

Ernest Płonka

REMARKS ON WEAK AUTOMORPHISMS OF 1-UNARY ALGEBRAS

0. Let $\mathcal{A} = (A, F)$ be an algebra with the clone $A(\mathcal{A})$ of algebraic operations (=superpositions of all projections $e_k(x_1, \dots, x_n) = x_k$ and the operations from F). Any permutation $\mu \in S_A$ induces a permutation $f \rightarrow f^\mu = \mu^{-1}f\mu$ on the set of all operations on the set A . If $A(\mathcal{A})$ is fixed under this permutation, μ is called a weak automorphism of \mathcal{A} . This notion was introduced by A. Goetz in [2]. Except of special algebras as Boolean and Post algebras ([10]), linear or affine space, algebras with a basis ([1], [7]) and nilpotent groups ([3], [11]) very little is known. Recently L. Polak in [8] has described the group of weak automorphisms of 1-unary algebras $\mathcal{A} = (A, f)$ as a semi-direct product of the automorphism group of \mathcal{A} and the group $C = \{k \in \mathbb{Z}_n : (A, f^k) \text{ is isomorphic to } (A, f^k) \text{ and } (k, n) = 1\}$. Here n is the smallest natural number such that $f^{n+1} = f$. This description seems to be rather unpleasant, because the group C is not given explicitly.

The purpose of this paper is to give more information about the group of weak automorphisms of 1-unary algebras.

I. Since the clone of algebraic operations of the 1-unary algebra $\mathcal{A} = (A, f)$ consists of $\{1, f, f^2, \dots\}$ and the powers of projections, any weak automorphism μ of \mathcal{A} has to induce

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Technical University of Warsaw (Wilga), May 22-25, 1986.

an automorphism of the semi-group $(\{1, f, f^2, \dots\}, \cdot, 1)$. Thus if $f^\mu = f^k$ for some $k > 1$, then $f^{n+1} = f$ for some positive n . If there is no such n , then any weak automorphism of \mathcal{O} is an automorphism of \mathcal{O} . The group of automorphisms of 1-unary algebras were intensively studied in [5] and [6]. Throughout this paper n is the smallest positive integer such that $f^{n+1} = f$ and $WAut(\mathcal{O})$, $Aut(\mathcal{O})$ stand for the group of weak automorphisms of \mathcal{O} and the group of automorphisms of \mathcal{O} , respectively.

Proposition. Let $\mathcal{O} = (A, f)$ be a 1-unary algebra with $f^{n+1} = f$. Then:

1. The restriction of f to the image $X = f(A)$ is a permutation of order n .
2. Any $\mu \in WAut(\mathcal{O})$ preserves the subalgebra (X, f) of \mathcal{O} .
3. The relation $a \sim b$ if and only if $f(a) = f(b)$ is a congruence of \mathcal{O} .

Proof. We have $f^{n+1}(a) = f^n(f(a)) = 1(f(a))$ for all $a \in A$, which means that f maps X onto itself and $f^n = 1$. Since $f^k(x) = x$ for all $x \in X$ implies $f^{k+1}(a) = f(a)$ for all $a \in A$, the operation f is a permutation of order n on the set X . Statements 2 and 3 are immediate.

Let $O(x_0) = \{x_0, x_1, \dots, x_{k-1}\}$, where $f(x_i) = x_{i+1}$ ($i+1$ is taken mod k , of course) be the orbit of the element $x_0 \in X$. It is well known (cf.e.g. [4]) that k must divide n , there is no infinite orbit in X and all the orbits form a partition of the set X . If X_{k_i} , $1 \leq i \leq N$, is the collection of all k_i -element orbits which occur in X , then $n = g.c.d. \{k_1, k_2, \dots, k_N\}$.

II. Theorem 1. If μ is a weak automorphism of the algebra $\mathcal{O}_{k_i} = (X_{k_i}, f)$ such that $f^\mu = f^k$ on X , then $(k, k_i) = 1$. Conversely, if k is a positive integer such that $(k, k_i) = 1$, then the permutation μ_{k_i} of X_{k_i} defined on each k_i -element orbit $\{x_0, x_1, \dots, x_{k_i-1}\}$ by the formula

$$(1) \quad \mu_{k_i}(x_{pk}) = x_p \quad \text{for } p=0,1,\dots,k_i-1$$

is an element of $WAut(\mathcal{A}_{k_i})$ with $f^{\mu_{k_i}} = f^k$.

