any algebra in this variety.

To obtain a full ocharascterization of WE-varieties witk
no nontrivial total algebras we need the following two lemmas.

Lemma 1, Let E = Equ for some WE~variety V. Then
an equation p z q is provable from E using Birkhoff’s rules
(see [1]) iff it is provable from E using transitivity as the
only rule. .

Proof. Let e,,...,0, be a proof of p ¥ q from
E = Bq,V (with V a WE-variety), i.e. o,€E, e, =p % q and
for 1 = 1,2,3,4ee,4n e;€F or is corollary of Birkhoff’s rule
with premises in {e{,...,ei_1y. We show how to change this
proof to get one with transitivity as the only rule.

Let o, De the first equation in the proof of p g_g, such
that e, ¢ E and is obtained trom previous equations by Birk-
hoff’s rules without transitivity (if there is no such ei
then either p ¥ Q€ B or 8,,00040), is the required proof; in
both cases we do nothing), If e, is obtained by substituting
a term r(x) for a variable y throughout an equation e;, for
some i<k, we have ey = p’(y) ¥ g’ (y) and there are terms
BiseceyBy such that

p' (y) : 91‘7’.'51(7) M 52(3)’0'005-(7) : q'(y)e B,
Henoe

p! (r(x))%8, (r(x)),8,(r(x) )Eaz(r(x) JyosesBy(r(x))%q’ (r(x)) e B
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4 L.Rudak

since F is closed under substitution. We include this sequence
of equations into the proof of p g q as a proof of 8y by tran-
sitivity.

For other Birkhoff?s rules an analogous argument will do
since E is closed under all Birkhoff®s rules but transitivity
(see [4]).

FollowisF the deseribed procedure we get the required
proof of p = q which completes the proof of the lemma since
the "if%" part is obvious. o

Lemma 2. Let V be a WE=variety which contains no
nontrivial total algebras, Then there is a sequence of n binary
polynomial symbols PysPorecesby for some natural number n such
that the following equations are in Equ:

91(xv7)9p1(xs7) g:pz(x,y),...,pn(x,y) y Y

g

(%) x
where x and y are different variables,

Proof. Let x and y be different variables., Let 4
be a total algebra in V. By assumption it is irivial so there
is a sequence of equations in the set Bq'v from which x = y°
can be deduced using all Birkhoff’s rules for total aslgebras,
By Lemma 1 we can choose this sequence to be as follows:

{x *) X = PPy PpsesesPy =¥ € BaV

Now we will substitute y for all variables exoept x in all
equations {xx)} to obtain

X = P1(xv7)op1(x93) = Pg(xoy)OOOOvPR(xty) = Y.

Then p,sPpseessP, 18 required sequence. o

Now we are ready to state the main theorem: definition of
partiality in the form of Mal’cev condition.

Theorem., A WE-varietw V contains no nontrivial
total algebras iff there are two polynomial symbols p (unary)
and ¢ (binary) such that

o(x) ¥ x,q(x,3) ¥ 3,p(x) = alx,3) e Ba ¥

where x and y are different variables,
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Definition of partiality 5

Proof, Let x and 3y be different variables, The "if®
part is obvious since if A is a total algedbra in V then we
have A=x = p(x), A= p(x) = q(x,y) and Ak=q(x,y) = y. Then
by transitivity Al=x = y. So A is trivial,

To prove the "“only if" part let p1(x,y),...,pn(x,y) be
the sequence of binary polynomial symbols which exists by
Lemma 2. Let m be the maximal number such that the variabdle
y does not occur in Py for i<m+1 (if there is no such number
i,e. if y occurs in Py then take m = O and consider the poly-
nomial symbol p, = x)+ Wo claim that

P(x) Epm(\pm_1(.'op1(1)ooo)) and
Q(x.y) = P.H_a‘(X,pm+2(x,...pn(x,y)...))

are the required polynomial symbols,
For the proof assume that AeV and ae¢ A 18 such that
ae dom(pﬂ). Then we have

’ A A A
-9 dOﬂl(p%)’P%(a’ € dom(p'z'),...,pﬁ_ﬂ...p?(ah.-) € dom(p;).

Using equations (*) from Lemma 2 we infer that p%(a) = a, thus
ac dom(p%), and pé‘(a) = p%(a) = a again by Lemma 2., In the
same way we have a edom(pB) and p3(a) = M, Following this
procedure we finally cbtain aedom(pi) and p;(a) = g, Sinee a
is arbitrary we have: if aedom(pA) then pi(a) = a by con-

struction of p. So A =p(x)¥x,
On the other hand if (a,b) ¢ dom(q-‘-‘-) we have: {a,bde

€ don(pﬁ(x,y)) and by equations (%) from Lemma 2 pﬁ(a,b) = b,
4 A A

Further {a,b> = = {a,p,(a, b)> e dom(p;_1) and p,_ 1(a,b) =

= pn(a,b) = b again by Lemma 2. As before after n-m steps we

obtain {a,b> ¢ dom(pm+1) and pm+1(a b) = b. So we have proved

that if {a,b) ¢ dom(qA) then qé(a,b) = b, So A= q(x,3) %y,
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Moreover i u,” ¢ A are such that aedom(p'&) and {(a,h e

€ dom(qi) we can prove that ae dom(pﬁ) and {a,b> € don(pa;1)
using a similar argument. So we get

A
pila} = phla) = p,q(a,b) = ak(a,n)

by equations (») from Lemma 2 and constructlon of p and g.
Since a, b are arbitirary we have: Ak p(x) ¥ q(x,y) whiea com=-
plates the proof, 0

Remarks., For an ejustion p = g we say that p = q
is a strong in an algsbra 4 if it is a weak equation and
dom(pé) = dom(qé) (see [5])e We say that an equation p =
is existence equation if both pA and qA are sverywhere definaed
and equel (see [2]). It is easily seen that for strong and
existence equations both Proposition 1 and 2 hold.

In all SE- and E=-varieties (classes defined by strong
and existence equations respectively) which contain at least
one nontrivial algebra there is a nontrivial total one. The
situation with disorete algebra is somewhat more complicated.
Thers is suc an algebra in an E-variety iff it is ths variety
of all algebras of the same typs, For SE-varieties we have:
there is no discrete algebra in a variety V iff there is a
strong equation of the form p = x (where p is not a variable)
which holds in all algebras in V.
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