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RELATIVE COGENERATIONS WITH APPLICATIONS
TO TREE AUTOMATA AND A THEORY OF ABSTRACT ALGEBRAS
WITH FEEDBACK MODIFICATIONS

The usual theory of automata is interpreted in universal
algebra as a theory of tree automata. A notion of feedback
is used in the theory of automata, in algebrailc struciure
theory of sequential machines and in the control theory [5,6].
In this paper we give an interpretation of the notion of
feedback as an automaton used for the modifiocastions of ope=-
rations, In this way we obtain a theory of abstiract algebras
with feedback modifications called briefly feedbaok algebras,
Using a theory of relative cogenerations given in § 3 we prove
in § 4 that every feedback algebra admits cogenerations. This
theorem may be considered as a generalization of my Theorem 1
in [7]. By the notions uf congruences of feedback algebras
we obtain for each abstract algebra A a set Q(A) of sets
Kc Con{A) of congruences of A, For every Ke Q(4) the algebra
A admits the relative cogenerations, i.e, for each equiva-
lence ~ of A there is a greatest congruence in K contained
in ~ + Using the notion of closed feedback algebras we in-
troduce new examples of enrichmental theorles of abstract
algebras in the sense of [9]. Some applications to tree sute-
mata are given in § 3 and 4 ([3],[1]).

Thie paper is based on the lecture presented at the Con-
ference on Universal Algebra held at the Technical University
of Warsaw (Wilga), May 22-25, 1986,
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2 J.Stomidskl

1. Peedback automata and modifications
Let Z be any set and let n be a natural number. We denote
by an(z) the set of all functions of the following form

n n
o ¢ 2Pzl —— 7%

. n
such that o(r,f)(r) = £(r) for all re2z® and fe 2% .

The elements of an(Z) are called the feedbaok sutomata
of the rank n over Z, The set an(Z) is @ monoid with respect
to the multiplicationos3 given by the formula

(q'ﬁ)(r.f) = a(r, ﬂ(rgf))o

The unit of this monold is the projection en(r,f) = f. For
each HQan(Z) we denote by exty the monoid homomorphism
from the free monoid H™ generated by H to the monoid an(Z)
which is the unique sxtension of the inclusion map

iysH & an(z).

. n
Ifaxe€ an(z), then a subsst K.¢=Zz is said to be o ~0losed
provided K determines a subautomaton of o, i.e, K has the

propariys
(s) if fcK and recz®, then o (r,f)e K.

If a subset K is a ~closed for all xe¢ HQan(Z), then K is o0a-
lled H~-closed,

We define a feedback modification over a set Z to be
a function which for each natural number n determines a feed-
back automaton of the rank n over Z. The set of all feedbaock
modifications over a set 2 is demoted by Fb(Z). Henoe Fb(Z)
is the set of all funotions ¢ such that g(n) e Fb|(2) for each
natural number n. The set Fb(Z) is a monoid with respect to
the multiplication o+ ygiven by formula

(pey)(n) = p(n)ey(n) for all n

where p(n)ey(n) is the multipliocation in the monoid Fb,(Z).

- 192 -



Relative cogenerations 3

The unit of Fb(Z) is the function e such that e{n) = &y is

the unit of ¥b () for all n. If pe Fb(Z), then for all rez”

and all £ in 24 the value @(n)(r,f) will be also briefly
denoted by ¢{r,f). If SSFb{Z2), then S(n)San(Z) is the set
{cp(n)upe S}. 4 subset K of Zzn is said to be S~-closed provided
K is S{n)=-closed. For every Sc Fb(Z), we denote by Exty tihe
monoid homomorphism Bxty : S*¥ —— Fb(Z) which is the unique
extension of the inclusion map 1g:S <= Fb(Z), where $* is the
free monoid generated by S. The feedback modifications will
be used to modify abstract algebras. An sbstract algebra is
any pair A =<AO,A1> such that A, is a set called the universe
or support of A, A1 is a function which for esach natural num-
ber n determines a set A1 n of n-ary operations in the set

AO’ A.l is called the operatlon structure of 4 and the elements
of A1,n are said to be the n-ary fundamental operations of 4.
A structure type of an abstract algebra,A is a pair ),

={ Y, , 7>such that ) is a family of disjoint sets -En of
operation symbols of rank n and 7 is a family of surjective
mappings Tht Zn—— A1,n’ where n is any natural number,

If an abstract algebra A is considered as an algsebra of struo-
ture type Z, then for all n, all rezn, the n-ary funda-
mental operation 7,(G) is denoted by 6, and 4 is said to De

2 -slgebra or an abstract algebra of (symbol) type J, with
arity function §(6) = n for 6 € Z, + For the general theory

of abstract algebras and for the theory of Z -algebras sese

in the papers [2,4,8,9]. If A and B are two abstract alge-
bras, then the relation A=, B means that Ay = BO and

A1 ng B1 n for all n, moreover B is called an enrichment

of A, For each set 2 the set Ean(AL) of all abstract alge-
bras A with Ay = 2 is a complete lattice with respect to

the relatioh'<r. Let Ac Ean(AL) and let @€ Fb(Z). By A¢ we
denote the abstract algebra B such that By = 2 and B.l n=

= (28, A, ,) for each n. The algebra Asois called the ¢-image

of 4. If HC Fb(2), then the algebra Ay = is said to
“ el 50
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4 JeStomidski

be tae H-image of 4, If A,BeEnrz(AL) and pe Fb(Z), then
(A,(P,B) is called a feedback morphism from & to B provided
A(psr B and we write ¢:4 —— B, The compositions of feedback
morphisms given by the multiplication in the monoid Fb(Z) is
also a feedback morphism and in this way we have obtained

