

Józef Słomiński

RELATIVE COGENERATIONS WITH APPLICATIONS
TO TREE AUTOMATA AND A THEORY OF ABSTRACT ALGEBRAS
WITH FEEDBACK MODIFICATIONS

The usual theory of automata is interpreted in universal algebra as a theory of tree automata. A notion of feedback is used in the theory of automata, in algebraic structure theory of sequential machines and in the control theory [5,6]. In this paper we give an interpretation of the notion of feedback as an automaton used for the modifications of operations. In this way we obtain a theory of abstract algebras with feedback modifications called briefly feedback algebras. Using a theory of relative cogenerations given in § 3 we prove in § 4 that every feedback algebra admits cogenerations. This theorem may be considered as a generalization of my Theorem 1 in [7]. By the notions of congruences of feedback algebras we obtain for each abstract algebra A a set $Q(A)$ of sets $K \subseteq \text{Con}(A)$ of congruences of A . For every $K \in Q(A)$ the algebra A admits the relative cogenerations, i.e. for each equivalence \sim of A there is a greatest congruence in K contained in \sim . Using the notion of closed feedback algebras we introduce new examples of enrichmental theories of abstract algebras in the sense of [9]. Some applications to tree automata are given in § 3 and 4 ([3],[1]).

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Technical University of Warsaw (Wilga), May 22-25, 1986.

1. Feedback automata and modifications

Let Z be any set and let n be a natural number. We denote by $Fb_n(Z)$ the set of all functions of the following form

$$\alpha : Z^n \times Z^{Z^n} \longrightarrow Z^{Z^n}$$

such that $\alpha(r, f)(r) = f(r)$ for all $r \in Z^n$ and $f \in Z^{Z^n}$.

The elements of $Fb_n(Z)$ are called the feedback automata of the rank n over Z . The set $Fb_n(Z)$ is a monoid with respect to the multiplication $\alpha \cdot \beta$ given by the formula

$$(\alpha \cdot \beta)(r, f) = \alpha(r, \beta(r, f)).$$

The unit of this monoid is the projection $e_n(r, f) = f$. For each $H \subseteq Fb_n(Z)$ we denote by ext_H the monoid homomorphism from the free monoid H^* generated by H to the monoid $Fb_n(Z)$ which is the unique extension of the inclusion map

$$i_H : H \hookrightarrow Fb_n(Z).$$

If $\alpha \in Fb_n(Z)$, then a subset $K \subseteq Z^{Z^n}$ is said to be α -closed provided K determines a subautomaton of α , i.e. K has the property:

$$(s) \quad \text{if } f \in K \text{ and } r \in Z^n, \text{ then } \alpha(r, f) \in K.$$

If a subset K is α -closed for all $\alpha \in H \subseteq Fb_n(Z)$, then K is called H -closed.

We define a feedback modification over a set Z to be a function which for each natural number n determines a feedback automaton of the rank n over Z . The set of all feedback modifications over a set Z is denoted by $Fb(Z)$. Hence $Fb(Z)$ is the set of all functions φ such that $\varphi(n) \in Fb_n(Z)$ for each natural number n . The set $Fb(Z)$ is a monoid with respect to the multiplication $\varphi \cdot \psi$ given by formula

$$(\varphi \cdot \psi)(n) = \varphi(n) \cdot \psi(n) \quad \text{for all } n$$

where $\varphi(n) \cdot \psi(n)$ is the multiplication in the monoid $Fb_n(Z)$.

The unit of $Fb(Z)$ is the function e such that $e(n) = e_n$ is the unit of $Fb_n(Z)$ for all n . If $\varphi \in Fb(Z)$, then for all $r \in Z^n$ and all f in Z^n the value $\varphi(n)(r, f)$ will be also briefly denoted by $\varphi(r, f)$. If $S \subseteq Fb(Z)$, then $S(n) \subseteq Fb_n(Z)$ is the set $\{\varphi(n) : \varphi \in S\}$. A subset K of Z^{Z^n} is said to be S -closed provided K is $S(n)$ -closed. For every $S \subseteq Fb(Z)$, we denote by Ext_S the monoid homomorphism $Ext_S : S^* \rightarrow Fb(Z)$ which is the unique extension of the inclusion map $i_S : S \hookrightarrow Fb(Z)$, where S^* is the free monoid generated by S . The feedback modifications will be used to modify abstract algebras. An abstract algebra is any pair $A = \langle A_0, A_1 \rangle$ such that A_0 is a set called the universe or support of A , A_1 is a function which for each natural number n determines a set $A_{1,n}$ of n -ary operations in the set A_0 ; A_1 is called the operation structure of A and the elements of $A_{1,n}$ are said to be the n -ary fundamental operations of A . A structure type of an abstract algebra A is a pair $\sum = \langle \sum, \gamma \rangle$ such that \sum is a family of disjoint sets \sum_n of operation symbols of rank n and γ is a family of surjective mappings $\gamma_n : \sum_n \rightarrow A_{1,n}$, where n is any natural number. If an abstract algebra A is considered as an algebra of structure type \sum , then for all n , all $r \in \sum_n$, the n -ary fundamental operation $\gamma_n(r)$ is denoted by g_A and A is said to be \sum -algebra or an abstract algebra of (symbol) type \sum with arity function $\xi(g) = n$ for $g \in \sum_n$. For the general theory of abstract algebras and for the theory of \sum -algebras see in the papers [2, 4, 8, 9]. If A and B are two abstract algebras, then the relation $A \leq_r B$ means that $A_0 = B_0$ and $A_{1,n} \subseteq B_{1,n}$ for all n , moreover B is called an enrichment of A . For each set Z the set $Enr_Z(AL)$ of all abstract algebras A with $A_0 = Z$ is a complete lattice with respect to the relation \leq_r . Let $A \in Enr_Z(AL)$ and let $\varphi \in Fb(Z)$. By A_φ we denote the abstract algebra B such that $B_0 = Z$ and $B_{1,n} = \varphi(Z^n, A_{1,n})$ for each n . The algebra A_φ is called the φ -image of A . If $H \subseteq Fb(Z)$, then the algebra $A_H = \bigcup_{\varphi \in H} A_\varphi$ is said to

be the H-image of A. If $A, B \in \text{Enr}_Z(\text{AL})$ and $\varphi \in \text{Fb}(Z)$, then (A, φ, B) is called a feedback morphism from A to B provided $A \varphi \leq_r B$ and we write $\varphi : A \rightarrow B$. The compositions of feedback morphisms given by the multiplication in the monoid $\text{Fb}(Z)$ is also a feedback morphism and in this way we have obtained a category $\text{Fb}(\text{AL})$ called the feedback category of abstract algebras. For two abstract algebras A and B with $A_0 = B_0 = Z$ and a $\varphi \in \text{Fb}(Z)$ we define $\varphi_B^{-1}(A)$ to be an abstract algebra C such that $C_0 = Z$ and for all number n

$$C_{1,n} = \{ f \in B_{1,n} : \varphi(r, f) \in A_{1,n} \text{ for all } r \}.$$

Hence $\varphi_B^{-1}(A) \leq_r A$ or $\varphi : \varphi_B^{-1}(A) \rightarrow A$. If $B = \varphi_B^{-1}(A)$ then B is called an inverse φ -image of A. If $C = \varphi_B^{-1}(A)$, then $\varphi_C^{-1}(A) = C$ and thus $\varphi_B^{-1}(A)$ is an inverse φ -image of A.

If $H \subseteq \text{Fb}(Z)$, then $H_B^{-1}(A)$ denotes the algebra $\bigcup_{\varphi \in H} \varphi_B^{-1}(A)$.

