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DEFINITION OF PARTIALITY 

We c a l l d e f i n i t i o n of p a r t i a l i t y a c o n d i t i o n whioh i s 
s a t i s f i e d i n a c l a s s o f p a r t i a l a l g e b r a s i f the c l a s s c o n t a i n s 
no n o n t r i v i a l t o t a l a l g e b r a s . I n o ther words one can say t h a t 
the c o n d i t i o n of p a r t i a l i t y i s a c o n d i t i o n , which cannot be 
s a t i s f i e d by a n o n t r i v i a l t o t a l a l g e b r a . 

The aim of t h i s paper i s t o formulate the d e f i n i t i o n of 
p a r t i a l i t y f o r a v a r i e t y ( i . e . an e q u a t i o n a l l y d e f i n a b l e 
c l a s s ) o f p a r t i a l a l g e b r a s . We in t roduce t h i s d e f i n i t i o n i n 
the form of a Mal 'cev o o n d i t i o n . 

When d e a l i n g with equat ions i n p a r t i a l a l g e b r a s one must 
decide what kind of e q u a t i o n s w i l l be c o n s i d e r e d . We have 
ohosen so c a l l e d weak e q u a t i o n s . For s t r o n g and e x i s t e n c e 
e q u a t i o n s our problem in e a s i l y s o l v a b l e ( s e e end of t h i s 
p a p e r ) . 

A s i g n a t u r e i s a p a i r < F , n > with F a s e t o f o p e r a t i o n sym-
b o l s and n a mapping from F i n t o the s e t of nonnegative 
i n t e g e r s . A * ( A , ( f ~ : f e ? ) ) i s a p a r t i a l a l g e b r a o f s i g n a t u r e 
< F , n > i f A i s a nonempty s e t and f— a p a r t i a l n ( f ) - a r y ope-
r a t i o n i n A. F i x a s i g n a t u r e < F , n > . I n the f o l l o w i n g we deal 
wi th p a r t i a l a l g e b r a s o f s i g n a t u r e < F , n > only and thus the 
term " a l g e b r a " w i l l always be used i n the sense " p a r t i a l a l g e -
b r a o f s i g n a t u r e < F , n ) ' ' . I f f o r some r e a s o n we w i l l need an 

This paper i s based on the l e c t u r e presented at the Con-
f e r e n c e on U n i v e r s a l Algebra held a t the T e c h n i c a l U n i v e r s i t y 
at Warsaw (Wilga) May 22-25, 1986 . 
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2 L.Rudak 

algebra in the usual sense we w i l l use the term " t o t a l a lge-
bra" . Ws c a l l an algebra discrete i f a l l i t s operations are 
empty. I f p i s a polynomial symbol (see e . g . [3J) p~ w i l l 
denote the par t ia l function induced in an algebra A by p and 
do«(p-) w i l l be i t s domain. In the case that p i s n-ary and 

A 

aedom(p-) where a i s a n-tuple of elements of A, we w i l l 
say that p i s defined on a. in the algebra A, 

D e f i n i t i o n . Let p and q be n-ary polynomial 
symbols and l e t A_ = <A, (f— sf e F)> be an algebra. An equation 
p = q i s a weak equation in an algebra A. (or i s weakly sa-
t i s f i e d in A.), in symbols p = q (A. 1= p = q ) , i f for any 
n-tupla a. of elements of A we have: i f aedomfp—) n dom(q—) 
then p-( a J = q^{a) . 

Let for a c lass of algebras Ks 

EqwK = { p = q : A * = p ? q for a l l A_€ k } . 

A c lass of algebras V i s a WK-variety i f i t i s the c lass 
of a l l algebras sat i s fy ing a l l weak equations from a set E 
of equations, that i s 

V = { A. : A J = p 2 q for a l l p?q € e } . 

E x a m p l e . Let A = <A, ( f - : f e F)> be an algebra and 
p an n-ary polynomial symbol. Let x be a variable with no 
occurence in p. Then i f A_ i s nontr iv ia l we have: A^t=p*x 
i f f dom(p-) = 0 . Indeed, assume aedom(p^) and l e t b, c be 
any elements of A with b 4 c . Then we have p-(a) = b and 
p-(a) = c , a contradict ion. The " i f " part i s obvious. • 

I t i s easy to see that a l l weak equations reduce to usual 
equations in t o t a l algebras. I t means that i f A i s a t o t a l 
algebra then A t = p ? q i f f A_N=p = q. Henoe we have« 

P r o p o s i t i o n 1 . I f V i s a WB-varietythen 
the c lass T(V) - |A t AeV and A i s a t o t a l a lgebra] i s a va-
r i e t y of t o t a l algebras. 

