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THE SEMILATTICE OF INNER EXTENSIONS 
OF A PARTIAL ALGEBRA 

One of the specifio aspects of partial algebras is the 
fact that each of them induoee a non-trivial - unless the 
algebra be to ta l - set of algebras obtained by extending the 
operations of the original partial algebra on i t s c a r r i e r . 
This set admits a natural semi-latt ice structure. We give 
here a complete characterization of such semilatt ices . 

A type of algebras i s a pair < F , n > donsisting of a set F 
and an ari ty mapping nrP—-N where N is the set of non-ne-
gative integers. Then a partial algebra of type <F ,n> is 
a pair A = < A , ( f - : f e F)> where for each f € F, f - i s a par-
t i a l n(f) -ary operation on the set A, i . e . f-:dom(f-J——A 
with dom(fA)cAn^ f* being the domain of f^ . Quite often we 
shall not mention explici t ly the type of an algebra, whenever 
i t can be deduced from the context. An algebra A. i e to ta l 
when for each f e F, dom(f-) = A n ^ and A i s discrete when 
for each f e F , dom(f^) = 0. 

I f A = <A,(f^ : f 6 F)> and B - < B , ( f ^ : f e F)> are par-
t i a l algebras,then B ifc an inner extension of A i f f A = B and 
for a l l f e F , f ^ c A An inner extension of A. i s said to be an 
inner completion i f f i t i s total* 

This paper i s based on the lecture presented at the Con-
ference on Universal Algebra held at the Technioal University 
of Warsaw (Wilga), May 22-25, 1986. 
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In Q?] J.Schmidt mentions the ordered set of a l l pa r t i a l -
-a lgebraic structures of the given type on a set A . Such 
a structure i s also b r i e f l y mentioned in [ j J , where Burmeister 
states that i t has the structure of a condit ional ly complete 
lower semi lat t ice (where condit ional completeness r e f e r s to 
upper bounds). Using the terminology introduced above, the 
set considered by Schmidt and Burmeister i s seen to be the 
semi lat t ice of a l l inner extensions of a d iscrete algebra of 
a given type. This construction can be eas i ly generalised f o r 
an arbitrary par t ia l algebra jA: l e t Ext(A) be the set of a l l 
inner extensions of a par t ia l algebra A. and f o r any B,C6Ext (A ) 
l e t 

B c C i f f C. i s an inner extension of B 
e 

( i f f f o r a l l f e P ) . 
P r o p o s i t i o n . <Ex t (A ) , c ) i s a complete lower 

e 
semi la t t ioe . 

P r o o f . I t i s eas i ly seen that the g . l . b . /^B^ of 
a family : i e l } of inner extensions of A i s defined by 

f ^ i = H { f S i j i e l ] , f o r oach f e P. 

Let n be the binary g . l . b . operation in Bxt(A) correspond-
ing t o e . Thus eaoh par t ia l algebra A. induces a semi lat t ioe 

e 
<Ex t (A ) , n )> of i t s inner extensions. The fo l lowing theorem 
characterizes those associated semi la t t i ces . 

T h e o r e m 1. A lower semilatt ioe <P, A> i s i s o -
morphic to "(Ext (A ) , n> f o r some par t ia l algebra Â  i f f 

( i ) each element of P i s contained in a maximal ^lement, 
( i i ) there i s a cardinal m such that each maximal pr inc i -

pal ideal i n < P , A> i s iaomorphio to 2 - (ordered by inc lu-
s ion) , 

( i i i ) there ex is ts a par t i t ion {A^ : i e § } of the set of 
a l l atoms of < P , A > such that ca rdU jJ = ca^dU^) f o r a l l 
i j e 1 and f o r a::j t<= U { A i : sup(C) ex i s t s i n < P , A > 
i f f card(Cn A ± ] f o r each i e m. 
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P r o o f . Necess i ty of ( i ) - ( i i i ) . 
The three cond i t i ons ( i ) - ( i i i ) are preserved under semi-

l a t t i o e isomorphisms, thus i t i s enough to snovf t h a t f o r any 
p a r t i a l a lgeb ra A , < E x t ( A ) , n ) s a t i s f i e s ( i ) - ( i i i ) . Let 
A = <A,(f^- : f e P j > be a p a r t i a l a lgeb ra and l e t Ext (A) = 
= <Ex t (A) , n > . The maximal e lements in Ext(A) are exac t ly 
the i n n e r complet ions of A. C lea r ly every inne r ex t ens ion of A 
i s conta ined i n some inner complet ion of Â  which proves ( i ) . 

