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THE SEMILATTICE OF INNER EXTENSIONS
OF A PARTIAL ALGEBRA

One of the specific aspects of partial algebras is the
fact that each of them induces a non-trivial - unless the
algebra be total - set of algebras obtained by extending the
operations of the original partial algebra on its carrier,
This set admites a natural semi-lattice structure. We give
hers a complete characterization of such semilattices.

A type of algebras is a pair (F,n) donsisting of a set F
and an arity mapping n:F —«N where N is the set of non-ne-
gative integers, Then & partial slgebra of type {F,n) is
a pair A = (A,(f—A- : £eF)) where for each fe P, 45 @ par-
tial n(f)-ary operation on the set A, i.e. fﬂ:dom(fﬁ)——-a
with dom({f4) CAn(f) being the domain of £2, Quite often we
shall not mention explicitly the type of an slgebra, whenever
it ean be deduced from the context. An algebra A is total
when for each feF, dom(fd) = An(f, and A is discrete when
for each fe¢PF, dom(fﬂ) = @

If & = <A, (f2 : £eF)> and B =<B,(£2 : fe F)) are par-
tial slgebras,then B i& an inner extension of 4 iff 4 = B and
for all fePF, f—A#crE. An inper extension of A is sald to be an
inner completion iff it is total,

This paper 1s based on the lecture presented at the Con-
ferenoce on Universal Algebra held at tlie Technical University
of Warsaw (Wilga), May 22-25, 1986.
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In [2] J.Schmidt mentions the ordered set of all partial-
-algebraic structures of the given type on a set A. Such
a structure is also briefly mentioned in [1], where Burmeister
states that it has the structure of a ccnditionally complete
lower semilattice (where conditional completeness refers to
upper bounds). Using the terainology introduced above, the
set considered by Schmijt and Burmeister is seen to be the
semilattice of all inner extensions of a discrets algebra of
a given type. This construction can be sasily generalised for
an arbiirary partial algebra A: let Ext{4) be the set of all
inner extsnsions of a partial algebra A and for any B,C € Ext{a)
let

Bec € iff C is an inner extension of B
e

(1£f 8 £C for all feF).

Proposition. <Ext(A}), c) is a complete lowsr
semilattice, °

Proof. It is esasily seen taat the ge.l.b. /\1_3i of
a family {gi : ieI} of inner extensions of 4 is defined by

AB. B.
£t =m{f 1, ieI}, for sach fe P,

Let N be the binary g.l.b. operation in Ext{A) correspond-
ing %o % « Thus each partial algebra A induces a semilattioce

{Bxt{A), N > of its inner extensions. The following theorem
characterizes thosse associated semilattices.

Thzorem 1. 4 lower semilattice {P, A) is iso-
morpiic to (Ext(4),N) for some partial algebra A iff

(i) each element of P is contained in a maximal glement,

(ii) there is a gardinal m sucn that each maximal princi-
pal ideal in (P, A> is isomorphioc to 22 (ordered by inclu-
sion},

{iii) there exists a partitiod {Ai : ieg_x} of the set of
all atoms of P, AD> suca that oard(A;) = ca~d(4;) for all
i,jem and for any Cc U{Ai: ie g}, sup{Z) exists in {P, A)
iff card{(Tn Ai) «71 for each iem.
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Semilattice of inner extensions 3

Proof, Necessity of (i)-(iii).

The thres conditions {i)=-{iii) are preserved under gemi-
lattice isomorphisms, thus it is enougi to show that for any
partial algebra &, (Ext(A),n ) satisfies {(i)-(iii). Let
A= (A..(fA : feF)) be a partial algebra and let Ext{a) =
= {(Bxt(A), N>, The maximal elements in Ext{A} are exactly
the inner complotions of A. Clearly every inner extension of A
is contained in some inner completion of A, which proves (i).

A principal ideal in Ext(A) is maximal iff it is generated
by an inner completion of A. If (A'] is the maximal princi-
pal ideal gensrated by the inner completion A’ s then sach
Be {4'] 1is uniquely determined by the domains of operations
in B, since 8ll the operations in B must be compatible with
those in A", Thus for any B,Ce(A']l, B < C iff for each fe F,

dom(£8)c dom(£%), This implies that <(4’], %>;<2'1‘, <> where

m = card(U{(An(f) - dom(fé))x{f} : fe F}).