P r o p o s i t i o n 2* I f Y i s a WE-variety* then 
a l l one-elements t o t a l algebras are in V. • 
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Definition of partiality 3 

It is easy to see that in every weak variety there is a 
discrete algebra; it follows from the observation that eny • 
discrete algebra satisfies all weak equations exept, the 
following: x = y with x and y different variables and any dis-
crete onie-element algebra satisfies all weak equations. 

In the example above we have shown that it is possible 
to express the fact that a polynomial function is never de-
fined, except possibly for the trivial one-element algebras 
Using a weak equation. We can consider an equation of the 
form p = x with x a variable not in p, as a definition of 
partiality, but it is not enough. There are varieties contain-
ing no nontrivial total algebras - such that no equation of 
the above form is satisfied in any algebra in this variety. 

To obtain a full characterization of WE-varieties with 
AO nontrivial total algebras we need the following two lemmas. 

L e n n a 1. L e t E = Eq_V for some WE-variety V. Then w 
an equation p = q is provable from E using Birkhoff's roles 
(see [j]) iff it is provable froto B using transitivity as the 
only rule. iW 

P r o o f . Let e^,...,en be a proof of p = q from 
E » BqwV (with V a WE-variety), i.e. e ^ S , e Q = p = q and 
for i = 1,2,3,...,n e ^ B or is corollary of Birkhoff's rule 
with premises in {e^-,... We show how to change this 
proof to get one with transitivity as the only rule. w 

Let e^ be the first equation in the proof of p '= <5, such 
that B and is obtained from previous equations by Birk-
hoff's rules without transitivity (if there is no such ê . 

w 
then either p * qe E or 81t...,«n is the required proof; in 
both cases we do nothing). If e^ is obtained by substituting 
a tern r(x) for a variable y throughout an equation e., for 
some i<k, we have e^ = p'(y) * q'(y) and there are terms 
s1,...ysa such that 

p'(y) - s^yjf^fy) « s2(y),...,sB(y) 2 q' (y)e B. 
Henoe 

p; (r(x) )i8l (r(x)) ,Bl (r(x) )£s2(r(x)).. ,sm(r(x) )«q' (r(x)) e E 
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4 L.Rudak 

since E i s closed under s u b s t i t u t i o n . We include t h i s sequence W 
of equations i n t o the proof of p * q as a proof of efc by t r a n -
s i t i v i t y . 

For o ther Birkhoff*s r u l e s an analogous argument w i l l do 
sicoe E i s closed under a l l B i r k h o f f ' s r u l e s but t r a n s i t i v i t y 
(see [ 4 ] ) . 

Following the described procedure we ge t the requi red 
proof of p = q which completes the proof of the lemma sinoe 
the " i f " part i s obvious. • 

L e m m a 2. Let V be a WE-variety which conta ins no 
n o n t r i v i a l t o t a l algebras. Then there i s a sequenoe of n binary 
polynomial symbols p.j, p g , . . . , pn f o r some n a t u r a l number n suoh 
tha t the fol lowing equat ions are i n Bq„V: w 

W W ŵ  
(*) * = p - j ) » p . | ( x » y ) * P 2 ( x » 7 ) » * " » P n ( * . y ) * 7 
where x and y are d i f f e r e n t v a r i a b l e s . 

P r o o f . Let x and y be d i f f e r e n t v a r i a b l e s . Let A 
be a t o t a l a lgebra i n V. By assumption i t i s t r i v i a l so the re 
i s a sequence of equations i n the se t i<JwV from whioh x • y 
can be deduced using a l l B i r k h o f f ' s r u l e s f o r t o t a l a lgeb ras . 
By Lemma 1 we oan choose t h i s riequfnce to be as fo l lows : 

(**) * = P.,1#Pi= P ^ . ' v . P ^ 3 y e BqwV 

Mow we w i l l s u b s t i t u t e y f o r a l l v a r i a b l e s exoept x i n a l l 
equat ions (*•*) to ob ta in 

x = p.| (x.y) »P-| - p 2 ( x , y ) , . . . , p n ( x , y ) y . 

Then p 1 , p 2 , . . . , p n i s requi red sequenoe. D 

Now we are ready t o s t a t e the main theorem: d e f i n i t i o n of 
p a r t i a l i t y i n the form of Mal'cev cond i t ion . 