Example 1. Let Σ' and Σ be two (symbol) types for algebras. A feedback transformation from Σ' to Σ over a set Z is a function α such that for each natural number n the value $\alpha(n)$ is a function

$$\alpha(n) : Z^{n \times \Sigma'_n} \rightarrow \Sigma_n.$$

The set of all feedback transformations from Σ' to Σ over a set Z is denoted by $\text{St}_Z(\Sigma', \Sigma)$. If $\alpha \in \text{St}_Z(\Sigma', \Sigma)$, then each algebra A of the type Σ with $A_0 = Z$ determines an algebra A' of the type Σ' and a feedback modification $A \alpha \in \text{Fb}(Z)$ such that $A'_0 = Z$ and

$$(*) \quad \mathcal{G}'_{A'}(r) = \alpha(r, \mathcal{G}'_A(r))$$

$$(**) \quad {}_A\alpha(r, \mathcal{G}'_{A'}) = \alpha(r, \mathcal{G}'_A), \quad {}_A\alpha(r, f) = f$$

for all remaining operations f. The algebra A' is an inverse A -image of A and it is called the α -image of A. If A' is an

inverse φ -image of A , where $\varphi \in \text{Fb}(A_0)$ and A' is a \sum' -algebra, then we can define an $\alpha \in \text{St}_{A_0}(\sum', \sum)$ such that

$$\alpha(r, \mathcal{G}') = \mathcal{G} \quad \text{provided} \quad \varphi(r, \mathcal{G}'_A) = \mathcal{G}_A$$

and $A^\alpha|A' = \varphi|A'$; moreover A' is the α -image of A .

For the second example we define the general product of abstract algebras. If $A^{(t)}$, $t \in T$, is a family of abstract algebras, then the general product of $A^{(t)}$, $t \in T$, is the abstract algebra A such that A_0 is the direct product of sets $A_0^{(t)}$, $t \in T$, or $A_0 = \prod_{t \in T} A_0^{(t)}$, and for each n , $A_{1,n} =$

$= v(\prod_{t \in T} A_{1,n}^{(t)})$, where v is a function from $\prod_{t \in T} A_{1,n}^{(t)}$ to A_0^n given by the following formula

$$v(\beta)(r)(t) = \beta(t)(r(t)) \quad \text{for } t \in T.$$

Example 2. Let \sum' , $\sum^{(1)}$, $\sum^{(2)}$, ..., $\sum^{(m)}$ be (symbol) types for algebras. Let us consider a type $\sum = \sum^{(1)} \times \sum^{(2)} \times \dots \times \sum^{(m)}$ such that for all n $\sum_n = \sum_n^{(1)} \times \sum_n^{(2)} \times \dots \times \sum_n^{(m)}$ and $\alpha \in \text{St}_Z(\sum', \sum)$, where $Z = Z_1 \times Z_2 \times \dots \times Z_m$. Moreover, let us consider a system

$$\alpha = \{A_1, A_2, \dots, A_m\}$$

of abstract algebras A_i of type $\sum^{(i)}$ with $A_{i0} = Z_i$. The general product A of algebras A_1, A_2, \dots, A_m may be considered as an algebra of the type \sum putting for $\mathcal{G} = \langle \mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_m \rangle \in \sum_n$

$$\mathcal{G}_A = v(\langle \mathcal{G}_{1A_1}, \mathcal{G}_{2A_2}, \dots, \mathcal{G}_{mA_m} \rangle).$$

Now we define an abstract algebra A' of the type \sum' and an feedback modification $\alpha^\alpha \in \text{Fb}(Z)$ by the following formulas:

$$(1) \quad A'_0 = Z$$

$$(2) \quad \text{for all } n, \text{ all } G' \in \sum'_n, \quad G'_A(r) = \alpha(r, G')_A(r)$$

$$\alpha \alpha(r, G'_A) = \alpha(r, G')_A.$$

and for all remaining operations

$$(3) \quad \alpha \alpha(r, f) = f.$$

The algebra A' is called the α -product of \mathcal{O} . The algebra A' is an inverse α^α -image of A .

For global feedback modifications we define a general diagonal over sets X and Y to be the set

$$d(X, Y) = \left\{ \langle t, u \rangle \in X^* \times Y^* : |t| = |u| \right\},$$

where X^* and Y^* are the free monoids generated by X and Y and $|t|$ is the length of the word t . By $d^{(m)}(X, Y)$ we denote the subset of $d(X, Y)$ of all pairs $\langle t, u \rangle$ with $|t| = |u| = m$ and it is called the m -diagonal over X and Y . The global feedback automaton of rank n over a set Z is a function of the form

$$G_n(Z) : d(Z^n, Fb(Z)) \times Z^{Z^n} \longrightarrow Z^{Z^n}$$

defined by induction as follows:

$$1^0 \quad G_n(Z)(\langle \varepsilon, \varepsilon \rangle, f) = f, \quad \varepsilon \text{ empty word},$$

$$2^0 \quad G_n(Z)(\langle r, \varphi \rangle, f) = \varphi(r, f) \text{ for } \langle r, \varphi \rangle \in d^{(1)}(Z^n, Fb(Z)),$$

$$3^0 \quad G_n(Z)(\langle rt, \varphi\psi \rangle, f) = \varphi(r, G_n(Z)(\langle t, \psi \rangle, f)).$$

The global feedback modification over a set Z is a function $G(Z)$ defined on the set of all natural numbers such that $G(Z)(n)$ is the function $G_n(Z)$ for all n . The values $G_n(Z)(t, f)$ will be briefly denoted by $G(Z)(t, f)$ or $G(t, f)$.

2. A theory of abstract algebras with feedback modifications

An abstract algebra with feedback modifications or briefly a feedback algebra is a pair $\langle A, H \rangle$ such that A is any abstract algebra and $H \subseteq \text{Fb}(A_0)$. A structure type of a feedback algebra $\langle A, H \rangle$ is any pair (\sum, M) such that \sum is a structure type of A and M is a structure type of H , i.e. $M : M \rightarrow H$ is a surjective mapping, where M is a set of feedback symbols. If we consider a feedback algebra $\langle A, H \rangle$ as one of the structure type (\sum, M) , then for all n , all $\sigma \in \sum_n$, the corresponding fundamental operation of A is denoted by σ_A and for each symbol $m \in M$ the feedback modification $M(m) \in H$ is denoted by m_H and moreover, the feedback algebra $\langle A, H \rangle$ is said to be (\sum, M) -algebra or a feedback algebra of the (symbol) type (\sum, M) . We have three notions of (\sum, M) -homomorphisms.

2.1. Definition. Let $\langle A, H \rangle$ and $\langle B, H' \rangle$ be two feedback algebras of a (symbol) type (\sum, M) .

I. A (\sum, M) -homomorphism from $\langle A, H \rangle$ to $\langle B, H' \rangle$ is any function $h : A_0 \rightarrow B_0$ such that

(1) h is a \sum -homomorphism from A to B , i.e. for all n , all $\sigma \in \sum_n$ and all $r \in A_0^n$, $h(\sigma_A(r)) = \sigma_B(h^n(r))$,

(2) h is a M -homomorphism from H to H' , i.e. for all n , $\sigma \in \sum_n$, $m \in M$ and $r, q \in A_0^n$, $h(m_H(r, \sigma_A(q))) = m_{H'}(h^n(r), \sigma_B(h^n(q)))$

or for all n , for all $\langle r, m \rangle \in d^{(1)}(A_0^n, M)$ the condition (a) holds:

(a) $h(G(A_0)(\langle r, m_H \rangle, \sigma_A(q))) = G(B_0)(\langle h^n(r), m_{H'} \rangle, \sigma_B(h^n(q)))$.