P r o o f . Since the mapping $f \rightarrow f^{\mu} = f^k$ has to be a permutation on the set $\{1, f, \dots, f^{k_i-1}\}$, k must be relatively prime to k_i , because if $(f^l)^{\mu} = f$, then $f^{kl} = f$, i.e., $kl \equiv 1 \pmod{k_i}$. On the other hand, the assumption $(k, k_i) = 1$ implies that the mapping defined by (1) is in fact a permutation on the set X_{k_i} . Moreover, we have

$$\mu_{k_i}^{-1} f \mu_{k_i}(x_{pk}) = \mu_{k_i}^{-1} f(x_p) = \mu_{k_i}^{-1}(x_{p+1}) = x_{(p+1)k} = f^k(x_{pk}),$$

where $p+1, (p+1)k$ and pk are taken mod k_i . Theorem 1 is thus proved.

Theorem 2. There is an element μ in $WAut(X, f)$ with $f^{\mu} = f^k$ if and only if $(k, k_i) = 1$ for all $i = 1, 2, \dots, N$. Moreover, any such weak automorphism μ of (X, f) is of the form $\mu = \mu_0 \alpha$, where $\alpha \in Aut(X, f)$ and μ_0 is defined by

$$(2) \quad \mu_0(x) = \mu_{k_i}(x) \quad \text{for } x \in X_{k_i}, \quad 1 \leq i \leq N.$$

P r o o f . Observe that any weak automorphism μ of (X, f) maps every orbit $O(x_0)$ onto other orbit $O(x'_0)$, because μ permutes f^i , $i = 1, 2, \dots$. Thus μ has to preserve the sum of all k_i -element orbit, i.e., X_{k_i} and, consequently, the restriction of μ to the set X_{k_i} is an element of $WAut(\mathcal{A}_{k_i})$. It follows from Theorem 1 that $(k, k_i) = 1$ for all $i=1, \dots, N$.

Now let μ be a weak automorphism of (X, f) such that $f^{\mu} = f^k$. First of all we check that μ_0 defined in (2) is an element of $WAut(X, f)$. Indeed, if k is relatively prime to each k_i , $1 \leq i \leq N$, then μ_0 is a permutation of X_{k_i} and accordingly to Theorem 1, it is a weak automorphism μ_{k_i} of the algebra \mathcal{A}_{k_i} , $i = 1, 2, \dots, N$, such that $f^{\mu_0} = f^k$.

Let us consider the restriction of the function $\mu_0^{-1}\mu$ to the set X_{k_i} , $k_i > 1$. We have

$$\mu^{-1}\mu_0 f \mu_0^{-1}\mu = \mu^{-1}\mu_{k_i} f \mu_{k_i}^{-1}\mu = \mu^{-1} f^1 \mu = f^{k_i},$$

where l is a positive integer from the set $\{0, 1, \dots, k_i-1\}$ such that $\mu_{k_i}^{-1} f^l \mu_{k_i} = f$. This gives $kl \equiv 1 \pmod{k_i}$ and, consequently, the function $\mu_0^{-1}\mu$ maps f on f which is enough to be an automorphism of the algebra (X, f) . Theorem 2 is thus proved.

Remark. For $k = 1$ we get $\text{Aut}(X, f) = \text{Aut}(\alpha_{k_i}) \times \text{Aut}(\alpha_{k_2}) \times \dots \times \text{Aut}(\alpha_{k_N})$. In turn, if $\{x_t\}_{t \in T_i}$, $1 \leq i \leq N$, is a selector of all orbits in A_{k_i} , then the algebra $(O(x_t), f)$ can be identify with the algebra $(\{0, 1, \dots, k_i-1\}, \sigma)$, where σ is a permutation defined by $\sigma(i) = i+1 \pmod{k_i}$. Thus $\text{Aut}(O(x_t), f) = Z_{k_i}$ for all $i = 1, 2, \dots, N$ and the group of automorphisms of α_{k_i} is (isomorphic to) the wreath product of Z_{k_i} and the symmetric group S_{T_i} on the set T_i (cf. [5]).

III. Theorem 3. A weak automorphism μ of (X, f) can be extended to a weak automorphism $\bar{\mu}$ of the algebra $\alpha = (A, f)$ with $r^{\bar{\mu}} = f^k$ if and only if the cardinality of the sets $[a]_{\sim}$ and $f^{-1}(\{\mu f^k(a)\})$ is the same for all $a \in X' = A - X$.