A p r i n c i p a l i d e a l i n Ext(A) i s maximal i f f i t i s generated 
by an inne r complet ion of A. I f (A'] i s the maximal p r i n c i -
pal i d e a l genera ted by the i n n e r complet ion A_' , then each 
Be ( A'J i s uniquely determined by the domains of ope ra t i ons 
i n 5 , s ince a l l the o p e r a t i o n s i n B must be compatible wi th 
those i n A' . Thus f o r any B,C e (A'3 , B <r C i f f f o r each f e F, 

dom(f®)c dom(f-)» This impl i e s t h a t < ( A ' ] , c > ^ < 2 ® , c > where 
e 

m = c a r d i U j f - dom(f^)) x{f} : f e P } j . 

The ateais in Ext(A) are the one-point i n n e r ex tens ions 
•f A, i . e , 

B i s an atom i f f card(U{(dom(f®) - dom(f^))x{f} : f e i } ) = 1. 

Let D = U { U n * f ) - dom(f-) )x{f} : f e p ) . For each ( d , f ] e D 
d e f i n e : 

A(d , f ) = {b e Bxt{A) : B i s an atom and d e doai(f^)-dom{f-)}. 
Then o a r d ( A ( d , f ) ) = card(A) ( the b i j e o t i o n i s g iven by a s s i g n -
ing to each o e A the atom B wi th f ^ - ^ ( d ) = c) and 
c a r d ( { A ( d , f ) : ( d , f J e D } ) = card(D) « s ince f o r any 
( d , f ) , ( e , g ) e D, ( d , f ) 4 ( e , g ) imp l i e s A(d , f ) n A(e,g) = 
Moreover, each atom B i s i n A(d , f ) f o r some ( d , f ) e D. Thus 
| A ( d , f ) j ( d , f ) e d} i s a p a r t i t i o n of the s e t of a l l atoms 
of Bxt(A) i n t o jn equipoten t ' b locks . 

As suae t<= ( J { A ( d , f ) s ( d , f ) e d} and suppose 1 1 ,B2 e C n A ( d , f ) , 

l i A 
(wi th B1 4 B2) for some ( d , f ) t D . Then d e d o n ( f ^-J-donff- ) 

B1 B_ f o r 1-1,2 and f ' (d ) 4 f ( d ) , which imp l i e s t h e r e i a no 
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Be Ext (A) with B1 c B and B„ c B. Thus C has no upper bound 
i a t e 

in Ext(A). On the other hand, i f card( C n A ( d , f ) ) < 1 for eaoh 
( d , f ) e D , then the algebra B = <A , ( f ^ : f e F)>«uch that 
f® = U { f - : C e c ) for a l l f e F is a well-defined inner ex-
tension of A and 3. = sup(C) in Bxt(A). 

Sufficiency of ( i ) - ( i i i ) . 
let JP = <P, A> be a semilattioe satisfying ( i ) - ( i i i ) and 

let m be the cardinal of condition ( i i ) . Let | Â  : i e m } be 
the partition of the set of atoms of P assumed in ( i i i ) . For 
any peP, define Cp as the set of a l l atoms contained in p. 
We prove f i r s t some simple consequsnoes of ( i ) - ( i i i ) . 

L e m m a 1. For every element p of P, p = sup(Cp). 
P r o o f . Observe that by ( i ) and ( i i ) each peP be-

longs to some maximal principal ideal isomor phic to <2®, <=>, 
which proves the lemma. 

L e m m a 2. For any p,qe P, sup(C ) = sup(C ) i f f r i C = C . 
P Q 

P r o o f . Obviously Cp = Ĉ  implies sup(Cp) = sup(Cq). 
Assume now p = sup(Cp) = sup(Cg) = q. Let I p be any maximal 
principal ideal with p e l (see ( i )J and let h be an iso-
morphism of < I p , A> onto \2-, c > (which exists by ( i i ) ) . 
Sinoe both Cpc I and Cq<=ipf we have *in 2- that h(p) » 
= sup(h(Cp)) = sup(h(Cq)), whioh clearly implies Cp = Cq. 