The atems in Ext(A) are the one-point inner extensions

of A, i.e.
B is an atom iff card(U{(dom(fB) - dom(fﬂ))x{f} : feF})=1.

tet D = UJ{(a%f) - don(£2))x{t} : £¢ P}, Por each (d,f)e D
define:

A(d, L) = {QeExt(y :+ B is an atom and de dom(é)-dom(fé)}.
Then oard{A(d,f)) = card(A) (the bijeotion is given by assign~-
ing to each o¢ A the atom B with f B (d) = ¢) and
card({A(d,f) : (d4f) € D}) = card(D) = m, since for any
(d,f),(e,g)e D, (d,f} # (e,g) implies A(d,f)n A(e,g) = ¥.
Morsover, each atom B is in A(d,f) for some (d,f)€ D. Thus
{A(d,f) : (d,f)e D} is a partition of the set of all atoms
of Ext(A) into m equipotent ‘blocks,

resume T < | J{Ald,):(d,2) e D} and suppose B,,B, €L nA(d,£),

B
(with B, # B,) for some (d,f)c D. Then de dom(f 1)-dom(fd)

B B
for 1=1,2 and £ 1(d) # £ 2(8), which implies there is mo
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BeExt(A) with B, G B and B, = B, Thus ¢ has no upper bound

in Ext{A). On the other hand, if card(¢ n A(d,f)) <1 for each
(d,f) e D, then the algebra B = <4,(f2 : fe F)>wuch that

B - U{#€ : cet]for all £eF 15 a well-defined inner ex-
tonsion of A and B = sup(t) in Ext(4).

Sufficiency of {i)-(1ii).

Let P = {P, A) be a semilattioce satisfying (i)-(iii) and
let m be the cardinal of condition (ii), Let {Ai : ieg} be
the partition of the set of atoms of P assumed in (iii), Por
any pe P, define C_ as the set of all atoms contained in p.
We prove first some simple consequsnoes of {i)-(1ii),

Lemma 1. For every element p of P, p = sup(C ).

Proof, Observe that by (i) and (ii) each pe P be=-
longs to some maximal principal ideal isomorphic to <2%, <),
which proves the lemma.

Lemma 2, For any p,qe P, sup(cp) = sup(Cq) ife
Cp = Cq'

Proof. Obviously C_ = Cq iqxplias sup(C. ) = sup(Cq).
Assume now p = sup(C ) = sup(Cq) =g, Lot I be any maximal
principal ideal with pe I_ (see (i)) and let h be an iso~
morphism of (Ip, A D onto ng, c > (which exists by (ii)).
Since botih C € I_and C.<I_, we have 'in 2% that h(p) =
= sup(h(Cp)) = sup(h(Cq)), whioh clearly implies Cp = Cq.

Lenma 3 Por each pec P, C N Ai has at most one
elament for any 1 em. '

Proof. sup(Cp) exists by Lemma 1, so apply con-
dition (iii),

Now, let F be any set with card(F) = m and take n:F — N
such that n{f) = 1 for all fe F. From now on we shall repra-
sent the partition of the set of atoms of P as {Af : Te P}.
Moreover, let A be a set such that card(4) = card(Af) for all
fe P (see condition (iii)) amd lat Pp : A —=A, be a bijection
for every fe F. We consider an algebra A of type {F,n) such
thats

A=< f2 : FeF)D> and for any teP, dom(fd) = A - {u}

p

for some fixed u ¢ A.
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For any pe P let 1_3p be an inner extension of A such that for
any fe F:

B B
(=) uedom(f P) and f P(u) =v iff pe(v) e Co.

It follows in particular that uedom(fgp) iff ANC, 4 0.
Define H:P—=Ext(A) so that H(p) = B_. We claim that H is
a semilattice isomorphism from P onto Ext(A).

Injectivity of H:

Assume p,ge P and p ¥ ¢. Then by lemmas 1 and 2, Cp #C..

Let 0.8 eleCp - Cq. Then there is exactly one ge F with

B B
ae Ag and by the definition of Ep, uedom(g P) and g P(u) =
-1 B B
= Pg (a). On the other hand, if ue dom(g 7), then g 3(u) #

-1 .
¢ Pg (a), since a¢ Cq+ Thus By # By

Surjectivity of H:

Let B€ Ext{A) and define Py = {fe F: uedom(fg)}. Let

p = sup{pf(fg(u)) : fe FE} .