II. A very strong (\sum, M) -homomorphism from $\langle A, H \rangle$ to $\langle B, H' \rangle$ is any (\sum, M) -homomorphism h from $\langle A, H \rangle$ to $\langle B, H' \rangle$ such that for all n and $\sigma \in \sum_n$, all $\langle r, t \rangle \in d(A_0^n, M)$, $q \in A_0^n$:

(b) $h(G(A_0)(\langle r, M_H(t) \rangle, \sigma_A(q))) = G(B_0)(\langle h^{|t|}(r), M_{H'}(t) \rangle, \sigma_B(h^n(q)))$,

where $M_H : M^* \rightarrow H^*$ is the monoid homomorphism which is the unique extension of the mapping $M(m) = m_H$ for all $m \in M$.

III. A strong (Σ, M) -homomorphism from $\langle A, H \rangle$ to $\langle B, H' \rangle$ is any (Σ, M) -homomorphism h from $\langle A, H \rangle$ to $\langle B, H' \rangle$ such that the condition (b) holds only for all n , $\sigma \in \sum_n$ and all $\langle r, t \rangle \in d(A_0^n, M)$ of the following form: $r = r' r' \dots r' = r'^{|t|}$ for some $r' \in A_0^n$ or for all n , $\sigma \in \sum_n$, all $r, q \in A_0^n$ and all $t \in M^*$ holds:

$$(c) \quad h(\text{Ext}_H(M_H(t))(r, \sigma_A)(q)) = \text{Ext}_{H'}(M_{H'}(t))(h^n(r), \sigma_B)(h^n(q)).$$

Let us observe that the composition of very strong, strong and usual (Σ, M) -homomorphisms is also a very strong, strong and usual (Σ, M) -homomorphism. In this way we have obtained three categories of feedback algebras of (symbol) type (Σ, M) . Those categories will be denoted by $\text{VSF}\text{al}(\Sigma, M)$, $\text{SF}\text{al}(\Sigma, M)$ and $\text{F}\text{al}(\Sigma, M)$.

For feedback algebras we have four notions of a congruence.

2.2. Definition. Let $\langle A, H \rangle$ be any feedback algebra and let \sim be any congruence of the abstract algebra A .

I. The relation \sim is called a (usual) congruence of $\langle A, H \rangle$ or a H -congruence of A if it has the following property:

(1) for all $\varphi \in H$, all n , all $f \in A_{1,n}$ and all $r, r', q, q' \in A_0^n$ if $r \sim r'$ and $q \sim q'$, then $\varphi(r, f)(q) \sim \varphi(r', f)(q')$, where $r \sim r'$ means that $r(i) \sim r'(i)$ for all i .

II. The relation \sim is called a very strong congruence of $\langle A, H \rangle$ or a very strong H -congruence of A if it has the following property:

(2) for all n , all $\langle t, \psi \rangle, \langle t', \psi \rangle \in d(A_0^n, H)$, all $f \in A_{1,n}$, $q, q' \in A_0^n$ if $t \sim t'$ and $q \sim q'$, then $G(A_0)(\langle t, \psi \rangle, f)(q) \sim G(A_0)(\langle t', \psi \rangle, f)(q')$ where $t \sim t'$ means that $t(i) \sim t'(i)$ for $i=1, \dots, |\psi| \cdot n$.

III. The relation \sim is a strong congruence of $\langle A, H \rangle$ or a strong H -congruence of A if it has the following property:

(3) for all n , all $f \in A_{1,n}$, all $r, r', q, q' \in A_0^n$ and all $\varphi \in H^*$ if $r \sim r'$ and $q \sim q'$, then $\text{Ext}_H(\varphi)(r, f)(q) \sim \text{Ext}_H(\varphi)(r', f)(q')$.

IV. The relation \sim is called a reversible congruence of $\langle A, H \rangle$ or a reversible H-congruence of A if it is a congruence of $\langle A, H \rangle$ and it has the following property:

(4) for each $\varphi \in H$, all n , all $f \in A_0^n$ if \sim is a congruence of all operations $\varphi(r, f)$, where $r \in A_0^n$, then for all $q, q' \in A_0^n$ $\varphi(q, f)(q') \sim \varphi(q', f)(q)$ provided $q \sim q'$.

By a simple verification we obtain

2.3. The relations modh induced by very strong, strong and usual (Σ, M) -homomorphisms $h : \langle A, H \rangle \rightarrow \langle B, H' \rangle$ are very strong, strong and usual congruences of $\langle A, H \rangle$.

2.4. For each congruence \sim of $\langle A, H \rangle$ of a (symbol) type (Σ, M) we have the quotient feedback algebra $\langle A/\sim, H/\sim \rangle$ and a surjective (Σ, M) -homomorphism $j_\sim : \langle A, H \rangle \rightarrow \langle A/\sim, H/\sim \rangle$, where A/\sim is the quotient Σ -algebra, $j_\sim(a) = [a]_\sim = \{b \in A_0 : b \sim a\}$, $H_\sim = \{\varphi_\sim : \varphi \in H\}$ and $\varphi_\sim([r]_\sim, \sigma_{A/\sim})([q]_\sim) = [\varphi(r, \sigma_A)(q)]_\sim$ and moreover $\varphi_\sim([\bar{r}]_\sim, f) = f$ for the remaining operations f .

If \sim is very strong or strong, then j_\sim is very strong or strong.

Let us observe that

2.5. If \sim is a congruence of a feedback algebra $\langle A, H \rangle$, then \sim has the following properties:

- (1) if $f \in A_{1,n}$, $\varphi \in H$ and $r \sim r'$, then $\varphi(r, f)(r') \sim \varphi(r', f)(r)$,
- (2) if $f \in A_{1,n}$, $\varphi \in H$, $q \sim q'$, then $\varphi(r, f)(q) \sim \varphi(r, f)(q')$
i.e. \sim is a congruence of the operations $\varphi(r, f)$ for $r \in A_0^n$,
- (3) if $f' \in A_0^n$ and \sim is a congruence of all operations $\varphi(r, f')$ where $r \in A_0^n$ and φ is one given fixed element of H , and moreover (1) holds for $f = f'$, then \sim is a congruence of f' .

P r o o f . The property (1) follows from 2.2.(1) for $r \sim r'$ and $r' \sim r$. The property 2 follows from 2.2.(1) for $r = r'$. For (3) assume that $q \sim q'$. Then $f'(q) = \varphi(q, f')(q) \sim \varphi(q, f')(q')$ (1) $\varphi(q', f')(q) \sim \varphi(q', f')(q') = f'(q')$.

2.6. Let $\langle A, H \rangle$ be any feedback algebra. Then the following propositions hold:

I. If \sim is a congruence of $\langle A, H \rangle$, then \sim is a congruence of A_H .

II. If \sim is a reversible congruence of $\langle A, H \rangle$, then for all $\varphi \in H$ \sim is a congruence of a n -ary operation f if and only if \sim is a congruence of all operations $\varphi(r, f)$, where $r \in A_0^n$.

Proof. I follows from 2.5.(2). II follows from 2.5.(3). For each feedback algebra $\langle A, H \rangle$ the sets of all strong, very strong and of usual congruences of $\langle A, H \rangle$ will be denoted by $SCon(\langle A, H \rangle)$, $VSCon(\langle A, H \rangle)$ and $Con(\langle A, H \rangle)$ respectively. If those congruences are considered as H -congruences of A , then those sets will be denoted by $SCon_H(A)$, $VSCon_H(A)$ and $Con_H(A)$. Hence we have $SCon(\langle A, H \rangle) = SCon_H(A)$, $VSCon(\langle A, H \rangle) = VSCon_H(A)$ and $Con(\langle A, H \rangle) = Con_H(A)$. Let us observe that the notion of $\{e\}$ -congruence of A , where e is the unit of the monoid $Fb(A_0)$, is identical with the usual notion of a congruence of an abstract algebra A . Hence we obtain $Con(A) = Con_{\{e\}}(A)$.