L e m m a 3. For eaoh pe P, c p n 1188 a t mo8't on0 

element for any i em . 
P r o o f . sup(Cp) exists by Lemma 1, so apply con-

dition ( i i i ) . 
How, let F be any set with card(F) = m. and take n:F —^ K 

such that n ( f ) = 1 for a l l f e F. From now on we shall repre-
sent the partition of the set of atoms of P as {A^ : f e F}. 
Moreover, let A be a set such that card(A) = card(A f) for a l l 
f e F (see condition ( i i i ) ) aad le t p f : A —i»- Af be a bisection 
for every f e F. We oonsider an algebra A. of type <F,n>such 
thatt 

A = < A , ( f A : f e F ) > and for any f e F , dom(fA) = A - {u} 

for some fixed u e A. 
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For any p e P l e t Bp be an inner extension of A such tha t f o r 
any f e F: 

B B 
(*) U6dom(f~p) and f _ p ( u ) = v i f f p f (v) € C . 

B 
I t fol lows i n p a r t i c u l a r tha t uedomff p) i f f Afr>Cp 4 0. 
Define H:P—-Ext(A) so tha t H(p) = Bp . We claim tha t H i s 
a s emi l a t t i c e isomorphism from P onto Sxt(A). 

I n a c t i v i t y of Ht 
Assume p , q e P and p 4 Q. Then by lemmas 1 and 2, Cp 4 Cq . 

Let e . g . a e C - C„. Then there i s exactly one g e P with 
P B B 

a e A and by the d e f i n i t i o n of Bp , uedomfg p) and g p(u) = 
B Sq 

= P g i a ) . On the other hand, i f uedom(g q ) , then g ^ i u ) 4 

4 p~1 ( a J , s ince a ^ C q . Thus Bp 4 Bg. 
S u r j e c t i v i t y of H: 
Let B € i x t ( A ) and def ine PB » { f e P : uedom( f^ )} . Let 

p = sup j p j i f ^ U ) ) : f t ? B J . 

Observe tha t p i s we l l -de f ined , since f o r any f , g e F ^ w i t h 
f 4 g , p f(f®(u}) and p g (g-(u)J belong to d i s j o i n t s e t s Af and 
Ag ,correspondingly, and thus by ( i i i ) the sup e x i s t s i n P. We 
s h a l l prove tha t B = Bp » H(p). Since both B and Bp are inner 
extensions of A, i t i s enough to prove t h a t 

B B 
u e d o m f f 6 ) and f2-( u) = v i f f u s d o « ( f ~ p ) and f ^ l u ) = v 

( i f f p f ( v ) e Cp , by ( * ) ) . 
But by Lemma 2, Cp = | p f ( f ® ( u ) ) : f e P g j , thus by i n j e o -

t i v i t y of p f f o r any f e P, p f (v ) 6 Cp i f f f e P^ and v * u) 
i f f a e d o m ( ^ ) and u) « v . Thus B = Bp . 

Monotonicity of H and H"1 : 
Let < be the ordering Induced i n P by A and aaeaae 

p B 
ps? q. Then C c c and consequently i f u e d o u l f " ) and 
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f p(u) = v then p f ( v ) e C p which implies p f (v ;eCq» hence, 
B B 

by ( * ) , tt€don(f~<!) and r - q (u) = v. This proves Bp c B̂  
in Ix t (A) . 

On the other hand, assume Bp c Bq and let a e C p . Since 

a e Af for some (unique) f e F , we have a = p f( p^1 (a ) ) e Cp, 
B B _., 

which implies uedom(f p) and f p(u) = p ^ ' ( a j . By assumption, 
B B _1 

also uedom(f q ) and f ^ l u ) = p^ ( a ) , consequently a e Ĉ  (by 
definition of Bq ) . Hence C p c Cq which proves p.g.p q. Thus H 
is a semilattioe isomorphism. This proves 

<P, A> ar <Bxt (A) ,n> . 

Theorem 1 suggests that the structure of Ixt(A) depends 
only on two cardinal numbers related with the algebra A.: the 
cardinality of i t s universe and the cardinality of the dis-
joint union of the complements of domains of operations in A. 
This leads to a representation of semilattices of extensions 
by simpler s tructures . 

Let 1 , 7 be any se ts . Define Fun(X,Y) as the set of a l l 
functions on subsets of Z with values in Y (or equivalently, 
of a l l partial functions from X into Y) . This set i s ordered 
by inclusion and the l a t t e r i s a lower semilattioe ordering 
in Fun(X,Y), sinoe for any f , g eFun(X,Y), the g . l . b . of { f , g } 
i s the function f n g . Let Fun(X.Y) = < Fun(X,Y), n^ 

L e m m a 4. I f oard(X) = card(Z) and oard(T) = 
= card(W) then 

Pun(X,Y) a- Fun(Z.W). 