Observe that p is well-defined, since .for any f,g¢ FB_ with
f#ag, pf(fg(u)) and p (gg(u)) belong to disjoint sets A, and
hgr correspondingly, and thus by (iii) the sup exists in P. We
shall prove that B = §p = H(p). Since both B and _B_p are inner
extensions of A, it 1is enough to prove that

B B
uedom(fg) and rﬁ(u) =v 1ff ucdom(f P) and £ P(u) = v
(12 po(v)e Cps by by (*}).
But by Lemma 2, C {pf(fB(n)) : fePF } thus by injeo-
tivity of p, for any fe r, pf(v) eC iff fe Fg and Vv = fB(n)
ire uedom(fB) and fB(u) = v, Thus B = B

Monotonieity of H and H -1,
Let < P be the ordering induced in P by A and assume

=p*

B
psP qe. Then CpC Cq and consequently if uedom(f P) and
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3+ hence,

£

B
£ P(u) = v then pplv)e Cp which implies pe(v)eC

B B
by (»), ue dom(t 9) and t (u) = v, This proves gp S Eq
in Ext(A).

On the other hand, assume B_c Eq and let aeCp. Since

Pe
a¢Ap for some (unique) feF, we have a = pf(p?(a))ecp,

B B - . ‘
which implies uedom(f P) and f P(u) = pf1(a). By assumption,

B B 1
also uedom(f J) and £ d(u) = Pr {(a), consequently aqu (by
definition of Qq). Hence C_c Cq which proves p<_ qg. Thus H
is a semilattice isomorphism. This proves

P

(P, A)> ¥ (Bxt(A),N).

Theorem 1 suggests that the structure of Ext(A) depends
only on ftwo cardinal numbers related with the algebra A: the
cardinality of itse universe and the cardinaiity of the dis-
joint union of the complements of domains of operations in A.
This leads to a representation of semilattices of extensions
by simpler structures. '

Let X,Y be any sets, Define Fun{X,Y) as the set of all
functions on subsets of X with values in Y (or equivalently,
of all partial functions from X into Y). This set is ordered
by inclusion and the latter is a lower semilattice ordering
in Fun(X,Y), since for any f,g € Fun(X,Y), the g.l.b. of {f,g}
is the function fng. Let Fun(X,Y) = {(Fun(X,Y),N)

Lemme 4. If card(X) = card(Z) and card(Y) =
= card{W) then

Pun(X,Y)  Fun(Z,W).
The proof may be left as a simple exercise in set theory.

Lemma 5. rfor any partial algebra .A there exist
cardinal aumbers m,n such that Ext(4) 2 Fun{m,n),

Proof . Let A=<l\,(1’A : feF)) be an arbitrary
partial algebra (of type (*,n)d), Let n = card(A) and
m = card(D) with
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D =U{(A"(f) - dom(fi))x{f} : feF}.

We shall prove that Ext(4) ¥ Fun(m,n).

By lemma 4, it is sufficier? to prove Ext{A) & Pun(D,A).
For any BeExt(A) let Dy =\ {tdom(£B) - dom(£h)) x {£} : £eF}.
Thus Dy represents, intuitively speaking, the field onto whieh
the structure of B has been extended with respect to that
of A; clearly Dpc D. Define G : Ext(A) — Fun(D,A} so that

for BeEBxt(A),dom(G(B)) = Dy and

for (d,f)e Dy, G(B)(d,f) = £8(4).

The injectivity of G follows easily from its definitiong
if B # C thern either Dg # Dy or there exists a (d,f)eDB = D
such that £2{d) # £8(d). a

To show that G is surjective, take any t e Pun(D,A) ané
let dom(t) = Tc D, Define an inner extension C of A so that
for any feF and deAn(f) - dom(f‘—"‘-),

[of

de dom(£€) and £%(d) = a iff (d,f)eT and t(d,f) = a.