4 category Pb{4L) called the feedback ocategory of abstract
algebras. For two abstract algebras A and B with AO = B() a2
and a ge Fo(Z) we ‘definego;(A) to be an abstract algebra C
such that Cy = 2 and for all number n

Cy,n = {fe B1,n s plr,fle Ay n ToT all r} o

Hencecp;(A)sr 4 or @ :(p;'(A)—a- Ae If B =<pg1(A) then B is
called ap inverse gp-image of Ao If C =go§1(A), thenga51(A) = C
and thus cp;(A) is an inverse ¢p-image of A. ,
Ir nc (), then Hy'(A) denotes the algebra Uﬂ(p;‘(A)-
Example 1., Let D, and2, be two (Z;mbol) types
for algebras. 4 feedback transformation from 3 to X, over

a set 2 is a function o such that Tor each natural number n
the value o (n}) is a function

x(n) 3 2%« Z'n——Zn.

The set of all teeaback transformations from Z,/to D, over

a set Z is denoted by Sty{X.', 3. ). IfaeSt, (3., 2 ), then
each algebra 4 of theltype Z, with AO = Z determines an alge=-
bra A’ of the type X, and a feedback modification ,xe€ Fb(z)’
such that Ay = Z and

(%) 6y (r) = x(r, 6),(r)

(s¢%) a(r,6,7 ) = alr, 6),, ,0lr,f) = £

for all remaining operations f. The algebr: A’ is an inverse
A0(-image of A and it is ocalled the o~image of A, If 4 is an
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inverse ¢ ~-image of A, where ¢e€ Fb(A ) and & is a 3, ~algebra,
then we can define anaebtA (x), Z) such taat

x{r, 6') = provided gp(r,ﬁAf)

and A0(|A‘ = ¢|& ; moreover A" is the o-image of a.

ror the second exam?ﬁ we define the general grocduct of
abstract algebras. If 4 , tel, is a family of abstract
algebras, then the general proluct of A(t), teT, is tae av-
stract algebra i such that Ay is the direct procduct oi sets

A(t) 0

=v (P A(t)), where Vv is a function trom P i,n

tel T,n teT
given by the following formula

v(pi{r)(t) = Blti(r(t)) for teT,
Examples 2e Let Z,I, Z.(”, Z,(E),..., Z,(m)

be (eymbol) types for algebras. Let us consider a type
2. = Z, Z, cee X Z @) such that for all n pI
Z,I(‘” x ngx ces xZ, x(1m) and aeStz(Z » 2. ), where

Z = Z1x 22x coe me. Moreover, let us consider a system

al= {A.‘ 'A2""'Am}

of abstract algebras Ay of type Z(i) with Aio = g The
general produot A of algebras A1,A2....,Am may be considered
as an algebra of the type J_, putting for 6= (61,62,...,6m>e

€ 2o
6y = VKO %28, 2 Cmap )

/

Now we define an abetract algebra 4’ of the type
and an feedback modification (*%e Fb(Z) by the following tor-
aulass
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6 J.S¥ominiski

(1) Ay = Z

(2) tfor all n, all G'ezl;v G;/(r) = afr, SUA(r)

aa(r’6Al} = a(rte )A
and for all remaining operations

(3) aa (r,f) = f,

/

The algebrsa A" is called the & -product of f. The algebra A
is an inverse & -image of 4,

For global feedback modifications we define a general dia-
gonal over sets X and Y to be the set

a(Xx,Y) ={(t,u>ex*x *: Jt] = |u|},

where X and Y™ are the free monoids generated by X and Y and
| 4] is the length of the word . By d'™)(X,Y) we denote the
subset of d(X,Y) of all pairs (t,udwitn [t| = [ul = m and 1t
ig called the m~diagonal over X and Y. The global feesdback
automaton of rank n over a set Z is a trunction of the form

n n
Gpl2) : a(z®,m(2) ) x 22— 22
detined by induction as follows:
1% 6 (2)(Ke,e0,8) = £, ¢ empty word,
20 Gn(Z)(<1‘,9?>.f) =¢(r,f) f°r<r’?>6d(1)(znva(z)),
3° 6 (a) Kot,0p0,£) = (2,6 (2) (<tyD,1) ).

The global feedback modification over a set Z is a funo=-
tion G(2) defined on the set of all natural numbers such that
G(Z)(n) is the tunction Gn(Z) for all n., The values Gn(Z)(t,f)
will be brierly denoted by G(Z){t,f) or G(t,f).
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2. A theory of abstraoct algebras with feedback modifi-

cations

An abstract algebra with feedback modifications or briefly
a feedbaok algebra is a pair {4,H) such that A is any abstract
algebra and Hng(Ao). A structure type of a feedback algedbra
{a,H> is any pair (Y, , M) such that ), 1s a structure type
of A and i is a structure type of H, —i—.e. M:M —H is a sur-
jective mapping, where M is a set of feedback symbols. If we
consider a feedback algebra {A,H) as one of the structure
type (; » M), then for all n, all O ¢ Z'n’ the corresponding
fundamental operation of 4 is dencted by GA and for each sya-
bol me M the feedback modification M(m)e H is denoted by my
and moreover, the feedback algebra {A,H) is said to be
(3., M)-algebra or a feedback algebra of the (symbol) type
(3., M). We have three notions of (3-, M)<homomorphisms,

21, Definition. Let<4,H)> and {B,H'D be
two feedback algebras of a (symbol) type (X, M).