A subalgebra of a feedback algebra $\langle A, H \rangle$ is any feedback algebra $\langle A', H \rangle$, where A' is a subalgebra of A .

2.7. If $\langle A, H \rangle$ is a feedback algebra, $A_H \leq_r A'$ and Y is a subalgebra of A' , then $\langle Y_0, H \rangle$ is a subalgebra of $\langle A, H \rangle$. If a set X generates A , then for each $H \subseteq Fb(A_0)$ and each abstract algebra A' with $A_H \leq_r A'$ the set X generates A' .

Proof. Let $\varphi \in H$. Moreover, let $f \in A_{1,n}$. For each $r \in Y_0^n$, $f(r) = \varphi(r, f)(r) \in Y_0$ since Y is a subalgebra of A' . Hence Y_0 is closed with respect to all fundamental operations of A and thus Y_0 may be considered as a subalgebra of A . If $Y \supseteq X$ is a subalgebra of A' , then Y_0 may be considered as a subalgebra of A but X generates A , and thus $Y_0 = A_0$ i.e. X generates $A' \geq_r A_H$.

If $\langle A^{(t)}, H^{(t)} \rangle$ for $t \in T$ are feedback algebras, then the general product of $\langle A^{(t)}, H^{(t)} \rangle$, $t \in T$, is the feedback algebra $\langle A, H \rangle$, where A is the general product of $A^{(t)}$, $t \in T$, and $H = w(P, H^{(t)})$, $w : \prod_{t \in T} H^{(t)} \rightarrow Fb(A_0)$ is defined by the formula:

$$(gp) \quad w(\beta)(r, f)(q)(t) = \beta(t)(r(t), f(t))(q(t)), \quad t \in T.$$

2.8. The category $\text{Fal}(\Sigma, M)$ has products.

P r o o f. Let $\langle A^{(t)}, H^{(t)} \rangle$, $t \in T$, be any family of feedback algebras of a (symbol) type (Σ, M) . Let us denote by A the Σ -direct product of Σ -algebras $A^{(t)}$, $t \in T$. For each $m \in M$ we define $m_H \in \text{Fb}(A_0)$ putting for all n , $f \in A_0^n$, $r, q \in A_0^n$:

if $f = \sigma_A$ for some $\sigma \in \sum_n m_H(r, f)(q) = g$, where for $t \in T$

$$g(t) = m_H(t)(r(t), \sigma_A(t))(q(t))$$

else $m_H(r, f) = f$. Let $H = \{m_H : m \in M\}$. Then the feedback algebra $\langle A, H \rangle$ with the projections $p_t : A_0 \rightarrow A_0^{(t)}$, $t \in T$ is the product (called direct) of $\langle A^{(t)}, H^{(t)} \rangle$, $t \in T$, in the category $\text{Fal}(\Sigma, M)$.

3. Relative cogenerations and relative regular equivalences in abstract algebras with applications

Let A be any abstract algebra. If $K \subseteq \text{Con}(A)$ is a set of congruences of A and \sim is an equivalence relation of A_0 or $\sim \in \text{Eq}(A_0)$ then we say that the relation \sim K -cogenerates in A a congruence \sim^* provided \sim^* is the greatest congruence in K which saturates \sim , i.e. which is contained in \sim .

Let Σ be a structure type of A . Let us consider a category $\text{Epi}_\Sigma(A, K, \sim)$. The objects of $\text{Epi}_\Sigma(A, K, \sim)$ are all surjective Σ -homomorphism $h: A \rightarrow A'$ of A such that $\text{mod}h \in K$ and $\text{mod}h \leq \sim$, where $\text{mod}h$ is the congruence of A induced by h . The morphisms in $\text{Epi}_\Sigma(K, A, \sim)$ from $h: A \rightarrow A'$ to $h': A \rightarrow A''$ are all Σ -homomorphisms $q: A' \rightarrow A''$ with $h' = q \circ h$. The objects of $\text{Epi}_\Sigma(A, K, \sim)$ are called $\text{mod}(K, \sim)$ Σ -epimorphisms of A . A object $h: A \rightarrow A'$ is said to be finite provided A'_0 is a finite set. The terminal object of $\text{Epi}_\Sigma(A, K, \sim)$ is called a minimal $\text{mod}(K, \sim)$ Σ -epimorphism of A .

Hence we obtain

3.1. An equivalence \sim of A_0 K-cogenerates in an abstract algebra A a congruence if and only if A has a minimal $\text{mod}(K, \sim)$ Σ -epimorphism, where Σ is the (symbol) type of A .

P r o o f. If \sim^* is the congruence of A K-cogenerated by \sim , then $j_{\sim^*}: A \rightarrow A/\sim^*$ is a minimal $\text{mod}(K, \sim)$ Σ -epimorphism of A . If $h: A \rightarrow A'$ is a minimal $\text{mod}(K, \sim)$ Σ -epimorphism, then h is the terminal object of the category $\text{Epi}_{\Sigma}(A, K, \sim)$ and thus the congruence $\text{mod} h$ is K-cogenerated by \sim .

3.2. **D e f i n i t i o n.** Let A be any abstract algebra and let $K \subseteq \text{Con}(A)$ be any set of congruences of A . We say that K admits in A relative cogenerations or that A admits relative K -cogenerations if every equivalence relation \sim of A_0 K-cogenerates in A a congruence i.e. for each $\sim \in \text{Eq}(A_0)$ there is a greatest congruence in K contained in \sim .

3.3. **T h e o r e m.** If an abstract algebra B admits relative K -cogenerations, then for every abstract algebra A with $A \leq_r B$ the algebra A admits the relative K -cogenerations.

P r o o f. Since $A \leq_r B$, therefore $\text{Con}(B) \subseteq \text{Con}(A)$ and $K \subseteq \text{Con}(B) \subseteq \text{Con}(A)$. Hence the congruence $\sim^* \in K$ which is K-co-generated in B by \sim , is also K-co-generated in A by \sim .

By Theorem 1 from [7] every abstract algebra B admits cogenerations, i.e. admits relative $\text{Con}(B)$ -cogenerations. Hence by 3.3 we easily obtain

3.4. **T h e o r e m.** For two abstract algebras A and B if $A \leq_r B$, then the algebra A admits relative $\text{Con}(B)$ -cogenerations.

3.5. **D e f i n i t i o n.** Let A be any abstract algebra and let $K \subseteq \text{Con}(A)$. Moreover, let Σ be the (symbol) type of A . An equivalence relation \sim of A_0 is said to be mod K Σ -regular in A provided there is a finite mod(K, \sim) Σ -epimorphism of A .

3.6. **T h e o r e m.** Let us assume that an equivalence \sim of A_0 K-cogenerates a congruence \sim^* in an abstract algebra A of (symbol) type Σ . Then the following conditions are equivalent:

- (1) the equivalence \sim is mod $K\sum$ -regular in A ;
- (2) there is in K a congruence of finite index which saturates \sim ;
- (3) the congruence \sim^* of A K-cogenerated by \sim has a finite index.

The conditions (1), (2) and (3) are equivalent for all $K = \text{Con}(B)$, where B is any abstract algebra with $\leq_r B$.

P r o o f . (1) \Rightarrow (2). Let $h:A \rightarrow A'$ be a finite mod(K, \sim) \sum -epimorphism of A . Then $\text{card}(A_0)$ is the index of $\text{mod} h \in K$ and it is finite. Moreover, $\text{mod} h$ saturates \sim .