An easy verification proves that G(C) = t.
It remains to prove that G and ¢~! are monotone, But if
B,C e Ext(4A) and Ij% C, then DEC DQ and for any (d,f) € D,

fE(d) = fg(d). Thus G(B)c G(C). Reversing this argument we
prove the monotonicity of a1,
The following lemma yields the inverse of lemma 5.
Lemama 6. For any cardinal numbers m, n there
exists a partiasl algebra A such that Ext{A) ¥ Fun'm,n).
Proof. If n = 0 then any total algebra A will do,
since in that case Bxt(A) is a singleton, too., Assume now
n # 0 and let u be any fixed element of n, Define an alge=-
bra A_=<_:1,(fA : fem)> so that for all fenm, dom(f£d) = n - {u}
and fé(a) = a for any aedom(fi). For B eExt(A), let FB. =
= {feg-: ue dom(fg)} » Now to any inner extension B of A
assign a function ty : Fp—n such that th(f) = B(u) for
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fePF,. The correspondence §1—>tB is an isomorphism of Ext(4A)
onto Fun(m,n). -
The following lemma completss the result of lemma 4,
Lemma 7. For any non-sgaply sets X,Y,Z,W
Fun(X,Y) ¥ Fun(Z,W) iff card(X) = card(2) and card(Y) = card(w),
Prom Lemmas 5, 6, 7 we deduce immediately the following.
Theorea 2, Leta=<Aa(fk;: feP)) and
B =<B,(f§ s+ feP' )) ba two partial algebras of type {F,n)
and {P',n’>, correspondingly. If g, = card(A) and ny = card(B)
and

m, = card(U{(A“(f’ - dom(£d))x{g} : fe F}) and

ng = card(U{(B“'(f’ - dom(£3))x{t} : feF'})

1]

then Ext(4a)
are total.

Given two partiai algebras A and B, the sxistence of an
isomorphism between their extension semilattioes can be ex-
pressed by a Cantor-Bernsfein-type condition., Define an upper
embedding of a poset {X,<y >into a poset (Y,$Y>to beé an
injective order-homomorphism h:X —Y such that

(1) h~' is an order homomorphism on h(X)j

(i1) if a is maximal in {X,<y), then h(a) is maximal
in {Y, <y2; :

(iii) h(X) is convex in Y i.,e, if be Y and for some
81185 € X, h(a.‘)sybg.{h(az), then b e h{(X).

When such an embedding exists, we say that <x,sx> is
upper-smbedabble in (Y,<Y>.

Theoreama 3. Let A and B be arbitrary partial
algebras. Then

Ext(B) iff ny = np and m, = mg or both A and B

Ext(A) ¥ Ext(B) iff

each of the semilattices BExt(A) and Ext(B) is upper~embeddable
in the other,
By Lemmas % and 6 we can reduce this theorem to tns follow-

ing form.
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Theorem 3, PFor any cardinz! numbers m,n,m’ ,n’ :

Paa(m,n) ¥ Fun(m’',n’) iff

each of the semilattices Fun(m,n), Fun(m',n’) is upper-embe~
dabble in the other.

This theorem in turn is a direct consequence of the
following.

Lemma 8, PFor any cardinals a,n,m’',n’: if
m<m’' and n<n’,then Fun(m,n) is upper-embedabble in Fun(m’',n’).
The inverse implication holds, when m # O # n.

Proof. Letam<m and ngn.Ifn =0, then both
Fun({m,n) and Fun(m’,n’) are trivial one-element semilattices,
Bo we may assume n’' # O, Let also wy be an arbitrary fixed
function from m’-m into n’. For any we Fun(m,n) define
h(w) e Fun(m’,n’ ) so that

dom(h(w)) = dom(w)u (@'~m) and for any ae dom(h(w}),

wo(a) if aecm'-m
h{w)(a) =
w(a) 1if aec dom{w).

Then the mapping h:Pun(m,n) —=Fun(m’,n’') is an upper=-smbed-
ding of Pan(m,n) into Fun(m’',n’).

On the othexr hand, if m # O # n and h:Fun(m,n) —= Fun(m ,n )
is an upper embedding, take an arbitrary maximal element a
in Fun(m,n). Then h(a) is maximal in Fun(m’,n’) and

h((a]) = (h(a)],

whioh by lemma 6 and theorem 1 implies 2'342&' i.0. ngn’,

To prove that also n<n’' take any be m and consider any
function fe Pan(m,n) with dom(f) = m - {b}. Then f has
exaotly n suecesors in Fun(m,n) and these are maximal funo-
tions f :m —n with fcf  and fx(b) = x, for all xen. By
the definition of an upper smbedding, h{f) is covered by
h(f, ), xe n, which are all different and maximal in Fun(m’,n’),
thos dom(h(f)) = m’ - {®'} for some b'e m' and h(f) has exactly
n’ succesors in Fun(m’,n’), Hence n<n’.
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