I, & (2 ,M)-homomorphism from {A,H) to{B,H' ) is any
function h : 50—~B0 such that
(1) k is a3 -homomorphism from A to B, i.e. for all n,

all0eX, and all redy h(6,(r)) = 64(h"(r)),

(2) h is a M-homomorphism from H to H', i.e. for all n,
Ge2.» mel and 7,q € Ag, n(m(r,6,)(q)) =
= my (8%(),65) (K™q))
or for all n, for all{r,m) ¢ d“)(Ag,M) the condition (a)
holds:
(a) h(G(ay)Kr,m,6,J{(q)) = G(Bo)((hn(r),mﬂf) .GB)(hn(Q)).

II, A very strong (2,,M)~-homomorphism from <{4,HD to
{B,H'> 1s any (2_,M)-homomorphism h from {A,HD> to {(B,H’> such
that for all nand 6 ¢ X, . all(xr,tDed(ag,M), qeay:

(b)  R(G(Ay)((x,My(£)5,6,)(a)) = G(By)(Ch P! (2),)pr(8)>,04 (H(q )

where M, s M*—— H* is the monoid homomorphism which is the
unique éxtension of the mapping M(m) = m, for all meM.
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8 JoSxominiskl

ITI. A strong (2,M)-homomorphism from < 4,H> to {B,H'>
is any (2,M)~homomorphism h trom {A,H> to<B,H> suoh that
the condition (b) holds only for all n, 6 eZ and all
{r,tYedl AO,M) of the following form: r = '’ .,er’ = 1’

for some r’€ Ao or for all n, G ¢ Z’n' all r,q er and all
te M* holds:

(o) R(Bxtg(My(t))(r,6,)(q)) = Exty (Mg (%)) (b (r)305) (0™(q) ),

Let us observe that the composition of very st¥wong, strong
and usual (2, ,M)-homomerphiems is also a very strong, sirong
and ususl (2 ,M)-homomorphism. In this way we have obtaimed
three oategories of feedback algebras of (symbol) type (Z,l).
Those oategoriss will be denotcd by vsral(z,”. sral(z M)
and I‘al(z’m.

For feedback algebras we have fowr notlons of a oongruence,
22, Definition, Lot A,H) bs any feedback
algebra and let ~ be any congruence of the abltracfvalgebra A,

I, The relation ~ is called a (usual) congruenee of {A,H>
or a H-congruence of A if ‘it ‘has the following propcrtyx
(1) for all peH, all n, all fe4, , and all r,v’,q,q" € AG

if r~r’ and g~gq’, thengp(r,f’(q)-vgo(r ,f)(q’), where

r~7r’ means that r(i)~r’'(1) for all i,

II, The relation ~ is called a very strong oongi'uenoe
of {A,H) or a very strong H-congrusnce of A if it has the
following property:

(2) for all m, all ¢, y)<t',yDed(4f,H), all Tehy nsdide
€ Ay if t~t' and q~q’, then G(A,)(<t,y>,£)(q) ~
~G(Ao)(<t' WD,E)(q’) where t~t' means that t(i)~t'(1)
for i=1,eee,i¥lon,

III. The relatior ~ is a strong congruence of <4,H) or
a strong H~congruence of A if it has the following property:
(3) for all n, all fe A, ,n» 811 r,r’,q,q € Ag and all pe H*

if r~r' and q~q’, then ExtH(go)(r,f)(.!)~ExtH(93)(r',f)(q')u
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Relative cogenerations

IV, The relation ~ 1is called a reversible congruence
of {A,HD or a reversible H-congruence of A if it is a con-

gruence of <4,H) and it has the following property:
A n

(4) for each peH, all n, all fe¢ Ago if ~ is a congruence of
all operations ¢(r,f), where re Ag, then for all q,q’ e Ag
®lq,f)(g" )~¢pla’ ,£)(q) provided g~q'.

By a simple verification we obtain
2.3. The relations modh induced by very strong, stirong
and usual (2, ,M)-homomorphisms h : <A,H) —= {B,H)> are very

strong, strong and usnal oongruencss of (A,H)

2.4. Por each congrusnce ~ of (A,H) of a (eymbol) type

(3.,M) we have the quotient feedback algebra {(A/., H. >and

a surjective (2. ,M)-homomorphisp i :{A,H> — <A/.,H.D, where

A/~ is the quotient 2 -algebra, j.(a) = [a]_ = ,{beAO:b~l},

Be ={ .1 pel] and p.([r].,6,, )([a]~) =[p(r,0,)(q)]. and

moreover gi([f]N,f) = £ for the remaining operations ¢,

If ~ is very strong or strong, then Jj~ 1is very etrong or

stronge.

Let us observe that
2.5. If ~~ 18 a ocongruence of a feedback algebra {(A,H),
then ~ has the following properties:

(1) if fe A1’n, peH and 2~1', then p(r,f)(r’)~p(r’,f)(r),

(2) if fe 4, ., 9€H, q~q', then p(r,£)(q) ~p(r,f)(q")
i.6. ~ 1s a’'congrusnce of the operations p(r,f) for
reng, n

(3) 1 £’ ero and ~ is a ocongruence of all operations
@(r,t’) where re AS and ¢ ie one given fixed element
of H, and moreover (1) holds for £ = £’, then ~ is a
oongruends of £,

Proof, The property (1) follows from 2.2.(1) for
r~7’' and '~ r, The property 2 follows from 2.2.(1) for

r =1', For (3) assume that q~q’. Then £'(q) = ¢(q,2’')(q)~

~ola,2')a") 1) ola’ £/ ) (q) ~pla’ 2 ) (0" ) = 2'(a").
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10 J+S52omitiskl

2.6, Let {A,H) be any feedback algebra., Then the following
propositions hold:

I, If ~ 1is a congruence of { A,H), then ~ is a congruence
of Age

II, If ~ is a reversible congruence of {4,HD, then for
all pe H ~ 1is a congruence of a n-ary operation f if and only
if ~ 1s a congruence of all operations ¢(r,f), where r eAg.