(2) \Rightarrow (3). Let a congruence $\sim' \in K$ which saturates \sim have a finite index. Then $\sim' \subseteq \sim^*$, therefore we have a surjective \sum -homomorphism $h:A/\sim' \rightarrow A/\sim^*$. Hence $\text{card}(A/\sim^*) = \text{in}(\sim^*) \leq \leq \text{car}(A/\sim') = \text{in}(\sim')$ i.e. the index of \sim^* is a finite number.

(3) \Rightarrow (1). Then $j_{\sim^*}:A \rightarrow A/\sim^*$ is a finite mod(K, \sim) \sum -epimorphism of A i.e. by 3.5 the equivalence \sim is mod $K\sum$ -regular in A . The last part of 3.6 is obtained by 3.4.

3.7. D e f i n i t i o n . A subset $Z \subseteq A_0$ is called mod $K\sum$ -regular in an abstract algebra A of a (symbol) type \sum provided the equivalence \sim_Z of A_0 induced by Z , i.e. determined by the partition $\{A_0 - Z, Z\}$, is mod $K\sum$ -regular in A .

A characterization of mod $K\sum$ -regular subsets Z of an abstract algebra A of a (symbol) type \sum is given by 3.6 for $\sim = \sim_Z$. The mod $\text{Con}(A)\sum$ -regular equivalences and subsets in a \sum -algebra A are called \sum -regular equivalences and subsets in A . By the last part of 3.6 we immediately obtain

3.8. For a \sum -algebra A and any $\sim \in \text{Eq}(A_0)$ the following conditions are equivalent:

- (1) \sim is \sum -regular in A ;
- (2) there is a congruence of finite index of A which saturates \sim ;
- (3) the congruence of A cogenerated by \sim has a finite index.

3.9. D e f i n i t i o n . Let \sum be a (symbol) type for algebras. Let X and Y be any sets. A \sum -machine over X and Y is any function

$$f : F_{\Sigma}(X)_0 \longrightarrow Y,$$

where $F_{\Sigma}(X)$ is the absolutely free algebra of type Σ freely generated by X . A Σ -tree automaton over X and Y is each triple $\alpha = \langle c, A, w \rangle$, where A is an abstract algebra of the type Σ , $c : X \rightarrow A_0$ is a function called the input function of α , $w : A_0 \rightarrow Y$ is a function called the output function of α . Let $\alpha = \langle c, A, w \rangle$ be any Σ -tree automaton over X and Y . The function $b_{\alpha} = w \circ c_{\alpha}$, where $c_{\alpha} : F_{\Sigma}(X) \rightarrow A$ is the unique Σ -homomorphism which is an extension of c , is called the Σ -machine realizable by α and α is said to be a Σ -realization of b_{α} . A Σ -tree automaton $\alpha = \langle c, A, w \rangle$ is called reachable if c_{α} is a surjective function.

3.10. **D e f i n i t i o n .** Let K be any set of congruences of the algebra $F_{\Sigma}(X)$. A mod K Σ -realization of a Σ -machine f over X and Y is each Σ -tree automaton $\alpha = \langle c, A, w \rangle$ over X and Y such that $b_{\alpha} = f$ and the congruence induced by c_{α} belongs to K . If moreover, α is reachable, then α is said to be a mod K reachable Σ -realization of f .

For each $K \subseteq \text{Con}(F_{\Sigma}(X))$ and each Σ -machine f over X and Y we have a category $\text{Real}_K(f)$ of mod K reachable Σ -realizations of the Σ -machine f with morphisms from $\alpha = \langle c, A, w \rangle$ to $\alpha' = \langle c', A', w' \rangle$ being all Σ -homomorphisms $q : A \rightarrow A'$ such that

$$\begin{array}{ccccc} & & A & & \\ & \swarrow & \downarrow q & \searrow & \\ X & = & A & = & Y \\ & \searrow & \downarrow q & \swarrow & \\ & & A' & & \\ & \swarrow & \downarrow q' & \searrow & \\ & & A'' & & \end{array}$$

commutes. The terminal object of $\text{Real}_K(f)$ is called a minimal mod K Σ -realization of f . A Σ -machine f over X and Y is said to be mod K Σ -regular provided the equivalence mod f induced by f is mod K Σ -regular in the algebra $F_{\Sigma}(X)$.

3.11. **T h e o r e m :**

I. A Σ -machine f over X and Y has a minimal mod K Σ -realization if and only if the equivalence mod f induced by f K -cogenerates a congruence in the algebra $F_{\Sigma}(X)$.

II. If a Σ -machine f over X and Y has a minimal mod K Σ -realization, then f has a finite mod K Σ -realization if and only if f is mod K Σ -regular.

III. Let $K = \text{Con}(B)$, where B is any abstract algebra with $F_{\Sigma}(X) \leq_r B$. Then we have:

(i) every Σ -machine f over X and Y has a minimal mod K Σ -realization,

(ii) a Σ -machine f over X and Y has a finite mod K Σ -realization if and only if f is mod K Σ -regular.

P r o o f. I. The categories $\text{Real}_K(f)$ and $\text{Epi}_{\Sigma}(F_{\Sigma}(X), K, \text{mod}f)$ are isomorphic and thus by 3.1 we obtain I.

II. Follows from part I by 3.6.

III. Follows from parts I and II by 3.4.

3.12. **D e f i n i t i o n.** Let K be any set of congruences of the algebra $F_{\Sigma}(X)$. We say that K admits minimal relative Σ -realizations over X if for every set Y every Σ -machine f over X and Y has a minimal mod K Σ -realization.

By 3.11 we immediately obtain

3.13. **T h e o r e m.** A set K admits minimal relative Σ -realizations over X if and only if the algebra $F_{\Sigma}(X)$ admits relative K -cogenerations.

Now we give a remark on tree automata with different types. Let $\alpha = \langle c, A, w \rangle$ and $\alpha' = \langle c, A', w \rangle$ be a Σ -tree automaton and a Σ' -automaton over X and Y respectively with the same input function $c: X \rightarrow A_0 = A'_0$ and the same output function $w: A_0 \rightarrow Y$.

Then using 2.7 we can prove the following proposition

3.14. If $\varphi: A \rightarrow A'$ is a feedback morphism, i.e. $A_{\varphi} \leq_r A'$, and α is reachable, then α' is reachable and by tree induction we obtain a function $\bar{\varphi}: F_{\Sigma}(X)_0 \rightarrow F_{\Sigma'}(X)_0$ such that:

1° $\bar{\varphi}(x) = x$ for $x \in X$,

2° for all n , all $\sigma \in \Sigma_n$ we have

$$\bar{\varphi}(\sigma(t_1, t_2, \dots, t_n)) = \sigma'(\bar{\varphi}(t_1), \bar{\varphi}(t_2), \dots, \bar{\varphi}(t_n))$$

provided $\varphi(c_{\alpha}(t_1), c_{\alpha}(t_2), \dots, c_{\alpha}(t_n)), \sigma_{A'} = \sigma_{A'}$,

$$3^0 \quad b_{\alpha} = b_{\alpha} \circ \bar{\varphi} \quad \text{and} \quad b_{\alpha'}^{-1}(y) = \bar{\varphi}(b_{\alpha}^{-1}(y)), \quad y \in Y.$$

4. Cogenerations in feedback algebras and relative feedback cogenerations in abstract algebras

Now we prove the main theorem.

4.1. Theorem. Let $\langle A, H \rangle$ be any feedback algebra and let \sim by any equivalence relation of the set A_0 . Then the following propositions hold:

(1) there is a greatest congruence \sim^* of $\langle A, H \rangle$ contained in \sim and it is the greatest H -congruence of A contained in \sim ;

(2) there is a greatest very strong congruence \sim_{vs}^* of $\langle A, H \rangle$ contained in \sim and it is the greatest very strong H -congruence of A contained in \sim ;

(3) there is a greatest strong congruence \sim_s^* of $\langle A, H \rangle$ contained in \sim and it is the greatest strong H -congruence of A contained in \sim ;

(4) there is a greatest reversible congruence \sim_r^* of $\langle A, H \rangle$ contained in \sim and it is the greatest reversible H -congruence of A contained in \sim .

