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I t i s no t a b i g r i s k to say t h a t t he c l a s s of s u r j e c t i v e 
e p i m o r p h i s n s i s b i g enough i f we dfeal w i t h c l a s s i c a l problems 
of t he t h e o r y of t o t a l a l g e b r a s . None of t h e b a s i o c o n c e p t s 
and f u n d a m e n t a l theorems needs o t h e r s t h e n s u r j e o t i v e e p i s . 
Only i n some s p e c i a l v a r i e t i e s n o n - s u r j e o t i v e e p i s a r e c o n -
s i d e r e d - f o r example , l o c a l i z a t i o n s i n the t h e o r y of r i n g s . 
I n our .op in ion among a l l r e a s o n s of i t t he most i m p o r t a n t a r e 
t h e f o l l o w i n g , r i r s t - each • p i i n a c a t e g o r y of a l l a l g e b r a s 
of a g i v e n type i s s u r j e c t i v e . Second - each a l g e b r a i n a g i v e n 
v a r i e t y V i s a s u r j e c t i v e image of a s u i t a b l e f r e e V - a l g e b r a . 
And t h i r d - i n any v a r i e t y t h e r e e x i s t s a f a c t o r i z a t i o n sys tem 
( S u r j e c t i o n a , Monos). 

But working wi th p a r t i a l a l g e b r a s we can not r e s t r i o t ou r 
a t t e n t i o n t o s u r j e c t i v e e p i s o n l y . One can e a s i l y oheok t h a t 
none of t h e s e t h r e e p o s t u l a t e s r e m a i n s t r u e f o r s u r j e c t i o n s 
i n the t h e o r y of p a r t i a l a l g e b r a s . Hence we propose t o d i s t i n -
g u i s h a n o t h e r c l a s s of e p i s i n c a t e g o r i e s of p a r t i a l l y a l g e -
b r a i c s t r u c t u r e s which may play the same r o l e a s s u r j e o t i o n s 
plaQr f o r t o t a l a l g e b r a s . More p r e c i s e l y ; i n each v a r i e t y V 
of p a r t i a l a l g e b r a s we d i s t i n g u i s h a c o m p o s i t i o n c l a s s By • 
- C l e p i y ' E x t y , where Clep iy i s a c l a s s of a l l c l o s e d [ 2 ] 

T h i s paper i s based on t he l e c t u r e p r e s e n t e d a t the Con-
f e r e n c e on U n i v e r s a l Algebra h e l d a t t he T e o h n i o a l U n i v e r s i t y 
of Warsaw ( W i l g a ) , May 2?.-25, 1986. 
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2 G.Jarzembski 

(s t rong in [3]) s u r j e c t i o n s in V and- Sxty i s a c l a s s of " f r e e 
extensions in V" defined i n t h i s paper. Free extensions in 
a category Palg £2 of a l l p a r t i a l G-algebras are p rec i se ly 
extendable e p i s . But i n many v a r i e t i e s these c l a s se s may be 
d i f f e r e n t . 

What make s the universal a lgebra sucoesfu l i s tha t surjec— 
t i o n s are described by {congruences. The caloulus of con-
gruences i s a one of the most important too l s of t h i s theory. 
I t w i l l be very usefu l to get a s imi la r too l in the theory of 
p a r t i a l a lgebras . Closed epis have t h e i r de sc r i p t i on - they 
are described by closed (s t rong) congruences. Hence in the 
present paper we deal only with f r e e extens ions ; to give a 
framework of a desc r ip t ion of l a t t i c e s of f r e e extensions i s 
a main goal of the present paper. Then combining together de-
s c r i p t i o n s of both o lasses we can obtain a f u l l desc r ip t ion 
of a l l epi's from the d is t inguished c l a s s . 

Our approach i s of the ca t ego r i ca l na tu re . Backgrounds 
are presented i n sec t ions 1 and 2. We use speo t r a l a lgebraic 
t heo r i e s [6] to def ine f r e e ex tens ions , examine t h e i r basio 
p roper t i e s and describe l a t t i c e s of f r e e extensions ( s e c -
t i o n 3 ) . Moreover, we show tha t our s t a r t i n g point and basio 
example - extendable ep i s in P a l g S i s r a t h e r a very pecul ia r 
one ( sec t ion 4) . Next sec t ion i s more concre te . F i r s t , con-
s ide r ing f r e e extensions i n PalgQwe introduce a concept of 
a sa tu ra ted i n i t i a l segment whioh plays a r o l e of a congruence 
i n a desired desc r ip t i on of f r e e extensions* Then, considering 
f r e e extens ions in a jiLven v a r i e t y Vc PalgjQwe describe a r e -
l a t i o n s h i p between f r e e extensions i n both ca t ego r i e s . 