Proof. I follows from 2.5.(2). II follows from
2.5.(3). For each fesdback algebra { 4,H) the sets of all strong,
very strong and of usual congruences of {A,H) will be denoted
by SCon(<{a,HD>), Vscon(Ca,H)) and Con(<{a,HD) respectively, If
thoss congruences are considered as H-congruences of A, then
those sets will be denoted by SConH(A), VSConH(A) and ConH(A).
Hence we have SCon({A,H>) = SConH(A), vSCon{{4,HD) = VSConH(A)
and Con(<A,H>) = ConH(A). Let us observe that the notion of
{e}-congruence of A, where e is the unit of the monoid Fb(Ao‘),
1s identical with the usual notion ot a congruence of an ab-
stract algebra 4, Hence we obtain Con(A) = Con o (4),

A subalgebra of a feedback algebra (4,H) is any feedback
algebra {A',HD, where A’ 1s a subalgebra of A,

2.7, If {A,H) is a feedback algebra, Ay<,. A' and Y is
a subalgebra of 4, then(Yo,H> is a subalgebra of (A,H), If
a set X generates A, then for each Hg;Fb(Ao) and each abstract
algebra &' with Ag< o A' the set X generiates A'.

Proof, Let @peH, Moreover, let fe A1 pe For each
reng, f{r) = p(r,f)i{r)e Y, since Y is a subalgebra of &',
Hence Y is closed with respect to all fundamental operations
of A end thus Y, may be considered as a subalgebra of A, If
Y2X is a subalgebra of &', then Y, may be considered as a
subalgebra of A4 but X generates A, and thus Yo = AO i,8 X
generates 4’ > » Aye

It <A“), H(t)> for teT are feedback algebras, then the
general product of <A{P) H(¥)S tem, is the feedback elgebra
{4,H>, where A is the general product of alt ), tel, and

E=wlp BY), w: ? & ®) o~ Fb(Ay) is defined by the
teT teT
tornulas
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Kelative cogenersations 11

(gp) w(p)(r,f)lq)(t) = B(t){x(t),f(t)rtqlt)), teT.

2.8. The category Fal(z M) has products.
1

Proof. Let (A“”,H“’), teT, be any tamily of
feedback elgebras of a (symbol) type (D .,Mj. Let us denote
by A the D ~direct product of 2 ~algebras A ¥ , teT, For

AR
each me M we define mye Fb(AO) putting for all n, fero,
n
r,qe AO:
if £ = GA for some Sez,n mH(r,f)(q) = g, where for
tel

g(t) = mH(t)(r(t)’ GA(t)) (Q(t’,

else mH(r,f) = f, Let H = {mH s meM}. 'hen the feedbaock
algebra {4,H)> with the projections p; : Ay— A(()t), teT is

the product (called direct) of (a(®) w(®)>, teT, in the oa-
tagory Fal(’:'u). '

3. Relative cogenerations and relative regular aquivalences
in abstract algebras with applications

Let A be any abstract algebra, If K< Con(A) is a set of
congruences of A and ~ 18 an equivalerce relation of A
or ~ € Eq(AO) then we say that the relation ~ K-cogenerates
in 4 a congruence ~* provided ~* is the greatest congruence
in K which saturates ~, 1i.e, which is contained in ~,
Let Z._ be a structure type of A, Let us consider a category
Bpiy (4,K,~). The objects of Epiy (4,K,~) are ell surjective
2 -homomorphism h:4 —= A’ of & such that modhe K and modh S~,
where modh is the congruence of A induced by h. The morphisms
in Bpiy (K,A,~) from h:a—=4" to h' :A—= 4" are all X ~homo-
morphisms q:A'—e 4” with h’ = qo h, The objects of
EpiZ(A,K,'\-) are called mod(K,~)Z,-epimorphisms of A. A object
h:A—= A' 1is said to be tinite provided A(') is a finite set.
The terminal object of EpiZ(A,K,«-) is called a minimsl
mod(K,~) J_ =epimorpnism of A.
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Hence we obtain

3.1. An egquivalence ~ of Ao K~cogenerates in an abstract
algebra A a eongrusnce if and only if A hes a minimal mod(K,~)
D ~epimorphism, where J_ is the (symbel) %ype of A.

Prootft. If ~* 18 the eongruence of A4 K~-cogenerated
by ~ , then j_, 1. A—= A/u* 18 a minimel mod(K,~) 3 ~epimor=
phism of A, If h:iA — A’ is a minimal mod(X,~) D, -~epimorphism,
then h 1s the terminal object of the category EpiZ(A,K,~)
and thws the eomgruence modh is K~cogenerated by~ .

3.2 Definition. Let A be any abstract alge~
bra and let KcCon(A4) be any set of congruences of A, We say
that K admits in 4 relative cogenerations or that A admits
relative K-cogenerations if every sequivalence relation ~.of
4, K=-oogenerates in A a congrusnce i.e. for each ~ € Bq ([Ao)
there is a greatest congrusnce in K contained in~,

3e3e Theorem, If an abstract algebra B admits
relative K-cogenerations, then for every absiract algebra A
with A<, B the algebra A admits the relative K-ocogeneratlons,

Proof, Since A<, B, therefore Con(B)< Con(A) and
Kc Con(B)c Con{A)., Hence the congruence ~*¢cK which is K=po~
generated in B by ~ , 18 also K~cogenserated in 4 by~.

