

Kazimiera Dyrda

NONE OF THE VARIETY E_n , $n > 2$, IS LOCALLY FINITE

In this paper we shall prove that there exists a 2-generated infinite algebra in E_2 .

Let us recall some fundamental definitions.

By a BCK-algebra we mean a general algebra $\underline{A} = \langle A, *, 0 \rangle$ of type $\langle 2, 0 \rangle$ satisfying the following axioms:

$$(1) \quad ((x * y) * (x * z)) * (z * y) = 0$$

$$(2) \quad (x * (x * y)) * y = 0$$

$$(3) \quad x * x = 0$$

$$(4) \quad 0 * x = 0$$

$$(5) \quad \text{if } x * y = 0 \text{ and } y * x = 0, \text{ then } x = y.$$

If $x \leq y$ means $x * y = 0$, then the relation \leq is a partial ordering. Recall that a BCK-algebra \underline{A} satisfies condition (S), if for any $a, b \in A$ in the set $\{x \in A : x * a \leq b\}$ a greatest element, $a \circ b$, exists uniquely. In this case we can extend the structure of BCK-algebra and add a new operation \circ satisfying the identity:

$$(S) \quad a * (b \circ c) = (a * b) * c.$$

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Technical University of Warsaw (Wilga), May 22-25, 1986.

By a BCK^S -algebra we mean a general algebra $\underline{A} = \langle A, *, \circ, 0 \rangle$ of type $\langle 2, 2, 0 \rangle$ satisfying (1)-(5) and (S). Let \underline{A} be a BCK^S -algebra.

By the reflection of \underline{A} (see [8]), which in the sequel will be denoted by $R(\underline{A})$, we shall mean the algebra $\langle A \cup R(\underline{A}), *_{\underline{R}}, \circ_{\underline{R}}, 0 \rangle$ where the set $R(\underline{A}) = \{r_a : a \in A\}$ is the image of A under a bijection r such that $r_a \notin A$ for every $a \in A$. The zero-element in $R(\underline{A})$ is the same as in \underline{A} and the operations $*_{\underline{R}}, \circ_{\underline{R}}$ are defined by the following conditions for every $a, b \in A$:

- (i) $a *_{\underline{R}} b = a * b$
- (ii) $r_a *_{\underline{R}} r_b = b * a$
- (iii) $r_a *_{\underline{R}} b = r_a \circ b$
- (iv) $b *_{\underline{R}} r_a = 0$
- (v) $a \circ_{\underline{R}} b = a \circ b$
- (vi) $r_a \circ_{\underline{R}} r_b = r_0$
- (vii) $a \circ_{\underline{R}} r_b = r_b \circ_{\underline{R}} a = r_b * a$

By \mathbb{B}_n , $n \geq 1$, we denote the class of all BCK-algebras satisfying

$$(\mathbb{B}_n) \quad x * y^n = x * y^{n+1}, \quad \text{where}$$

$$x * y^1 = x * y$$

$$x * y^{k+1} = (x * y^k) * y, \quad k \geq 1.$$

The class \mathbb{B}_n , $n \geq 1$, is a variety (see [1]). On the other hand, as it is well known, BCK-algebras do not form a variety ([7]). Moreover, \mathbb{B}_1 is a well-known variety of algebras determined by the purely implicational fragment of the set INT of all theses of the intuitionistic propositional calculus.

The symbol E_n^S denotes a subclass of the class BCK^S formed by all BCK^S -algebras which satisfy (E_n) .

From the result of Diego [2] and Popiel (see Jankov [6]) it is known that: any free algebra of the variety E_1 free-generated by a finite set is finite.

We shall prove that the theorem of Diego and Popiel does not hold in E_n , $n \geq 2$.

The following lemma holds.

Lemma 1. If $n \geq 2$ and $\underline{A} \in E_n^S$, then $R(\underline{A}) \in E_n^S$.

Now we define terms α_n as follows:

$$\alpha_1 = p, \text{ where } p \text{ is variable}$$

$$\alpha_{n+1} = (\alpha_n \circ \alpha_n) * \alpha_n, \quad n \geq 1.$$

Then we obtain:

Lemma 2. For every $i, j = 1, 2, \dots$ the following conditions hold:

- (i) $BCK^S \vdash \forall p [\alpha_i \geq \alpha_{i+1}]$,
- (ii) $BCK^S \vdash \forall p [\alpha_i = \alpha_{i+1} \Rightarrow \alpha_i = \alpha_{i+j}]$.

We omit easy proofs of Lemma 1 and Lemma 2.

For every valuation $v : \{p\} \rightarrow \underline{A}$, $\underline{A} \in BCK^S$, we define a valuation $\bar{v} : \{p\} \rightarrow R(\underline{A})$ putting: $\bar{v}(p) = R_v(p)$.

Then it is easy to verify the following lemma.