The proof may be l e f t as a simple exeroise in set theory. 
L e m m a 5. ¿or any partial algebra there exist 

cardinal numbers m,n such that Ext(A) = Ptm(m.n). 
P r o o f . Let A. = < A , ( f - : f e P ) > be an arbitrary 

partial algebra (of t y p e < P , n > ) . Let n = card(A) and 
m = card(D) with 

234 -



S e m i l a t t i c e of i n n e r e x t e n s i o n s 

D = U { ( A n ( f J - dom(f4-))x{f} : f e p ) . 

We s h a l l prove t h a t Ext (Aj ^ Fun(m.n) . 
By lemma 4, i t i s s u f f i c i e n t to prove Bxt(A) = Fun(D.A). 

For any BeBxt (A) l e t = LJ {(dom(f^) - dom{f^;) * [ f } : f e F } . 
Thus Dg r e p r e s e n t s , i n t u i t i v e l y speaking , the f i e l d onto whioh 
the s t r u c t u r e of B_has been extended with r e s p e c t to t h a t 
of A; c l e a r l y DgCD, Define G : Bx t (A)—-Fun(B,A; so t h a t 

f o r B e Bxt(Aj ,d om(G(BJ) = Dg and 

f o r ( d . f l e D j , G(B) (d , f ) = f ^ d ) . 

The i n a c t i v i t y of G fo l l ows e a s i l y from i t s d e f i n i t i o n ^ 
i f B 4 Q. then e i t h e r DB f DQ or t he r e e x i s t s a ( d j f J e D g = Dc 

such t h a t f®-(d) 4 f—(dT. ~~ 
To show t h a t G i s s u r j e c t i v e , take any t e Fun(D,A) ami 

l e t dom(t) = TC D . Define an i n n e r ex t ens ion C of A s ° t h a t 
f o r any f e F and d e i n ' f | - dom(f^) , 

d e dom(f—) and f ^ d ) = a i f f ( d , f J e T and' t ( d , f ) = a . 

An easy v e r i f i c a t i o n proves t h a t G(C.) = t . 
I t remains t o prove t h a t G and are monotone. But i f 

B ,CeExt (A) and B <= then DgCD£ and f o r any ( d . f J e D g , 

fB(d) = f - ( d ) . Thus G(B)cG(C) . Revers ing t h i s argument we 
prove the monotonici ty of 

The fo l l owing lemma y i e l d s the i nve r se of lemma 5. 
L e m m a 6. For any c a r d i n a l numbers m, n_ t he r e 

e x i s t s a p a r t i a l a lgeb ra A. such t h a t Bxt(A) = Fun(m,n). 
P r o o f . I f n = f0, then any t o t a l a l geb r a A. w i l l do, 

s ince i b t h a t case Ext(A) i s a s i n g l e t o n , t o o . Assume now 
n 4 0 and l e t u be any f i x e d element of n . Define an a l g e -
b ra A = < n , ( f - : f i a ) ) so t h a t f o r a l l f e a , dom(f-) = n - {u} 
and f ^ ( a ) = a f o r any aedom(f—J. For B e E x t ( A ) , l e t F f i = 
= { f e m : uedom(f®-)}, Now to any inne r e x t e n s i o n B of A 
a s s i g n a f u n c t i o n t,, : F-n n such t h a t t-p if) = f ^ l u) f o r 
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f e P g . The correspondence B i — - t B i s an isomorphism of B i t ( A ) 
onto Pun(m,n). ~ 

The f o l l o w i n g lemma completes the r e s u l t of lemma 4* 
l e m m a 7 . For any non-empty s e t s X t Y ,Z ,W 

Fun(X,Y) = Fun(Z,W) i f f card(X) = card (Z ) and oard(Y) =card(W). 
Prom Lemmas 5, 6 , 7 we deduce immediately the f o l l o w i n g . 
T h e o r e m 2. Le t A = < A , ( f - : f e F ) > and 