1. P re l iminar ies - v a r i e t i e s of p a r t i a l a lgebras as ca-
t e g o r i e s 

For a l l unexplained concepts and no ta t ions concerning 
p a r t i a l a lgebras we r e f e r the r eade r to [2]. The only d i f f e -
rence i s tha t closed homomorphisms are ca l led here p e r f e o t . 
We s h a l l use P a l g Q t o denote a oategory of a l l p a r t i a l S?-alge-
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L a t t i c e s o f f r e e e x t e n s i o n s 3 

b r a s o f a g iven type Ufo : P a l g i ? — - S e t i s the obvious f o r g e t f u l 
f u n c t o r . QX denotes a s e t of a l l £2-terms over a s e t X, i?X 
i s an a b s o l u t e l y f r e e t o t a l fi-algebra over X (with a c a r r i e r 
OXJ. 

The f o l l o w i n g o b s e r v a t i o n , due to J . S c h m i d t [ l l ] » forms 
a base o f our c a t e g o r i c a l d e s c r i p t i o n of p a r t i a l a l g e b r a s . 

T h e o r e m 1 . 1 . F o r eaoh s e t X t h e r e e x s i t s an 
ordered family { ^ j ^ g x of p a r t i a l £2-algebras such t h a t 

® Y 
i . f o r eaoh i e SJJX t h e r e i s a f u n c t i o n g p X — - U p * ! = X i t 

i i . i f i-si j i n S 0 X , then t h e r e e x i s t s a unique homomorphism 
Y Y 

^ i j ' - i " - s u o J l t i l a t ^ i j * ? ! = ? j 
and the f o l l o w i n g h o l d s : f o r each A_ i n - P a l g £ a n d a f u n c t i o n 

h : X — t h e r e e x i s t s a unique i e S ^ X t o g e t h e r with a p e r f e o t 
~ ~ x map h : ^ — — A suoh t h a t = h . Moreover, i f h^ s X ^ — - A 

Y ~ 
and = h» then and h^ = h 'SP^» 

R e o a l l a c o n s t r u c t i o n o f the family { ? i ) i 6 s p j ( (cal led a 
¿»-spectrum over X ) . By an i n i t i a l ¿¿-segment over X we mean 
each subset X ^ c ^ X c o n t a i n i n g ' X and such t h a t t o g e t h e r wi th 
any term t 6 X i c o n t a i n s each subterm of t . Then the d e s i r e d 
fami ly c o n s i s t s o f a l l i n i t i a l ¿¿-segments over X endowed with 
s t r u c t u r e s of r e l a t i v e s u b a l g e b r a s of QX. 

Prom now we w i l l assume t h a t S2 i s a f i n i t a r y t y p e . 
A c l a s s V c P a l g i P i s c a l l e d a v a r i e t y i f V i s c l o s e d under 

p r o d u c t s , p e r f e c t e p i images and ( c l o s e d ) s u b a l g e b r a s , i . e . 
V i s a H 0 S s P - c l o s e d c l a s s i n the sense o f [ l ] . Eaoh v a r i e t y 
i s a c l a s s o f models o f a s e t of formulas o f the form 

( + ) ( \ / 3 ) 0 - q [ 1 ] 
i € l ' 

( R e o a l l t h a t A i n P a l g i 2 s a t i s f i e s 3)t a t a g iven v a l u a t i o n k 
i f the term- t i s def ined i n A a t the v a l u a t i o n k ) . I n o t h e r 
words, eaoh v a r i e t y i s a c l a s s o f models o f " g e n e r a l i z e d 
BCS-equat ions" 

e \ e 
V ^ = W p l q 
i e l ' 

i n the sense o f P . B u r m e i s t e r [ 2 ] * 
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4 G.Jarzembski 

A variety V i s called a S-variety i f for eaoh perfeot map 
h:A——B, A e V provided BeV, Bach 3-variety i s a c lass of 
models of a set of formulas of the form 

We will identify var iet ies with the corresponding f u l l 
subcategories. FytPalgS—-V will always denote a l e f t adjoint 
l e f t inverse to the embedding functor ZytV—-Palgi2. Note that 
for each A in Palgi2 the universal arrow —- ZyFyA i s epi . 

Observe that the Theorem 1.1 remains true i f we replace 
PalgPby V in each plaoe i t appears in the theorem. l e t 
{- i j ieSyX ^ e n o t e a V-spectrum over a given set X. F i r s t define 

SyX as a subset of S^X (with the induced ordering) as follows: 
for eaoh i in SPX, ieSyX i f f —"Zy^V^i i s P 6 1 * 6 0 * « 

Then put = FyX^ g f * <5^*21 • 

By 3V we denote a smallest 3-variety containing a given 
variety V. 