- L e m m a 3. (i) $\bar{v}(\alpha_1) > v(\alpha_1)$.
 - (ii) $\bar{v}(\alpha_{n+1}) = v(\alpha_n)$, for every $n = 1, 2, \dots$
- P r o o f . The condition (i) follows immediately from the definition. We easily prove (ii) by induction on n .
- L e m m a 4. For $i \neq j$, we have $\alpha_i \neq \alpha_j$ in the 1-generated free algebra of the variety E_2^S , so this algebra must be infinite.

P r o o f . We define algebras \underline{A}_n , $n \geq 1$, by putting

$$\underline{A}_1 = \langle \{0, c, b, a\}, *, \circ, 0 \rangle$$

a	*	0	c	b	a	o	0	c	b	a
b	0	0	0	0	0	0	0	c	b	a
c	c	c	0	0	0	c	c	a	a	a
0	b	b	c	0	0	b	b	a	a	a
a	a	a	c	c	0	a	a	a	a	a

and $\underline{A}_{n+1} = R(\underline{A}_n)$, $n \geq 1$. It is easy to see that for every $n \geq 1$ we have $\underline{A}_n \in \mathbb{M}_2^S$.

Let $v_n : \{p\} \rightarrow \underline{A}_n$ be valuations such that

$$v_n(p) = b \quad \text{and} \quad v_{n+1} = \bar{v}_n, \quad n \geq 1.$$

First let us observe that for every $n = 1, 2, \dots$

$$v_n(\alpha_1) > v_n(\alpha_2) > \dots > v_n(\alpha_n) > v_n(\alpha_{n+1}).$$

For $n = 1$ we have $v_1(\alpha_1) > v_1(\alpha_2)$. Let us suppose for induction that in the algebra \underline{A}_n :

$$v_n(\alpha_1) > v_n(\alpha_2) > \dots > v_n(\alpha_n) > v_n(\alpha_{n+1}).$$

Now let $v_{n+1} : \{p\} \rightarrow \underline{A}_{n+1}$ be the valuation defined by

$$v_{n+1} = \bar{v}_n.$$

Then by Lemma 3 we have $v_{n+1}(\alpha_1) > v_n(\alpha_1)$ and $v_{n+1}(\alpha_{k+1}) = v_n(\alpha_k)$, $k = 1, 2, \dots, n+1$. This implies that

$$v_{n+1}(\alpha_1) > v_{n+1}(\alpha_2) > \dots > v_{n+1}(\alpha_{n+1}) > v_{n+1}(\alpha_{n+2}).$$

Let us suppose now that $i \neq j$ and $i < j$. We consider the algebra \underline{A}_j and the valuation $v_j : \{p\} \rightarrow \underline{A}_j$. Then we obtain

$$v_j(\alpha_1) > v_j(\alpha_2) > \dots > v_j(\alpha_i) > \dots > v_j(\alpha_j) > v_j(\alpha_{j+1}),$$

which means $v_j(\alpha_i) \neq v_j(\alpha_j)$.

Lemma 5. If a BCK^S -algebra \mathbb{A} is $(*, \circ)$ -generated by a set G , then $R(\mathbb{A})$ is $(*)$ -generated by the set $G \cup \{z_0\}$.

Now it is easy to see that the following theorem holds.

Theorem. There exists a 2-generated infinite algebra in \mathbb{E}_2 .

Corollary. None of the variety \mathbb{E}_n , $n \geq 2$, is locally finite.

Proof. It is easy to see that

$$\mathbb{E}_1 \subset \mathbb{E}_2 \subset \mathbb{E}_3 \subset \dots$$

Hence by the theorem we obtain the above corollary.

REFERENCES

- [1] W.H. Cornish : Varieties generated by finite BCK -algebras, Bull. Austral. Math. Soc., 22 (1980) 411-430.
- [2] A. Diego : Sur les algèbres de Hilbert, Collection de logique mathématique, Ser. A, fasc. 21, Paris 1966.
- [3] K. Dyrdał : On simple algebras in \mathbb{E}_n^S , Bull. Soc. Logic, 13, no. 1 (1984), 25-30.
- [4] K. Iseki : BCK -algebras with condition (S), Math. Jap. 24 (1979) 107-119.
- [5] K. Iseki, S. Tanaka : An introduction to the theory of BCK -algebras, Math. Jap. 23 (1978) 1-26.
- [6] V.A. Jankov : Conjunctively indecomposable formulas in propositional calculi, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969) 18-38. Math. USSR Izv. 3 (1969) 17-36.
- [7] A. Wroński : BCK -algebras do not form a variety, Math. Jap. 28 (1983) 211-213.
- [8] A. Wroński : Reflections and distensions of BCK -algebras, Math. Jap. 28 (1983) 215-225.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,

25-406 KIELCE, POLAND

Received June 5, 1986.