Proof. For a set Z , $f \in Z^{Z^n}$ and $\psi \in Fb(Z)^*$ we define in Z a $(|\psi|+1) \cdot n$ -ary operation f_ψ by the formula

$$f_\psi(r) = G(Z)(\langle t, \psi \rangle, f)(q),$$

where $r = t \cdot q$ in the monoid $(Z^n)^*$. Let us observe that, by 1° from the definition of $G(Z)$ which is given in the last part of §1, $f_\varepsilon = f$, where ε is the empty word. Moreover, for $\psi \in Fb(Z)^*$, $\psi \neq \varepsilon$, an n -ary operation f acting on Z we define in Z a $2n$ -ary operation ${}_\psi f$ by the defining formula

$${}_\psi f(r) = \text{Ext}(\psi)(t, f)(q),$$

where $\text{Ext} : Fb(Z)^* \rightarrow Fb(Z)$ is the unique monoid homomorphism which is the extension of the identity inclusion $1_{Fb(Z)}$, t and q belong to Z^n and $r = t \cdot q$ in the monoid $(Z^n)^*$. We remark that ${}_\psi f(r) = f_\psi(u)$, where for some t and q in Z^n we

have $r = t \cdot q$ and $u = t^{|\psi|} \cdot q$ in the monoid $(Z^n)^*$. If F is a set of operations acting on Z and $\psi \in \text{Fb}(Z)^*$, then

$$(F)_\psi = \{f_\psi : f \in F\} \quad \text{and} \quad \psi(F) = \{\psi f : f \in F\}.$$

Using the above definitions we give the proof of (1)-(4).

P r o o f (1). We define $\text{Op}_H^{(1)}(A) = \bigcup_{n=0}^{\infty} \bigcup_{\psi \in H} (A_{1,n})_\psi$

and $\text{Op}_H^{(1)}(A)_m = \{f : f \in \text{Op}_H^{(1)}(A) \text{ and } f \text{ is } m\text{-ary}\}$. Let $A^{(H)}$ be the abstract algebra B such that $B_0 = A_0$ and for all natural n $B_{1,n} = \text{Op}_H^{(1)}(A)_n$. From the construction of $A^{(H)}$ we obtain

$$(1^*) \quad A \leq_r A^{(H)} \quad \text{and} \quad \text{Con}(A^{(H)}) = \text{Con}_H(A) = \text{Con}(\langle A, H \rangle).$$

Since $A \leq_r A^{(H)}$, therefore by 3.4 the algebra A admits relative $\text{Con}(A^{(H)})$ -cogenerations. Let \sim^* be the congruence of A $\text{Con}(A^{(H)})$ -cogenerated by \sim . Hence, by (1*), \sim^* is the greatest congruence of $\langle A, H \rangle$ contained in \sim and it is also the greatest H -congruence of A contained in \sim .

P r o o f (2). We define $\text{Op}_H^{(2)}(A) = \bigcup_{n=0}^{\infty} \bigcup_{\psi \in H^*} (A_{1,n})_\psi$

and $\text{Op}_H^{(2)}(A)_m = \{f \in \text{Op}_H^{(2)}(A) : f \text{ is } m\text{-ary}\}$. Let $A^{vs(H)}$ be the abstract algebra B such that $B_0 = A_0$ and $B_{1,n} = \text{Op}_H^{(2)}(A)_n$ for all natural number n . From the construction of $A^{vs(H)}$ it follows that

$$(2^*) \quad A \leq_r A^{vs(H)} \quad \text{and} \quad \text{Con}(A^{vs(H)}) = \text{VSCon}_H(A) = \text{VSCon}(\langle A, H \rangle).$$

Since $A \leq_r A^{vs(H)}$ therefore by 3.4 the algebra A admits the relative $\text{Con}(A^{vs(H)})$ -cogenerations. Let \sim_{vs}^* be the congruence of A which is $\text{Con}(A^{vs(H)})$ -cogenerated by \sim . Hence by (2*) the congruence \sim_{vs}^* is the greatest very strong congruence of $\langle A, H \rangle$ contained in \sim and it is also the greatest very strong H -congruence of A contained in \sim .

Proof (3). We define $Op_H^{(3)}(A) = \bigcup_{n=0}^{\infty} \bigcup_{\substack{\psi \in H^* \\ \psi \neq \varepsilon}} (A_{1,n} \cup \cup_{\psi(A_{1,n})})$ and $Op_H^{(3)}(A)_m = \{f \in Op_H^{(3)}(A) : f \text{ is } m\text{-ary}\}$. We define $A^{s(H)}$ to be the abstract algebra B such that $B_0 = A_0$ and $B_{1,n} = Op_H^{(3)}(A)_n$ for all natural number n. From the definition of $A^{s(H)}$ we obtain

$$(3^*) \quad A \leq_r A^{s(H)} \quad \text{and} \quad \text{Con}(A^{s(H)}) = \text{SCon}_H(A) = \text{SCon}(\langle A, H \rangle).$$

Since $A \leq_r A^{s(H)}$ therefore by 3.4 the algebra A admits relative $\text{Con}(A^{s(H)})$ -cogenerations. Let \sim_s^* be the congruence A of A which is $\text{Con}(A^{s(H)})$ -cogenerated by \sim . Hence by (3*) the congruence \sim_s^* is the greatest strong congruence of $\langle A, H \rangle$ contained in \sim and it is also the greatest strong H-congruence of A contained in \sim .

Proof (4). We denote by $\text{RCon}(\langle A, H \rangle)$ and $\text{RCon}_H(A)$ the sets of all reversible congruences of $\langle A, H \rangle$ and of all reversible H-congruence of A. Moreover, for each $\varphi \in \text{Fb}(A_0)$ we denote by $R_{\varphi}^{(n)}$ the set of all n-ary operations f acting on A_0^n satisfying the following condition:

(r) for every H-congruence \equiv of A if \equiv is a congruence of all operations $\varphi(r, f)$ with $r \in A_0^n$, then $\varphi(q, f)(q') \equiv \varphi(q', f)(q)$ for all q and q' in A_0^n with $q \equiv q'$.

We define $Op_H^{(4)}(A) = Op_H^{(1)}(A) \cup \bigcup_{n=0}^{\infty} \bigcup_{\varphi \in H} (R_{\varphi}^{(n)})_{\varphi}$ and $Op_H^{(4)}(A)_m = \{f \in Op_H^{(4)}(A) : f \text{ is } m\text{-ary}\}$. We define $A^{r(H)}$ to be the abstract algebra B such that $B_0 = A_0$ and $B_{1,n} = Op_H^{(4)}(A)_n$ for all natural number n.

From the construction of the algebra $A^{r(H)}$ it follows that

$$(4^*) \quad A \leq_r A^{r(H)} \quad \text{and} \quad \text{Con}(A^{r(H)}) = \text{RCon}_H(A) = \text{RCon}(\langle A, H \rangle).$$

Since $A \leq_r A^{r(H)}$ therefore by 3.4 the algebra A admits the relative $\text{Con}(A^{r(H)})$ -cogenerations. Let \sim_r^* be the congruence

of A which is $\text{Con}(A^R(H))$ -cogenerated by \sim . Hence by (4*) the relation \sim^*_R is the greatest reversible congruence of $\langle A, H \rangle$ contained in \sim and it is also the greatest reversible H -congruence of A contained in \sim . This finishes our proof of Theorem 4.1.