By Therrem 1 from [7] gvery abastract algebra B admits
cogenerations, 1.e. admits relative Con(B)-cogenerations,
Hence by 3.3 we easily obtain

3.4 T heorenm, For two abstract algebras A and
B if A<, B, then the algebra A admits relative Con(B)~-coge=
nerations,

3¢5 Definition, Let A be any abstract
algebra and let K< Con(A), Morsover, let ) ba the (symbol)
type of A, An equivalencs relation ~ of 4 is said to be
mod K D,-regular in A provided there is a finite mod(K,~)

D2 ~spimorphism of 4.

3.6, Theoremo, Let us assume that an equiva~-
lence ~ of A, K-cogenerates a congruence ~ * in an abstract
algebra A of (symbol) type 2,. Then the following conditions
are equivalent:

- 202 -



Relative cogsenerations 13

(1) the equivalence ~ is mod KD, -regular in A;
(2) thers is in X a eongruence of finite index whioh satu~

rates ~ 3
(3) the eongrusnca ~ * of A K-cogensrated by ~ has a finite

index.

The eomditions (1), (2) amd (3) are equivalent for all
K = Con(B), where B is axy abstract algebra with i< B,

Proof. (1)=»(2), Let h:A — A be a finite
mod{K,~) 3 ~epimorphism of A, Then card(A,) is the index of
modh ¢ K and it is finite, Moreover, modh saturates~,

(2)=> (3). Let a congrusnce ~’ e K which saturates ~ have

a finite imdex. Then ~’'c ~% therefore we have a surjective
3 ~homomorphism hiA/~'—= &/.% MNemce eard(A/*) = in(~¥) <
<oar{A/’) = in{~’) 1,0, %he index of ~* is a fimite number,
(3) = (1), Then j_,td—= A/ *1is & finite mod(K,~) 2 -epi~
morphism of A i.e, by 3.5 the equivalence ~ is mod K D, =regu~
lar in A. The last part of 3,6 is obtalned by 3.4.

3.7. Definition., A suwsetZSA, is ealled
mod K, -regular in an abatract algebra A of a (symbol)
type D provided whe equivalence ~ , of A, induced by 2z, i.e.
determined by the partition {AO -2, z}, is mod K D -regular
in A,

A oharaoterization of mod K X, -regular subsets Z of an
abstract algebra A of a (symbol) ¥ype D, is given by 3.6
for ~ =~,, The mod Con(4) )], ~regular squivalendces and sub-
sets in a ) -algebra A are oalled J_ -regular equivalences
and subsets in A. By the laat part of 3,6 we immediately
obtain

3.8. For a 2 -algebra A and amy ~ € Bq(A,) the following
conditions are equivalent:

(1) ~ 48 D ,-regular in A;
(2) there is a congruence of finite index of A which satu-

rates ~ j
{3) the congrusnce of A cogensrated by ~ has a finite index,

3.9 Definition. Let 2, be a (symbol) %ype
for algebras. Let X and Y be any sets. A D, -machine over X
and Y is any functlon
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14 J.Stomidski

£f:F
p

whers Fy (X) is the absolutely free algebra of type 2, freely
generated by X. 4 Z-tree automaton over X and Y is each
triple & = {c,A,w), where A& is an abstract algebra of ths
type 2,, ¢ : X-——-AO is a function called the input function
of t, w: Ay ™Y is a function called the output function
of & . Let & ={c,A,w)>be any D, ~tree automaton over X
and Y. The function by = w ooy, where cy : Fy (X)—= 4 is
the uniques Z-homomorphism which is an extension of ¢,
is called the 2 ~-machine realizable by & and U is said to
be a X -realization of by, 4 2 -tree automaton O = {¢,A,w)
is called reachable if e, is a surjective function,
3410, Definition. Let K be any set of con-
gruences of the algebra Fy (X)e A mod K X, ~realization of
a D, -machine f over.X and Y is each D ~tree automaton
0= {c,A,w> over X and Y such that by = f and the congruence
induced by ¢, belongs to K. If moreover, < is reachable,
then ¢ is said to be a mod K reachable D, -realization of f,
For each KcCon(Fg (X)) and each 3 -machine f over X
and Y we have a category Realy(f) of mod K reachable D) -rea-~
lizations of the ) ~machine f with morphisms from w =
={c,a,wdto A&'={c’,4 ,w’> being all D -homomorphisms
q A— 4" such that

commutes. The terminal objeoct of RealK(f) is called a minimal
mod K Y, -realization of f. 4 2 -machine £ over X and Y is
said to be mod K D ~regular provided the squivalence modf
induced by £ is mod K D ~-regular in the algebra Fg (X}
311, Theoren:
I. A Y, -machine f over X and Y has a minimal mod K
Z,-realization if and only if the equivalence modf induced
by f K~-cogenerates a congruence in the algebra Fz(x).
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II, If a D, -machine f over X and Y hae a minimal mod K
3,-realization, then f has a finite mod K J ) -realization if
and only if £ is mod K D, =regular,

III. Let K = Con(B), where B is any abstract algebra
with FE(X)sr B, Then we have:

(1) every D, =machine f over X and Y has a minimal mod K
Y ~realization,

(ii) a D, -machine f over X and Y has a finite mod K
> ~realization if and only if £ is mod K 2 -regular,

Proof. I. The categories Realx(f) and
Epiz(FE(X),K,modf) are isomorphic and thus by 3.1 we
obtain I,

II, Follows from part I by 3.6.