B = < B , ( f ® s f e P ' ) > b e two p a r t i a l algebras of type < F ' , n > 
a n d < P ' , n ' > , correspondingly. I f e^ = oard(A) and ng • oard(B) 
and 

mA = c a r d ^ U | ( - dom(f^-))x{f} : f e p}^ and 

mg = c a r d ( U { ( B n ' { f ) - d o B ( ^ ) ) * { f } : f e P ' } ^ 

then Ex t (A) = Bx t (B ) i f f 11̂  = 53 and mA = or both A and B 
are t o t a l . ~~ ~~ 

Given two p a r t i a l algebras A. .and B , the existence of an 
isomorphism between t h e i r extens ion s e a i l a t t i o e s can be ex-
pressed by a Cantor-Bernste in- type oondi t ian . Define an upper 
embedding of a poset <X, ^ x > i n t o a poset ^ .Y ,^ y > to be an 
i n f e c t i v e order-homomorphisii h jX—»~Y suoh tha t 

( i ) h " l i s an order homomorphism on h(X)| 
( i i ) i f a i s maximal i n < X , ^ x > , then h(a) i s maximal 

i n < Y , < y > ; 
( i i i ) h(X) i s convex i n Y i . e . i f b e Y and f o r some 

a 1 t a 2 6 X , h(a 1 ) ^ y b < Y h ( a 2 ) , t h e n b e h ( X ) . 
When such an embedjding e x i s t s , we say that < X , ^ x > i s 

upper-enbedabble i n < Y , < y > . 
T h e o r e m 3. Le t Â  and B_ be a r b i t r a r y p a r t i a l 

algebras. Then 

Ext (A) 3 Bx t (B ) i f f 

each o f the aeoilattices Bxt(A) and Bx t (B ) i s upper-embeddable 
i n the o ther . 

By Lemmas 5 and 6 we oan reduce t h i s theorem to tne f o l l o w -
ing form; 
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T h e o r e m 3. For any oardinai. numbers m.n,®' ,n ' : 

? « ( m . n ) 2 Pun(m' ,n ' ) i f f 

each o f the s e m i l a t t i c e s Fun(m.n). Fun(m' ,n ' ) i s upper-embe-

dabble i n the o ther . 

This theorem i n t u r n i s a d i r e c t consequence of the 

f o l l o w i n g . 

L e m m a 8 . For any card ina ls ¡n,n,m' ,n_' : i f 

m^m' and n < n ' . t h e n Fun(m.n) i s upper-embedabble i n Pun(m' , n ' ) . 

The inverse i m p l i c a t i o n ho lds , when m + 0 4 n. 

P r o o f . Let K m ' and n « n' . I f n ' = 0 , then both 

Fun(m,n) and Fun(m' ,n ' ) are t r i v i a l one-element s e m i l a t t i c e s , 

BO we may assume n' / 0. Let a lso WQ be an a r b i t r a r y f i x e d 

f u n c t i o n from B ' -B i n t o n ' . For any weFun(m,a) def ine 

h ( w ) e Fun(m' ,n ' ) so tha t 

dom(h(w)) = dom(w)U (m'-m) and f o r any aedom(h(w) ) , 

f w „ ( a ) i f a € m'-m 
h(w) (a) - 0 

( w(a) i f aedom(w). 

Then the mapping h : F u n ( m , n ) — - F u n ( m ' ,n' ) i s an upper-embed-

ding of Fon(m.n) i n t o F u n ( m ' , n ' ) . 

On the other hand, i f m j 0 + n. and h < F u n ( m , g j — - F u n ( m , n ) 

i s an upper embedding, take an a r b i t r a r y maximal element a 

i n gun(m.n). Then h(a) i s maximal i n Fun(m' ,n ' ) and 

h ( ( a ] ) c ( h ( a ) ] , 

whioh by lemma 6 and theorem 1 imp l ies 2 - < 2 ~ i . e . m<m' . 

To prove t h a t also n ^ n ' take any be m and consider any 

f u n o t i o n f e F u n ( m , n ) w i t h dom(f) = m - { b } . Then f has 

exaot ly n_ succesors i n Fun(m,n) and these are maximal f u n c -

t i o n s f x : m — - n w i t h f c f x and f x ( b ) » x , f o r a l l x e a.. By 

the d e f i n i t i o n of an upper embedding, h ( f ) i s covered by 

h ( f x ) , x e n , which are a l l d i f f e r e n t and maximal i n Fun(m' ,a ' ) , 

thus dom(h(f ) ) - m' - { b ' j f o r some b 'e m.' and h ( f ) has exact ly 

n' succesors i n Fun(m' , n / ) . Hence n g f l ' . 
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