Proof. By statement 2 of the Proposition, any weak automorphism $\bar{\mu}$ of α maps the elements of X' onto itself. Thus, if $\bar{\mu}$ is an extension of $\mu \in \text{WAut}(X, f)$, then, of course, $f^{\bar{\mu}} = f^k$. Moreover, since $k > 0$, μ is a permutation on X and the last equality gives $f(\bar{\mu}(a)) = \mu(f^k(a))$ for all $a \in X'$. According of statement 3 of the Proposition the relation \sim is a congruence of α and any weak automorphism of α has to permute the abstract classes of \sim . Thus $\bar{\mu}([a]_{\sim}) = f^{-1}(\{\mu f^k(a)\})$.

Suppose now that $\mu \in \text{WAut}(X, f)$ with $f^\mu = f^k$ satisfies the condition $\text{card}([a]_\sim) = \text{card}(f^{-1}(\{\mu f^k(a)\}))$ for all $a \in X'$.

Let ψ_a be a bijection of the set $[a]_\sim$ onto the set

$f^{-1}(\{\mu f^k(a)\})$, where a runs through a selector T of abstract classes of \sim in the set X' . We put

$$\bar{\mu}(x) = \begin{cases} \mu(x) & \text{if } x \in X, \\ \psi_a(x) & \text{if } x \in [a]_\sim, \quad a \in T. \end{cases}$$

Clearly, $\bar{\mu}$ is a permutation of A . We have also $\psi_a(x) \in f^{-1}(\{\mu f^k(a)\})$, which is equivalent to $f(\psi_a(x)) = \mu f^k(a)$. Thus for any $x \in [a]_\sim$, $a \in T$, we have

$$\begin{aligned} \mu^{-1} f \bar{\mu}(x) &= \bar{\mu}^{-1} f \psi_a(x) = \bar{\mu}^{-1} \mu f^k(a) = f^{k-1}(f(a)) = f^{k-1}(f(x)) = \\ &= f^k(x) \end{aligned}$$

for all $x \in A$. Therefore $\bar{\mu}$ is a weak automorphism of \mathcal{A} , as required.

Corollary 1. Since any bijection ψ_a of $[a]_\sim$ onto $f^{-1}(\{\mu f^k(a)\})$ is a superposition of a fixed bijection and some permutation of the set $[a]_\sim$, the set of all extensions of μ mentioned in Theorem 3 can be identified with the Cartesian product $\prod_{[a] \in T} S_{[a]}$.

Corollary 2. If all classes $[a]_\sim$, $a \in T$, have the same cardinality and $f(X') = X$, then each weak automorphism of (X, f) can be extended to a weak automorphism of the algebra \mathcal{A} .

REFERENCES

[1] J. Dudek, E. Płonka: Weak automorphisms of linear spaces and some other abstract algebras, Colloq. Math. 22 (1971) 201-208.

- [2] A. Goetz : On weak isomorphisms and weak homomorphisms of abstract algebras, *Colloq. Math.* 14 (1965) 163-167.
- [3] A. Hulanicki , S. Swierczkowski : On group operation other than xy and yx , *Publ. Math.* 9 (1962) 142-148.
- [4] B. Huppert : *Endliche Gruppen*. Berlin (1967).
- [5] J. Hyman : Automorphisms of 1-unary algebras, *Alg. Universalis* 4/1 (1974) 61-77.
- [6] J. Hyman , J.B. Nation : Automorphisms of 1-unary algebras II, *ibid.* 12 127-131.
- [7] E. Płonka : On weak automorphisms of algebras having a basis, *Colloq. Math.* 24 (1971) 7-10.
- [8] L. Polák : Weak automorphisms of 1-unary algebras, *Universal Algebra and Applications*, Banach Center Publications 9 (1982) 273-275.
- [9] J.R. Sennft : On weak automorphisms of universal algebras, *Dissert. Math.* 74 (1970).
- [10] T. Traczyk : Weak isomorphisms of Boolean and Post algebras, *Colloq. Math.* 13 (1965) 159-164.
- [11] A.P. Street : Subgroup-determining functions on groups, *Illinois J. Math.* 12 (1968) 99-120.

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY,
44-100 GLIWICE, POLAND
Received May 25, 1986.