The abstract algebra A is equivalent under cogenerations to the feedback algebra $\langle A, \{e\} \rangle$, where e is the unit of the monoid $\text{Fb}(A_0)$. Hence Theorem 4.1 may be considered as a generalization of my Theorem 1 from [7].

4.2. Definition. Let A be any abstract algebra. If $K \subseteq \text{Con}(A)$, then K is said to be a feedback set of congruences of A provided there is a set $H \subseteq \text{Fb}(A_0)$ with $K \in \{\text{Con}_H(A), \text{VSCon}_H(A), \text{SCon}_H(A), \text{RCon}_H(A)\}$. The set of all feedback sets of congruences of A is denoted by $Q(A)$.

By 4.1 we immediately obtain:

4.3. Theorem. For every abstract algebra A , for each feedback set K of congruences of A , i.e. for $K \in Q(A)$, the algebra A admits relative K -cogenerations.

By 3.13 and 4.3 we have

4.4. Theorem. For every $K \in Q(F_\Sigma(X))$ the set K admits minimal relative Σ -realizations over X .

For any feedback algebra $\langle A, H \rangle$ of a type (Σ, M) we can define in an analogous way as in § 3 the categories $\text{Epi}(\Sigma, M)(\langle A, H \rangle, \sim)$, $\text{VSEpi}(\Sigma, M)(\langle A, H \rangle, \sim)$ and $\text{SEpi}(\Sigma, M)(\langle A, H \rangle, \sim)$ of usual, very strong and strong (Σ, M) -epimorphisms of $\langle A, H \rangle$ which saturate an equivalence $\sim \in \text{Eq}(A_0)$.

From 4.1 it follows that

4.5. The categories $\text{Epi}(\Sigma, M)(\langle A, H \rangle, \sim)$, $\text{VSEpi}(\Sigma, M)(\langle A, H \rangle, \sim)$ and $\text{SEpi}(\Sigma, M)(\langle A, H \rangle, \sim)$ have terminal objects. We have the following isomorphisms of categories:

$$\text{Epi}(\Sigma, M)(\langle A, H \rangle, \sim) \cong \text{Epi}_\Sigma(A, \text{Con}_H(A), \sim)$$

$$\text{VSEpi}(\Sigma, M)(\langle A, H \rangle, \sim) \cong \text{Epi}_\Sigma(A, \text{VSCon}_H(A), \sim) \text{ and}$$

$$\text{SEpi}(\Sigma, M)(\langle A, H \rangle, \sim) \cong \text{Epi}_\Sigma(A, \text{SCon}_H(A), \sim).$$

5. Feedback enrichmental theories of abstract algebras

5.1. **Theorem.** For each feedback algebra $\langle A, H \rangle$ there is least closed feedback algebra $\langle A', H \rangle$ with $A \leq_r A'$.

Proof. For each n , we define by induction a sequence $z_0^{(n)}, z_1^{(n)}, \dots$ through the formulas

$$z_0^{(n)} = A_{1,n} \text{ and } z_{j+1}^{(n)} = z_j^{(n)} \cup \bigcup_{\varphi \in H} \varphi(A_0^n, z_j^{(n)})$$

We define $A' = \text{Cl}_H(A)$ to be such an abstract algebra that $A'_0 = A_0$ and for each n $A'_{1,n} = \bigcup_{j=0}^{\infty} z_j^{(n)}$. By the construction the feedback algebra $\langle A', H \rangle$ is closed and it is the least closed feedback algebra with $A \leq_r A'$.

Let us observe that

5.2. For each $H \subseteq \text{Fb}(Z)$, the function $\text{Cl}_H : \text{Enr}_Z(\text{Al}) \rightarrow \text{Enr}_Z(\text{Al})$ is a monad of the poset category $\text{Enr}_Z(\text{Al})$ with respect to the relation \leq_r . The Cl_H -monad algebras are H -closed abstract algebras.

5.3. **Definition.** A feedback selection is any mapping fb such that for each set Z $fb(Z) \leq \text{Fb}(Z)$. Any feedback selection fb defines a mapping $\bar{fb} : \text{Enr}(\text{Al}) \rightarrow \text{Enr}(\text{Al})$ such that for any abstract algebra A , $\bar{fb}(A) = \text{Cl}_{fb(A_0)}(A)$.

By 5.2 we obtain

5.4. **Theorem.** For every feedback selection fb the mapping $\bar{fb} : \text{Enr}(\text{Al}) \rightarrow \text{Enr}(\text{Al})$ is a monad of the poset category $\text{Enr}(\text{Al})$ of all abstract algebras under the relation \leq_r i.e. \bar{fb} is an enrichmental theory of abstract algebras.

The theories of the form \bar{fb} are said to be the usual feedback enrichmental theories of abstract algebras.

5.5. **Definition.** Let $\langle A, H \rangle$ be any closed feedback algebra and let $\text{Op}(A)$ be the set of all fundamental (basic) operations of A . Then $\langle A, H \rangle$ is called right complete if it has the property

(1) if $f \in \text{Op}(A)$, then $f_\psi \in \text{Op}(A)$ for each $\psi \in H^*$.

$\langle A, H \rangle$ is called left complete if it has the property:

(2) if $f \in \text{Op } A$, then $\psi f \in \text{Op}(A)$ for each $\psi \in H^*$ (we assume that $\varepsilon f = f$ if ε is empty word).

The algebra $\langle A, H \rangle$ is called complete if it is right and left complete.

5.6. Theorem. For every feedback algebra $\langle A, H \rangle$ there is a least right complete, left complete and complete feedback algebra $\langle A', H \rangle$ with $A \leq_r A'$.

Proof. For a set F of operations acting on Z and for $\varphi \in \text{Fb}(Z)$ we define $\bar{\varphi}(F)$ to be the set $\{\varphi(r, f) : \text{there is } n, r \in Z^n \text{ and } f \in F\}$. We define by induction three sequences, $F_i^{(r)}$, $F_i^{(1)}$ and $F_i^{(c)}$, $i = 0, 1, \dots$, of sets of operations acting on A_0 through the formulas:

$$(1) \quad F_0^{(r)} = F_0^{(1)} = F_0^{(c)} = \text{Op}(A),$$

$$(2) \quad F_{i+1}^{(r)} = F_i^{(r)} \cup \bigcup_{\varphi \in H} \bar{\varphi}(F_i^{(r)}) \cup \bigcup_{\psi \in H^*} (F_i^{(r)})_\psi,$$

$$(3) \quad F_{i+1}^{(1)} = F_i^{(1)} \cup \bigcup_{\varphi \in H} \bar{\varphi}(F_i^{(1)}) \cup \bigcup_{\psi \in H^*} (F_i^{(1)})_\psi,$$

$$(4) \quad F_{i+1}^{(c)} = F_i^{(c)} \cup \bigcup_{\varphi \in H} \bar{\varphi}(F_i^{(c)}) \cup \bigcup_{\psi \in H^*} ((F_i^{(c)})_\psi \cup \psi(F_i^{(c)})).$$

For $t \in \{r, l, c\}$ we put $\text{Op}_H^{(t)}(A) = \bigcup_{i=0}^{\infty} F_i^{(t)}$ and $\text{Op}_H^{(t)}(A)_n = \{f \in \text{Op}_H^{(t)}(A) : f \text{ is } n\text{-ary}\}$. Moreover, for $t \in \{r, l, c\}$ we define $A^{(t)} = \text{Cl}_H^{(t)}(A)$ to be the abstract algebra $B^{(t)}$ such that $B_0^{(t)} = A_0$ and $B_{1,n}^{(t)} = \text{Op}_H^{(t)}(A)_n$ for all n . From the construction it follows that $\langle A^{(r)}, H \rangle$, $\langle A^{(l)}, H \rangle$ and $\langle A^{(c)}, H \rangle$ are the least right complete, left complete and complete feedback algebras with $A \leq_r A^{(r)}$, $A \leq_r A^{(l)}$ and $A \leq_r A^{(c)}$.