L e m m a 1.2. i . For any A in PalgG, A e 3 V i f f A 
s a t i s f i e s a l l formulas of the form (++) valid in V4 

i i . SyX = S 3 yX, for eaah set X, 
i i i . i f V = 3V, then for each i 6 SyX, X± = 1 ± and for 

each k_ in Palgfi, <5A i » an extendable epi . 
i v . The embedding Z0:V^-3V has a l e f t adjoint l e f t 

inverse FQ and each universal arrow <5^8A——Z0FQA (A 6 3V) 
i s perfeot and sur ject ive . 

Only the second part of iv i s nontrivial . We wil l prove 
i t in the end of section 2. 

2. Categorical backgrounds 
By a spectral algebraic theory [6] in Set ( s . a . t . , for 

short) we mean eaoh 4-tuple S = ( S , ) * ) suoh that 
S:ObS»t—-ObFOS (POS = , the category of posets) , 

i e l 
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lattices of freo extensions 5 

J = (JX:SX -^Set) X e 0 b S a t, g- (p ^^XeObSet 
(A is a "constant" functor) and ( J* assigns to each pair 
( f i X J Y j , j ) a pair (f,;j)* = (f£:Jxi — ~ Jy3, i) such that the 
following hold: 

i. - f. 
ii. = (idj i,i) for each set X and ieSX, 
iii. if if,j)* - (f£,i). (g,D* - (gj.k), then (f*g,if = 

- ifjgj.k). 
iv. if jigk in SY, then JY(j«kJ.f^= (Jy( j ̂ k)*f )*«Jx(i<r) 

for the suitable iir in SX. 
notation. For the simplicity we will write X̂ ^ instead 

of Jxi and tpir instead of Jj(iir). If it will be no danger 
of confusion for ( f : X — w a will write f* instead of fj. 
The equation domf* = will always mean (f,j)* = (f*,i). 

S-algebras are triples A = (A.ieSA.asA.^—-A) (we will 
also write (A,Aita)) such that a = idA and for each pair 
f,giX=^Ait if af = ag, then domf * = domg* and af * = ag*. 

We extend the object function S to a contravariant functor 
S«Setop—-POS as followsj for eaoh h:X—-Y and jeSY, 
Sh(j) o i, where dom(g*»h)* = X ^ 

By an S-morphism from (A,Alta) to (B,B^,b) we mean eaoh 
function hi A — B such that i«Sh(j) = r and b« (g®»h)*" -
= h«a. If, moreover, Sh(j) = i, then h is called perfeot. 

Bote that for eaoh set X and ieSX, ^ «= (X^domfid^)*", 
(idx )*} is an S-algebra and for J <i in SX, is an 
S-morphism from X^ to We shall use jS-Alg to denote the 
category of S-algebras, UgjS-Alg—•Set is the forgetful func-
tor. But for a simplicity instead of Ugh we will often write 
simply h. 

A s.a.t. S is complete (pointed) if each SX iB a oomplete 
lattice (has a greatest element iy) and for each h:X——Y k 
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6 G.Jarzembski 

with k » inf j e j } , (k = iy), domh* » X8, where s= in f j s^ s j e j j 
wLere X g = dorn^^h ) * , (s = i 

S is complete i f f S-Alg has a l l concrete limits [7 ] . 
E x a m p l e s . 1. Let SQX denote a lattice of a l l 

initialfl-eegments over a given set X, J ^ i ^ = s ^fc^i* 
For each h i Y — w e put h* = Ugh (compare Theorem 1.1 J, 
ThenjSQ= (S^, J,g , ( ) * ) iB a s . a . t . , Sfl-Alg and Palg£2 are 
concretely isomorphic ( [ 5 ] , [ 8 ] ) . Conoepts of perfect maps 
in both categories ooincide, total S-algebras correspond to 
total £>-algebras. Partial Cr-^lge bra A with a carrier A is re-
presented as a triple (A fA i ta) where Â  is the init ia l ^-seg-
ment consisting of a l l terms over A defined in Â  and a:A^—- A 
ia a valuation map. 

We wil l identify both categories in the sequel. 
2. 7or *a given variety Vcpa lgQwe construct a s .a .t . 

Sy = (Sy,3,2,( ) * ) , where SyX is a subset of SQX defined in 
section 1, JjXjL = UcPyXj_ and ) * are determined in the 
obvious way. Again, one can easily show that V and Sy-Alg are 
concretely isomorphic. 

Note that S^ and Sy are complete s .a.ts . 
We finish this seotion with some results illustrating the 

similarity between partial algebras and S-algebras. To save 
the space the routine proofs are omitted. 