T h e o r e m . A WB -var ie ty V conta ins no n o n t r i v i a l 
t o t a l a lgebras i f f there are two polynomial symbols p (unary) 
and q (binary) such t h a t 

p(x) * x , q ( x , y ) £ y ,p (x ) = q(x ,y)eBq w V 

where x and y are d i f f e r e n t v a r i a b l e s . 
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D e f i n i t i o n of p a r t i a l i t y 5 

P r o o f . Let x and y be d i f f e r e n t v a r i a b l e s . The " i f " 
par t i s obvious s ince i f A i s a t o t a l a l g e b r a i n V then we 
have A t = x = p ( x ) , A t=p (x ) = q ( x , y j and A t = q ( x , y ) = y . Then 
by t r a n s i t i v i t y A.t= x - y . So A i s t r i v i a l . 

To prove the "only i f " part l e t p 1 ( x , y ) , . . . , p n ( x , y ) be 
the sequenoe of b ina r y polynomial symbols which e x i s t s by 
Lemma 2 . Let m be the maximal number such tha t the v a r i a b l e 
y does not occur i n p^ f o r i<m+1 ( i f the re i s no such number 
i . e . i f y occurs i n p̂  then take m = 0 and cons ider the po l y -
nomial symbol = Ve c l a im tha t 

p(x) = p m ( p m _ 1 ( . . . p 1 ( x ) . . . ) ) and 

q ( x , y ) = p B + 1 ( x , P B + 2 ( x , . . . p n ( x , y ) . . . ) ) 

are the r equ i r ed polynomial aymb'ols. 
For the proof assume t h a t AeV and a 6 A i s such tha t 

a e d o m ( p ^ ) . Then we have 

A A A A A A 
a g dom(p^-),p=(a) e dom( p g ) . . » p " ^ ( . . . p ^ " ( a j . . . ) 6 dom(p~). 

A 
Using equa t ions ( * ) from Lemma 2 we i n f e r tha t p^(a) 3 a , thus 

aedom(p^") f and p£"(a) = p^"(a) = a a g a in by Lemma 2 . In the 
A A same way we have a edom(pi) and Po(a) = a . Fol lowing t h i s 

A A 
procedure we f i n a l l y obta in aedom(p m ) and p~(a) »= a . Sinoe a 

i s a r b i t r a r y we have : i f aedom(p^) then p—(a) = a by con-

s t r u c t i o n of p. So A (= p ( x ) ? x . 
On the other hand i f <a ,b> e dom(q—) we have : < a , b > e 

A A e doa (p~(x , y ) ) and by equa t ions ( * ) from Lemma 2 p~(a ,b) = b . 
A A A 

Fur ther <a,b> = <a ,p~(a ,b )> e dom(p~_.j) and p~_.j(a,b) * 

= p^ ( a ,b ) • b a g a in by Lemma 2 . As before a f t e r n-m s t e p s we 
A A 

ob t a in <a ,b> e dom(p~+^) and P B + 1 ( a »b ) = b . So we have ptroved 

t h a t i f <a ,b> e dom(q-) then q - ( a , b ) = b. So A*= q ( x , y ) I y . 
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6 L.Rudak 

Moreover i:" -i,' £ A are auch that aedom(p-) and<a,b)>G 
A A A 

6 dom(q—) we car. prove that aedom(-p~) and < a , b > e dom(p~+>)) 
using a s imilar argument. So we get 

p*(a} = p j (a) = P5 + 1 (a ,b ) = q±(a ,b) 

by equations (*-)• from lemma 2 and construction of p and q. 
Sines a, b are arbitrary we have: A t= p ( x ) 2 q ( x , y ) which com-
platas the proof. D 

R e m a r k s . For an equation p = a we say that p = q 
i s a strong in an algebra A. i f i t i s a weak equatiDn and 
dom(p^) = dom(q-) (see [ 5 ] ) . We say that an equation p = q 
i s existence equation i f both p- and q— are everywhere defined 
and equal (see [ 2 ] ) . I t i s eas i ly seen that .for strong and 
existence equations both Proposition 1 and 2 hold. 

In a l l SB- and E-var ie t i e s ( c lasses defined by strong 
and existence equations respect ively) which contain at l e a s t 
one nontr ivial algebra there i s a nontrivial t o t a l one. The 
s i tuat ion with discrete algebra i s somewhat more complicated. 
There iB such an algebra in an E-variety i f f i t i s th3 variety 
of a l l algebras of the same type. For SE-variet iea we have: 
there i s no discrete algebra in a variety V i f f there i s a 
strong equation of the form p = x (where p i s not a var iable) 
which holds in a l l algebras in V. 
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