From 5.6 we obtain

5.7. For $t \in \{r, l, c\}$, $H \subseteq \text{Fb}(Z)$ the mappings $\text{Cl}_H^{(t)} : \text{Enr}_Z(\text{AL}) \rightarrow \text{Enr}_Z(\text{AL})$ are the monads of the poset category $\text{Enr}_Z(\text{AL})$ of abstract algebras with universe Z under \leq_r .

5.8. **D e f i n i t i o n .** For $t \in \{r, l, c\}$ and for each feedback selection fb we define $\bar{fb}^{(t)}$ to be a mapping $\bar{fb}^{(t)} : \text{Enr(AL)} \rightarrow \text{Enr(AL)}$ such that

$$\bar{fb}^{(t)}(A) = \text{Cl}_{fb(A_0)}^{(t)}(A)$$

for every abstract algebra A .

By 5.7 we immediately obtain

5.9. **T h e o r e m .** For every feedback selection fb and for $t \in \{r, l, c\}$ the mapping $\bar{fb}^{(t)} : \text{Enr(AL)} \rightarrow \text{Enr(AL)}$ is a monad of the poset category Enr(AL) of all abstract algebras under the relation \leq_r i.e. $\bar{fb}^{(t)}$, for $t \in \{r, l, c\}$, is an enrichmental theory of abstract algebras.

The theories of the form $\bar{fb}^{(r)}$, $\bar{fb}^{(l)}$ and $\bar{fb}^{(c)}$ are called right complete, left complete and complete feedback enrichmental theories of abstract algebras.

6. Feedback adjunctions

The categories $\text{Fal}(\Sigma, M)$, $\text{VSFal}(\Sigma, M)$ and $\text{SFal}(\Sigma, M)$ will be denoted by $\text{Fal}^{(1)}(\Sigma, M)$, $\text{Fal}^{(2)}(\Sigma, M)$ and $\text{Fal}^{(3)}(\Sigma, M)$.

6.1. **T h e o r e m .** For $i = 1, 2, 3$ the forgetful functor $U^{(i)} : \text{Fal}^{(i)}(\Sigma, M) \rightarrow \text{Set}$, $U^{(i)}(\langle A, H \rangle) = A_0$, $U^{(i)}(h) = h$, has a left adjoint functor $F^{(i)} : \text{Set} \rightarrow \text{Fal}^{(i)}(\Sigma, M)$.

P r o o f . Let ξ be the arity function of Σ . We put $M^+ = M^* - \{\varepsilon\}$. Let us consider three types $\Sigma^{(1)} = \Sigma \cup M \times \Sigma$, $\Sigma^{(2)} = \Sigma \cup M^+ \times \Sigma$ and $\Sigma^{(3)} = \Sigma \cup M^+ \times \Sigma$ with the arity functions $\xi^{(1)}$, $\xi^{(2)}$ and $\xi^{(3)}$ such that $\xi^{(1)}(\langle m, \sigma \rangle) = 2\xi(\sigma)$, $\xi^{(2)}(\langle \psi, \sigma \rangle) = (|\psi| + 1)\xi(\sigma)$, $\xi^{(3)}(\langle \psi, \sigma \rangle) = 2\xi(\sigma)$ and $\xi^{(i)}(\sigma) = \xi(\sigma)$ for $i = 1, 2, 3$. We denote by $W^{(1)}$ and $W^{(3)}$ the $\Sigma^{(1)}$ -variety and $\Sigma^{(3)}$ -variety defined by all equations of the form $\langle m, \sigma \rangle(xx) = \sigma(x)$, where n is an arbitrary natural number, $\sigma \in \Sigma_n$, $m \in M$ and x is a one-to-one n -ary sequence of variables. Let $W^{(2)}$ be the $\Sigma^{(2)}$ -variety defined by all equations of the form

$$\langle m, \sigma \rangle (xx) = \sigma(x)$$

$$\langle m\psi, \sigma \rangle (xyx) = \langle \psi, \sigma \rangle (yx)$$

where n is arbitrary natural number, $\sigma \in \sum_n$, $m \in M$, $\psi \in M^+$ and x and y are one-to-one n -ary and $|\psi| \cdot n$ -ary sequences of variables. For every set Y and $i = 1, 2, 3$ we denote by $B^{(i)}$ the free algebra in $W^{(i)}$ freely generated by Y . Let us denote by $K^{(1)} = \{m_{K^{(1)}} : m \in M\} \subseteq \text{Fb}(B_0^{(1)})$ such that for arbitrary n , all $\sigma \in \sum_n$, $m \in M$ and $r, q \in B_0^{(1)n}$ we have

$$m_{K^{(1)}}(r, \sigma_{B^{(1)}})(q) = \langle m, \sigma \rangle_{B^{(1)}}(rq).$$

We define by induction $K^{(2)} = \{m_{K^{(2)}} : m \in M\} \subseteq \text{Fb}(B_0^{(2)})$ through the defining formulas

$$m_{K^{(2)}}(r, \sigma_{B_0^{(2)}})(\langle t, \psi \rangle, \sigma_{B^{(2)}})(q) = \langle m\psi, \sigma \rangle_{B^{(2)}}(rtq)$$

where n is arbitrary, $\sigma \in \sum_n$, $m \in M$, $\langle t, \psi \rangle \in d(B_0^{(2)}, K^{(2)})$ and $r, q \in B_0^{(2)n}$. Moreover, we define by induction the set $K^{(3)} = \{m_{K^{(3)}} : m \in M\} \subseteq \text{Fb}(B_0^{(3)})$ through the defining formulas

$$m_{K^{(3)}}(r, \sigma_{B_0^{(3)}})(\langle x^{|\psi|}, \psi \rangle, \sigma_{B^{(3)}})(q) = \langle m\psi, \sigma \rangle_{B^{(3)}}(rq)$$

where n is arbitrary, $\sigma \in \sum_n$, $m \in M$, $\psi \in K^{(3)*}$ and $r, q \in B_0^{(3)n}$. Then for $i = 1, 2, 3$ $F^{(i)}(Y) = \langle B^{(i)} | \sum, K^{(i)} \rangle$, where $B^{(i)} | \sum$ is the \sum -retract of $B^{(i)}$. From the construction of $F^{(i)}$ -it follows that $F^{(i)}$ is a left adjoint functor to $U^{(i)}$. This finishes our proof of Theorem 6.1.

REFERENCES

- [1] J. Adamek : On the cogeneration of algebras, Math. Nachr. 88 (1979) 373-384.
- [2] P.M. Cohn : Universal Algebra, New York, Evanston and London 1965.
- [3] F. Gecseg, M. Steinby : Tree automata, Akad. Kiado, Budapest 1984.
- [4] G. Grätzer : Universal Algebra, Princeton 1968.
- [5] J. Hartmanis, R.E. Stearns : Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Inc. Englewood Cliffs, N.J. 1966.
- [6] T. Namura : Homomorphisms and congruences for abstract feedback systems, Inform. and Control 51 (1981) 20-44.
- [7] J. Skomínski : On the greatest congruence relation contained in an equivalence relation and its applications to the algebraic theory of machines, Colloq. Math. 29, Fasc. 1 (1974) 31-43.
- [8] J. Skomínski : A theory of P-homomorphisms, Colloq. Math. 14 (1966) p.135-162.
- [9] J. Skomínski : On comparisons of algebras by using enrichmental theories and cloning systems, Demonstratio Math. 20 (1987)

INSTITUTE OF MATHEMATICS, NICOLAUS COPERNICUS UNIVERSITY,
87-100 TORUŃ, POLAND

Received May 25, 1986.