L e m m a 2.1. (generalization of Theorem 1.1). Let 
hsX —UgA for some A in S-Alg. ThenNthere exists a unique 
i e SX together with a perfeot S-morphism hsX^—- A s . t . 

= h. Moreover, i f h^X^—»- A in S-Alg, h^g * , then d ^ i 

and ĥ  = moreover, ft A—"-B is perfeot, then 
fh = f .h. 

P r o o f . For A = (A,Ak ,a), put h « a»({>£*h)*. 
L e m m a 2.2. Bach perfect S-morphism is uniquely 

faotorizable as a perfeot surjactive S-morphism followed by 
a perfect S-mono. 

Assume now that S is pointed. Ve call ai S-algebra 
A. - (A,A i ,a) total i f f i = i A . 
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Lat t i ces of f r ee extensions 7 

L e m m a 2 . 3 . 1 . The f u l l subcategory TotS-Alg of t o t a l 
S-a lgebra i s monadio over Se t . 

i i . The embedding functor Z t :TotS-Alg — S-Alg has a l e f t 
adjoint l e f t inverse P tsS-Alg —TotS -A lg . 

P r o o f . We sketoh i i . only. For eaoh A • (A ,A i t a ) 
we oonstruot a universa l arrow jr^'A —— ^ t ^ t - 8 8 ^g^10*6" 

l e t e be a coequal izer of a pair{(g* *a )* , fan^)*") i n 

TotS-Alg. Then jrA • . Note that then e = F t a . 

L e m m a 2 .4 . Assume that h , g t ( A t A l t a ) = T (B tB^ fb) 
are perfect S-morphisms and there ex i s t funct ions e : B — - C, 
s:C —-B, r j B — - A 

such that es - i d , eh • eg, hr = id , gr * s e . Then there 
e x i s t s a unique S-a lgebra (0 ,0^ ,0 ) making e a perfect oo-
equa l izer of ( h , g ) . 

P r o o f . Put k = S s ( j ) . Then (pjj>e)* i s a ooequalizer 

of (p jh)* , (? j g ) * in Se t . But e»a equa l izes th i s pa i r . Hence 

e*a = c » ^ « « ) * . One can oheok that (C.C^.c) i s the desired 
S-a lgebra . 

How we prove Lemma 1 . 2 . i v . Let A = (A.A^a) e IV and l e t 
Sjy be the corresponding s . a . t . Then i e S j y A - SyA and 
a iA^—-A, <5"a :A±—-ZyFyj^ are perfect and su r j eo t i ve . Perfect 

su r j ec t ive epis correspond to strong (closed) congruences. 
Consider the diagram 

ZVPV - i * 

» A — A^/^t^, 
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8 G.Jarzembski 

where ~ + ~0 i s a smallest equivalence r e l a t i o n containing 
~u~o« i s a s trong congruenoe because £ i s a f i n i t a r y 
type. Henoe a pro jec t ion f i s p e r f e o t . Now i t i s not hard to 
show tha t f = <5®. 

3. Free extens ions-genera l theory 
Recall tha t an epimorphism of p a r t i a l f i - a l g e b r a s h s j i—- B 

i s ca l led extendable i f f o r each gsA — w i t h C being t o t a l , 
g = g^»h f o r some homomorphism g^. Equivalent ly , h i s ex ten-
dable i f P^h i s ieo (FtsPalgS2 — TotPalg-O - compare Lem-
ma 2 . 3 . i i ) . This concept i s of a pure ca t ego r i ca l nature and 
i t has i t s c a t ego r i ca l gene ra l i z a t i on ( [ 4 ] , de f . 37 .8 ) . But 
we want to obtain a f a c t o r i z a t i o n system (? , Pe r f ec t S-mon-
phisms) hence we need a more prec ise g e n e r a l i z a t i o n . To -see 
the problem consider the fo l lowing, l e t Q « Q^ « {p,q}, 
V = Mod( l p ( x ) = > x = y ) . Then the only t o t a l V-algebra i s 
a one-point a lgebra . Henoe each ep i in V i s a n extendable 
epi so there i s no desired f a c t o r i z a t i o n system in V. 

Let S - (S , J ,2 »( )*) be an a r b i t r a r y but f ixed s . a . t . 
i n Se t . 