III. Follows from parts I and II by 3.4.

3.12, Definitione. LetK be any set of con=
gruences of the algebra Fy (X). We say that K admits minimal
relative 2 -realizations over X if for every set Y every
D -machine £ over X and Y has & minimal mod K J_ -realization,

By 3.11 we immediatsly obtain

3.13. Theorenm, A set K admits minimal relative
2_-realizations over X if and only if the algebra Fg¢ (X)
admits relative K-¢cogenearations,

Now we give a remark on tree automata with different
types. Let o = {c,A,w> and U =dc,A ,wdDbe a I, ~tree
antomaton and a Z, =automaton over X and Y respectively with
the same input funotion a:X —=A, = Ay and the same output
function wik)— Y,

Then using 2.7 we can prove the following proposition

3.14, If @ 1A— A" 18 a feedback morphism, i.e. Ap<n A,
and U is reachabls, then (¥'is reachable and by tres induc~
tion we obtain a function ¢ : Fg (X)y—= F¢/ (X), such that:

1° §(x) = x for xeX,
2° for alln, all Ge 2., we have

PO(%g,%55000,8,)) = 6 (P(11), P(55),000,P(t,))

provided pl<a, (t4), 0,(t,),e0e,0,(8,)>, 6,) = 6}/,
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3° by =Y, P and bIHy) =@(b5(3)), ye¥.

4, Cogenerations in feedback algebras and relative
feedbaok cogensrations in sbstract algebras

Now we prove the main theorem,

4,1, Theorem, Let<{A,H> be any fesdback algebra
and lat ~ by any equivalence relation of the set Age Then
the following propositions hold:

(1) there is a greatest congruence ~ * of {4,H) contained
in ~ and it is the greates H~congruence of A contained in~j;
(2) there is a greatest very strong eongruence "'*vs of
{4,H)> contained in ~ and it is the greatest very strong

H-oongruence of A contained in~j

(3) there is a greatest strong congruence ~%, of {a,H0>
contalned in ~ and it is the greatest strong H-congruencs
of A contained in ~ j

(4) there is a greatest reversible congruence fu’; of {A,H>
contained in ~ and it is the greatest reversible H-comgruence
of A contained in ~ ., n

Proof., ForasetZ, £fc2° andye Fb(2)" we define

in Z a (lyl+1)en-ary operation £y by the formula

fw(r) = G(Z)(<t’4’>'f)(q)’
where T = teq in the monoid (2”)*. Let us observe that, by
1° from the definition of G(Z) which is given in the last
part of §1, f, = f, where ¢ is the empty word. Morecver,
tor ye Fb(Z)*, v # ¢, an n-ary operation £ acting on 2 we

define in Z a 2n=ary operation \Pf by the defining formula

gIir) = Bxt{y)(t,£)(q),

where Ext @ Fb(Z)*——Fb(Z) is the unique monoid homomorphism
whioh is the extension of the ldentity inclusion 1Fb(z)’

t and q belong to Z™ and r = teq in the monold (2%)*. We
remark thatq,f(r) = fw(u), where for some t and q in 27 we

- 206 -



Relative cogenerations 17

have © = teq and u = t'“"oq in the monoid (2™)*. If F is a set
of operations acting on Z and ye Fb(Z)*, then

(F)\V = {fw:fe F} and t},(F) = {Wf:fe F}.
Using the above definitions we give the proof of {1)=-(4).

Proof (1), We derine opi'l(4) = U wLeJH (A1, ny
=£
and Opf(lﬂ(“m ={f 1 e Oplg”(A) and f is m-aryﬁ. Let A(H)
be the abstract al gl))ra B suoh that B0 = Ao and for a%;]i)na-
tural n B1,n = Opy (A)n. From the construction of A we
obtain

(1%) A<, A8 ana con(al®)) < Cony(A) = Con(<a,HD),

Since A<, (H), therefore by 3.4 the algebra A admits rela-
tive Con(A(H))-oogenerations. Let ~* be the congruence of A
Con(A( ) )-dogenerated by~ . Hence, by (1%}, ~* is the greatest
congrusnoe of { A,H) contained in ~ and it is also the greatest
H=congruence of A contained in~,

Proof (2). We defins Opﬁz)(A) LJO UH* (A1
n=0 ye

and Opéa)(l\)m ={fe Osz)(A) : £ is m-ary} Let AVB(H) be
the abstract algebra B such that B, = 4, and B, | = pH2)(A)n
ve(H) it

'nW

for all natural number n. From the construction of A
follows that

(2%) As,, ave(H) and Con(AVB(H)) = VSCony(4) = VSCon(<4,HDh

Sinoce A<r AVB(H) therefors by 3.4 the algebra A admits the
relative Con(AVB(H))-oogenerations. Let ~* be the congruence
of A which is Con(Ave(H)) ~cogenerated by~ . Hence by (2%) the
oongruence~ ve. is the greatest{ very strong congrusnce of
{A,H) contained in ~ and it is also the greatest very strong
H=gongruence of A contained in~,
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Proof (3). We define Op(3)(A) = U U Ay pU
n—Oq/eH* ’
Ugyla, )) and O (3)(1\) ={fe0 (3)(A) : T iswtxc-a } We de-
¥'%,n PH - Py : TYfe
fine aS(H) to be the abstract algebra B such that B, = A, and
By n = Op}({ {a ), for all natural number n. From the detinition
’ N
of AS(H) we obtain
(3%) a<y, A1) ang con(a®™)) - scong(a) = scon({a,Hd).