D e f i n i t i o n 3*1. An S-morphism h:A = 
= ( A , — » - B i s ca l led a f r e e extension (of A) i f the oom-
mutative square 

h 
Av. — B (h • the pe r fec t extension of 

i s a pushout i n S~Alg* 
Note t ha t each f r e e extension i s e p i , eaoh ieo i s a f r e e 

extension and eaoh f r e e extension of a t o t a l S-&Lgebra i s i s o . 
L e m m a 3 . 2 . Let (A,A l fa) be an S-a lgebra . Then 
i . For h : ( A f A ± , a ) — • ( B , B , , b ) with Sh(J) = k, h i s 

a f r e e extension i f f dom(/?£»a)* « dom($0iJc)*" and K i s a per-
f e c t coequal izer of t h i s pa i r i n S-Alg. 

a 

htiA—-UeB - see Lemma 2«1) 

A 
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Lattioes of free extensions 9 

i i . I f i ^ s in SA, dom(2g»a)* = dom^g ) * and this pair 
has a perfect coequalizer e:Afl—— D in S-Alg, then the unique 
S-morphism g :A—- D s . t . g«a = is a free extension, 

i i i . I f S is pointed, then for eaoh S-algebra A» 
jrA:A—- Z^F^A is a free extension. 
- P r o o f s of i . and i i . are straightforward, 

i i i . follows from i i . and the construction of t A . 

L e m m a 3.3. Eree extensions divide perfect morphisms, 
i . e . whenever we are given a commutative square in S-Alg 

(A,A i fa) «= A B 

f j « |h 
D - C 

where e is a free extension and g is perfect, then there 
exists % :B—-D suoh that ^ *e = f and g* $ » h. 

P r o o f . Consider the commutative diagram in S-Algi 

Ak B -JL - (C,Cp,o) 

t a t t f « 
A± A D - (D,Ds,d) 

Then Sf(s) • SfSg(p) = She(p) »k, i . e . there exists f sA k —-D 
A A A A 

suoh that f ' g^ = f (compare Lemma 2.1). Moreover, f » ( ?£»a ) * » 

" ' ' t^ ikJ* a n d » L0Buna 3.2.11., f = | *e. Then ^ *e = f , g*£ = h. 

C o r o l l a r y 3.4. I f S is pointed and h:A—-B 
is a free extension, then Fth is iso and yA = h*arB. In parti-
cular, eaoh free extension in Palgfi is an extendable epi. 

By E**s-Alg (or simply Bxt) we shall denote a olass of 
free extensions in S-Alg. Per fg_A l g (Per f ) denotes a olass 
of perfeot maps. 

T h e o r e m 3.5. Assume that coequalizers of pairs 
of perfeot S-morphisms exist in S-Alg. Then a pair 
Per fg_A l g ) forms a factorization system in S-Alg. 
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10 G.Jarzembski 

P r o o f * By Lemma 3.3 we must show only that each 
S-morphism has the required factorizat ion. Let g:(A,A^,a) — 
—«-(B,Bj tb). Consider the diagram 

dom(g£*a)*" = domiy^)* because g i s perfect (Lemma 2 .1 ) . Let 
e be a ooequalizer of this pair, g = r »e , hence e i s perfect. 
By Lemma 2«2 perfeot ooequalizers are surjeotive, henoe r 
i s perfect too. a i s a coequali^er of (g>£*a)*, (idA ) * , henoe' 
0 , ^ i k = V * a f o r s o m e V a n d Lemma 3 . 2 . H . V i s a free ex-
tension. Obviously, g * The proof i s complete. 

R e m a r k . I t has been proved in [7] that for each 
complete s . a . t . S, S-Alg i s oooomplete. Hence, in part icular , 
Theorem 3*5 i s valid for an arbitrary variety of part ia l alge-
bras. 

Throughout the rest of this seotion we assume S to be 
oomplete. 

L e m m a 3.6. An S-morphism h i s a free extension i f f 
h divides each perfect S-morphism. 

P r o o f . By Lemma 3.3 i t i s enough to show the s u f f i -
ciency. Assume that h divides each perfedt map and le t h * f * e 
for some perfeot f and a free extension e . Then there exis t s 
g s . t . g*h = e , f * e a> id. Thus g i s a perfeot split; mono 
and epi (because e i s ep i ) . Then g i s iso and consequently, 
h i s a free extension. 

C o r o l l a r y 3.7. ( i ) *'or eaoh set X, j in SX, 
9>i;j e Ext, ( i i ) e i^——B i s a free extension i f e = 
for some j e SX, k e l s o , ( i i i ) free extensions form a subcate-
gory of S-Alg. 
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Lattioes of frae extensions 11 

(iv) i f the square 

i s a pushout in S-Alg, he Ext, then h1 e Sxt, 
(v) I f f»e e Ext and e i s epi , then f e E x t . 

Combining together Lemma 2.2 and Theorem 3.5 we obtain 
that each S-morphism h has a (unique) factorization h = m*e^*eQt 

where m i s perfect and infect ive , e1 - perfect and sur ject ive , 
e„ - free extension. The composition class E = Perf , *Ext O o ux 
i s a c lass of S-epimorphisma which, in our opinion, plays the 
same role as surjective epis play in the theory of total alge-
bras . 

For eaoh S-algebra A by ExtA. we denote the set of repre-
sentatives of froe extensions of A. I t i s a poset with a 
greatest element ¡rA and a l eas t element idA < By Corollary 3.7.iv 
ExtA i s a complete l a t t i ce with suprema determined by pushouts. 
For each i in SA, KxtA^ i s a sublattice of SA. 

L e m m a 3.8. Let g:IJ——A be perfect. Then there 
exist monotone functions 

g 
ExtA ExtB 

such that A • r „ ^ i d , id ^ r' »A . I f , moreover, g i s sur ject ive , o o © o 
then A g* r g " 

P r o o f . For <p e ExtA, le t g,,*^ (tp) be an (Ext,Perf)-
- factor izat ion of <p*g. For yeExtB, A (y) i s a unique S-mor-O 
phism Baking the square 

g 

a puahout« tb« desired ineqnations are obvious. I f g i s tur-
j ec t ive , then i square 
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12 G.Jarzembski 

teì-gj* 

i s a push out i n S-A lg f o r each j ^ k i n SB. Now us ing a r o u t i n e 
c a l c u l a t i o n one can show that (P^{<p) ,g) together w i t h 
form a pushout i n S -A lg . Hence = <p f o r each (pe'ExtB. 

C o r o l l a r y 3 . 9 . F o r eaoh S-algebra A » ( A , A i t a ) , 
P a s E x t A — - E x t A ^ c SA i s an embedding preserv ing i n f s and f o r 
eaoh e , f e Ex tA , sup i e , f } = A n ( sup { PA«), r _ ( f ) } ) . 

ExtA 1 J a SA 1 a a J 

But i n general ExtA i s only a meet-sublat t ice o f SA. 
E x a m p l e . Le t Q • « { P»s-j »89»*} » v * 

* Mod( S s ^ x Ja asgfx j^ai tptx) , , A = ( { x , y } , p*(s ) * y) and 
noth ing more i s defined i n A. Le t B3" = { { x . y . s ^ x } , p x (x ) » y , 
s^(x) x S j x ) and noth ing more i s defined ( i » 1 , 2 ) . One can 
v e r i f y that P & t k — ~ S y A does not preserve the supremuu of B^ 
and B 2 because b V b 2 = ( { x , y . s . j X . s ^ t y } , p{x) « y , t ( y ) - t y , 
s^Cx) = S jX f o r i = 1 , 2 . (Here we i d e n t i f y f r e e extens ions 
of A - i d e n t i t y embeddings i n t o B Q ' s - w i t h t h e i r codomains). 

4 . ffree extens ions i n categor ies o f p a r t i a l monadic a lge-
bras 

R e c a l l f rom [ 5 ] tha t a monad T * { T , ^ 1 , ^ 1 ) i n Set i s . 
cal led a pb-monad i f f o r eaoh mono m : X — - Y the 4 - t u p l e s o f 
f u n c t i o n s (m,gj , Tm,2y) a n d ( | u x » T T m " u Y , T m ^ 8376 P u l l b a c k s a n d 

f o r eaoh g : Z — — Y , T preserves pullbaok o f o and g. m 
We o a l l a subset B<=a open i n A « (A,a)e Set i f 

a " 1 ( B ) c l B i . e . , a pullbaok o f a and m:B has the form 

TA 
Tm J 

( + ) T B 
J b 
C B 

T 
I f T i s a pb-monad, then f o r eaoh A i n Set c?en subsets o f A 
farm a oomplete l a t t i c e w i t h e e t - t h e o r e t i o a l j o i n and meet 
as l a t t i o e operat ions . 
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L a t t i o e s of f r e e a lgebras 13 

S t a r t i n g from a given pb-monad T we cons t ruc t a s . a . t . 
ST • ( S t , J , 2 , ( )*) as f o l l ows : f o r each se t X, S,j,X c o n s i s t s 

m 
of a l l open subse t s of (TX,/^) conta in ing X. For eaoh 

Xĵ e S^X and h:Y —-X.^ = ^x^i* i s a u n i ( 3 l i e f u n c t i o n making 
the square (where x.,, y- are s u i t a b l e embeddings) ^ J 

<t/T .T(x ihJ 

a pu l lback . Note t h a t ST i s po in ted . TotS^-Alg = Set . 
S^-a lgebras are ca l l ed p a r t i a l monadic T^-algebraB. Note a l so 
t ha t the s . a . t . S& i s cons t ruc ted j u s t i n t ha t way s t a r t i n g 
from the monad T 3 corresponding to the oategory of a l l t o t a l 
Q - a l g e b r a s . Henoe Palgi?« the category of p a r t i a l monadio 
Tp-a lgebras . 