Since A <, AS(H) therefore by 3.4 the algebra A admits rela-

tive Con(As(H)) S

of 4 which is Con(As(H))-cogenerated. by~. Hence by (3%) the
congruence ~*§3 is the greatest sirong congruence of {4,HD
contained in ~ and it is also the greatest strong H-congruence
of A contained in ~ «

Proof (4)« Ve denote by RCon(C4,HD) and RCony(4)
the sets of all reversible congruences of {A,H> and of all
reversible H-congruence of A. Moreover, for each ¢¢€ Fb(A
we denote by RSP the set of all ne-ary operations f acting
on 4, satisfying .he following condition:

{r) for every H-congruence = of A if = is a congruenge
of all operations ¢(r,f) with rer, then ola,f)(q’ )
=¢lq’ f_)(q) for all q and q’ in AO with g =

-cogenerations. Let ~* be the congruence A

We define Opé“(A) = Oplg”(A)U UO UH (R(n)) and o"HM(A)
n=0 ge

= {fe,0p§4)(A) : £ is m-ary} We define Ar(H) to be the ab-
stract algebra B such that By = A, and By , = OpH4)(A)n for
all natural number n,

From the construotion of the algebra Ar(H) it follows
that

r(H) r(H))

(4%) a=<, & and Con(A = RCong(4) =.RCon(C.4,HD).

Since Aér Ar(H) therefors by 3.4 the algebra A admits the

ralative Con(Ar(H))—cogenerations. Let~*r be the congruence
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of A whioh is Con(Ar(m)-cogenerated by~ . Hence by (4%)

the relation ~"I‘_, is the greatest reversible congruencs of
{4,8)> contained in ~ and it is also the greatest reversible
H-oongruence of A contained 1n ~ , This finishes our prodf
of Theorem 4.1.

The abstract algebra A is equlvalenti under cogenerations
to the feedback algebra < A,{e}>, where e is the unit of the
monoid Pb(A )» Honce Theorem 4.1 may be considered as a gene-
raligation of my Theorem 1 from [7].

4424 Definition, Let A be any abstraoct alge-
bra. If KSCon(A), then K is said to be a feedbaok set of
ocongrusnces of A provided there is a set HCFb(A ) with
Ke { Cong(A), VSCong(A), SConf;(A), RComg(4)}. The Ot of a1l
feedback sate of congrusnces of A is denoted by Q(A),

By 4.1 we immediately obtainsl

40,32, T heorem. Por every abstract algebra 4,
for each feedbaok set K of congruences of A, i.,e, for Ke Q(A),
the algebra A admits relative K~oogensrations,

By 3.13 and 4.3 we have

4,4, Theorem, PForaevery KeQ(Fg (X)) the set K
adnits minimal relative ) ~rsalizations over X.

Por any feedback algaebra {A,E) of a type (D ,,M) we ocan
define in an analogous way as in § 3 the categories
Bpi(y .m((A.H>,~) » VSEpi (s ’M)KA,H),N) and SEpi(Z’H)KA,H),N)
of usual, very strong and strong (J,,M)-epimorphisms of {4,H)>
whioch saturate an equivalence ~ ¢ Eq(_Ao).

Prom 4,1 it follows that

4.5. The categories Epiiy ) (CA,HD,~), VSEpi(y ’M’KA,H)'»)
and SBpi(z ")KA,H),«») have terminal objects. We have the
following isomorphisms of ocategoriss:

BpL(y ,y) (KA~ = Bpig (A, Congla),~)
VSEpl(y oy (CA,HDy~) 2 Bpig (A,VSCong(A),~) and

SEpi(z )(<A0H>o"') EpiE(A SCDII‘(A)."‘).
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5. Peedback emrichmental theories of absiraot algebras

51 T heorem. For eash fesdback algabra {A,HD
there is least olosed feedback algebra <A ,H> with A<, A

Proof, Por each n, we define by induction a sequen-
ce z((,'),zg’”,... through the formulas

2§ = 4y, ana 2{B) < 2{h U o(al,af))

0 peH
We define A’ = ClH(A) to bs such an abstraoct algabra that
[~ -]
Ay = &, and for sach n A, _ = | 2{%), By the construction
0 0 1,0 §=0 J

the feedback algebra (A’ ,H) 18 closed and it is the least closed
feedback algebra with A<, A’,

Let us observe that

5.2. Por each HS Fb(Z}, the function Cly s Bnrz(Al)—-
— Bor, (AL) is a monad of the poset category Enr,(AL) with
reBpect to the relation < pe The CIH-mcsnad algebras are
H=closed abstract algedbras.

5¢3., Defini tion., A feedback selection is
any mapping fb such taat for each set Z fb(Z)<Fb(Z). Any
feedback seleotion fb defines a mapping fb : Enr(AL) — Enr(AL)
swoh that for any abstract algabra 4, fb(A) = CIfb(Ao)(“'

By 5.2 we obtain

544 Theorem. For every feedback sslaction fb
the mapping fb:Bnr(AL) —— Enr(AL) is a monad of the posst ca-
tegory Bnr(AL) of all abstract algebras under the relation < ,
i.e. b is an enrichmental theory of abstract algebras.