We w i l l show t h a t i n c a t e g o r i e s of p a r t i a l monadic a l g e -
bras f r e e ex tens ions are p r e c i s e l y extendable ep i s (with r e s -

T 
pect t o Seft ) . To show i t we w i l l need the fo l lowing f a c t s 
( to save the space we omit the r o u t i n e proofs of them): 

F a c t 4*1* Let B be an open subset of (A,aJ e Set 
(T i s always assiimed to be a pb-monad). Then in the diagram 
(+) C i s open i n (TB,^g) and B = (B,C,b) i s an S j - a l g e b r a . 
We c a l l B an open subalgebra of A. Moreover, m:B—— A i s an 
i n i t i a l Sj-morphism from B to A ( i . e . whenever hsUgD —- B 
and m*h i s an Sj-morphism from D to A, then h i s an S^-mor-
phism from D to B) . 

F a c t 4 . 2 . For eaoh S T - a l g e b r a A = (A ,A i t a ) the re 
e x i s t s a t o t a l S j - a l g e b r a A1 = ( A u 1 ,a:T(Au1) — AL/I)(1 - {0}) 
suoh t h a t Â  i s an open subalgebra of 

F a c t 4 . 3 . Let h:C —- A be an ST-morphism between 
t o t a l S^-a lgebras and l e t miB0—•-A be an open suba lgebra . 
Consider a pul lback i n Set 
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14 G.Jarzembski 

u s c » C 

] g 

A = USA 

B » UgB 

Then D i s open in C and g i s a per fec t map between open sub-
algebras D and B. 

L e m m a 4 .4 . Bach Sj -a lgebra i s an open subalgebra 
of i t s f ree completion. 

P r o o f . Let P t(A,A 1 ,a i = (FA,a) and f :(FA,a) — A1 • 
• (Au1 ,a ) be an S^-morphism e . t . = p^A« 1 —Au1. By 
Facts 4*2 and 4.3 i t i s enough to show'that in the diagram 

T 
the r i gh t square i s a pullback in Set . Obviously, f*F ta*gA« pA» 
henoe f .F^a - ®*tPa* I t eas i ly implies tha t the outer square 
i s a pullbaok. Then the r i g h t square i s a pullback because 
Ff«. i s a su r j e c t i ve (F fa i s s u r j e c t i v e since i t i s a ooeqiiali-
aer in S e t 1 ) . 

How we are ready to prove the sa in theorem of t h i s sec t ion . 
T h e o r e m 4 .5 . Let T be an a rb i t r a ry pb-monad. 

Then f o r aaoh Sj-morphism sjA —-B the following are equ i -
v a l e s t i 

i . e e 5xtc Sj-Alg 
i l . ?Te i s an isomorphism, 

-B ' i i i . B i s an open subalgebra of F^A, yA • A 
r r 0 0 f . i . = s » i i . See Corollary 3 .4 . 

i i . = s » i i i . See Lemna 4 .4 . 
i l i , = s » i . Let A » (A,A i f a) . By Fact 4.3 we may assume 

tha t pd lback of FtasTA —FA » UgFtA and m:B 
form 

-FA h'as the 
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Lattioes of free extensions 15 

StA a A^ 

and g is a perfect map from to B. g is surjective because 
F^a is. Obviously, A^c Ak. We show that the square 

h—— J . 
Ai -A 

is a pushout in Sj-Alg. Let h : A k — f : A — X , h»$pik = f»a. 
Then P^h = F^f'F^a (because <piJceExt) and 3*x'h * Ptf»m*g. 
But g is surjeotive and ^ is an initial moño* Hanoe there 
exists Sj-morphism y : B — - X s.t. v *g = h. Obviously, 
y e - f. Vow the theorem follows direotly from Definition 3.1 
because, obviously, g - 9« 

C o r o l l a r y 4*6. Por each S^-algebra A = 
= (A,Aita) the latticertetá is isomorphic to a lattice of all 
open subsets of containing A* Pa»BxtA—^S^A is a lattice 
embedding. Since partial 3-slgebras are partial monadic 

-algebras we obtains 
P r o p o s i t i o n 4.7. Let £2 be an arbitrary 

finitary type. Then for eaoh AePalgQ, B ^ p ^ g A is a complete, 
distributive, algebraic lattice. 

B x a m p l ' e s . Let V be a regular variety [10] , 
V • Mod(t* a *2^iil* 1,110n tiie corresponding monad T(V) is 
a pb-monad and S,¡,|ŷ -Alg ia (conoretely isomorphic to) a va-
riety of partial £5-algebras V , where V = Mod { a t*<s=«» atg, 

i l l 
3)t^=>t^ - t2^iel* li:u,ca:,«a 4.5 and Proposition 4.7 remain 
true for these varieties of partial algebras. 