The thsories of the form f£b are said to be ths usual
feedback enrichmental theories of abstract algebras,

55, Definition. Let<{A,H)> be any closad
feedback algebra and let Op(A) be the set of ‘all fundamental
(basic) operations of A. Then {A,H) is oalled ‘right complete
1f it has the property

(1) if feOp(A), then f,cOp(A) for each yeH%,
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{A,H) is called left complete if 1t has the property:

(2) if fe Op A, then fcOp(A) for each y e H™ (wo assume
that ;£ = £ if ¢ 1s empty word).

The algebra ( A,HD> is called complete if it is right and
left complete.

5.6, Thaorem. Por every feedback algebra {A,R>
there is a least right complete, left complate and complete
feedback algebra (A’ ,H)> with A<, A,

Proof., Por a set P of operations aecting on Z and
for pc Pb(2) we define H(P) to be the set{q(r,f) : there is
n,re2” and fe F?. We define by induction three sequence,

r) 1,’(’1) and Fi°), 1 = 0,1,.0., Of Bets of operations aoting
on A4 through the formulas:

(1) L (%) = op(a),
(2) P(r) F(r)U U ?ﬁ(F(r))U U (F(r)) R
(3) 1+1 i ngLéJHQD( i ,UWLeJH*q)( i )y

(4 #e) - pfc) U s(2{hu y*((rgﬂ;wuw(r{”n.

For te{r,l,o} we put OpH”(A) = 9, F{“ and Opét)(A)n

s{ fe Opé”(A): f is n-ary}. Moreover, for te{r,l,o} we
defins A(” = CLét)(A) to be the abstract algebra B”) such
that B{*) = &, and B”’ = opi*)(a) for all n. Prom the con-

struotion it follows that (A(r),H>, (A(l),H> and <af¢) JH
are the least right complefe, left complete and complete feed~-
back algebras witan A< A'"’, A< A 1) ang A<, alel,

Prom 5.6 we obtain

5.7. For te{r,1,0}, ESFb(Z) the mappings
Cll(i“:Ean(AL)——- Enr,(AL) are the monads of the poset cate-

gory Enrz(AL) of abstract algebras with universe Z under<,.
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58, Definition. Forte{r,l,c} and for sach
feedbaok selsotion fb we define fb“) to be a mapping .

7' %) ;Bar(AL) — Bor(4L) such that
it - 01}3(‘0,(“

for svery abstract algebra A,

By 5.7 we immediately obtain

5¢9¢ T heorem. For every feedback selaotion fb
and for te{r,l,o}the mapping r—b(t’:Enr(AI-) —= Bnr(AL) is
a monad of the poset category Enr(AL) of all abstract alge-
bras under the relation <, 1.e. f_b(t), for te{r,1,0}, 1s
an enrichmentsl theory of abstract algebras.

The theories of the form Fb(r’, (1) ana #5(°) gre called
right complste, left complete and complete feedback enrichmen-
tal theories of abstract algebras.

6. Peedback adjunctions
The categories Fal(z JM)? VSP;I(E ) and SPal(z’M) will

be denoted by Fal%g,n)' Pal}%)’m and Palf% M)

6e1e Theorem. Por 1 = 1,2,3 the forgetful func~
tor Umzral&’.m—» set, Ul (Ca,m) = 4y, U1t (n) < 1,
has & left adjeint funotor Fl1)iset —rar{}! ).

Proof. Let & be the arity function of 2. We

put ¥ « M* - {¢} . Let us consider thres types X.'') =

N TR T DM M LD METIN Y MIFFY ID S ELIND VTR LS 2
with the arity funotions £'1), £(2) ana £3) such that

£ a6 = 26000, 82 Ky, 00 = Uyl 15000, 5030y, 050 =
= 2¢(6) and £(1)(6) = £ (6) for 1 = 1,2,3. We denote by Wl 1!
and %'3) the (V). veriety and X.(3)vartety defined by all
equations of the form {(m,G>{xx) = G(x), where n is an arbi-
trary natural number, G ¢ Zn’ me M and x 's a one~-to~one
n-ary sequence of variables. Let w(2) o the (%) variety
defined by all equations of the form

- 212 -



Relative cogenerations 23

{m,&6>(xx) =6(x)

(my6X(xyx) = {y,8>(yx)

where n is erditrary natural number, e , meM, ye M
and x and y are one-to-one n-ary and |y|-n-ary sequences of
variables, For every set Y and 1 = 1,2,3 we denote by B 1

the free algebra in l(i) frul? generated by Y. Let us denote
py k(1) ={me : men}grb(no”) such that for arbitrary n,

all Ge Z'n’ meM and r,qut()”n we have
IK(1,(ro 6]3(1))(Q) -<.06>b(1,(rq,.

We define by induotion K(z, = {-x(z) t me l}; rb(Béz,l
through the defining formulas

o (2) (76 BE2 1KCE 0 6 (5))Ma) = Can 6> () (mta)

where n is arbitrary, & eZn, mel, (t,w,)ed(Béz),K(?‘)) and

r,q eBéZ)n. lloreov.i'. we define by induction the set

xi3) . {. (3) ! -eu}grb()},?’) through the defiming formulas
K

3) lwl
mK(B)(P.G(Bé )(<r'~|’ .v>.68(3))(Q) -<.V,3>B(3)(rq’

where n is srbitrery; Gel ,, melM, ye k(31 and Tr,q¢
¢ B8, then for 1 = 1,2,3 My ~(3M|Z , x(i)y,

where B.“') |2 15 the X wretract of B“". From the construo-
tion of P1)-1t fol1ows that P'1) 15 & lert adjoint fanctor
%0 U(i). This finishes owr proof of Theorem 6.1.
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