The oategory of looally oompact spaces may be regarded 
as a category of partial monadio y3 -albebras where ¡b is an 
ultrafilter monad [9]. Total algebras are compact spaces, 
perfect Syj-morphisms are perfect maps (and this is a reason 
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16 u.Jarzembski 

of our proposal to replace the name "olosad" by "per f ec t " ) . 
3y Corollary 4.6, the la t t i ce of free extensions of a given 
local ly compact space H is isomorphic to the la t t ice of open 
subsets of i t s Stone-Cech compactification containing H. 

5. Free extensions in var ie t ies of partial algebras 
We fol low the notation established in section 1. Throughout 

we assume that V is an arbitrary but fixed variety of partial 
Q-algebras and Q is a f in i tary type. First note that beoause 
Zv preserves perfect morphisms, Fy tPa l g f l— V preserves free 
extensions. Moreover, 

P r o p o s i t i o n 5.1. For 6ach h:A—- B in V 
the following are equivalent 

i . he Bxty, 

i i . An (Kxtp a lgQ ,Per fp a l g f l ) - factor i zat ion of h in Palgii 

has the forj i h = ( i ' d ^ ' e , f o r some C in Palg Si with 
<5C:C —~ZyFyC perfect ,~i € Iso and e e Bxtpaigi2» 

P r o o f . Let heExty, h * g«e be an (Ext ,Per f ) - fac to-
r izat ion of h in PalgC. Then g • d*<Ŝ  for some d:FyC — B. 
Note that d,<?c are perfect. But «^»e i s epi in V and d* (6 c »e ) = 
= heExtV. By Corollary 3.7.v, d e ExtV. Henoe d i s i so . 

The converse follows from Lemma 3.6 beoause Zy preserve» 
perfect maps. Let AePalg£>and 6k = e ^ « e 0 t A — — - Z y F y A be 
an (Ext ,Per f ) - factor izat ion of <*A in PalgC. Then C = Z^yF^A 
and e0:A — Z a V F j V A , e., :FgyA — Z0F0(FayA) are suitable uni-
versal arrows (we omit the obvious proof ) . Henoe, by Theo-
rem 5.1 we have 

C o r o l l a r y 5.2, For each variety V<=Palg£>, 
i . E x t j y = s x t p a l g £ ) n av, 
i i . f o r each A in V, the la t t i ces ExtyA and ExtavA are 

isomorphic. 

T h e o r e m 5.3. Let A = (A .A^a) e Palgi?. Then 

Extp a l g CA = | k e SqAs k > i and domfg^a)* = dom(p i l c )*}. 
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Lattices of free extensions 17 

P r o o f . Assume that (5Pilc)* : C ) ̂  = = A^. 

By Lemma 3.2.ii it is enougn to show that this pair has a per-

fect coequalizer. We shall use here Lemma 2.4. First we define 

a function r : A ^ — - (A^.,. For each peGA.^ define induotively 

Fun(p) as follows: 

if pe A^, then Fun(p) = 0, 

if P « q[t1 tn]j t 1,...,t ne i2Ai> q e Qd, then 

n 
Fun(p) x YZ Fun(t^) + 1 

i=1 
(we will use square brackets to denote C-terms over A^ and 

usual brackets for terms over A ) . 
Now using an algebraic induction one can show that for 

each t 6 4 k c Q a there exists a unique r(t;e s u c J l tiia* 

(9ik)*(r(t)) = t and if p e ( A i ) , ($Pik)*(p) = t, then d = r(t) 
or Fun(p)>Fun r(t). Moreover, if t = q(t1,... ,tn) e Ak, then 

fa(q(t1,...,t ) if q(t1f...,t )e A ± c A k 
r(t) = _ 1 n

; _ 1 

( q |_r(t1),... ,r(tn)J otherwise. 

Henoe r : A k — - (Ai)1 is defined, (y>iic)*'
r = i d* 

Define an equivalence relation ~ on A k as follows: 

for each t,t1 € A k t<vt1 iffr(t) = f[p1,...,pk], t1 

= f [s1,... ,sk] p^,... ,pk,s1,... ,sk e A i ? f is a term symbol and 

afp^ = a(si) for i = 1,2,...,k. 

Let p e ( A i ) 1 . We claim that (^'a)* (p) ~ ($Pik)* ( p). It is 

obvious if p t A i c ( A i ) 1 . Let p = q [p1,...,pn], p 1 . ,pQe ( A i ) 1 , 
q Gi2n and 

Pj " (SPik)*(P-j) = P-j for j = l,2,...,n. 

Then 

P((?£.ar(p))-1. r(q(^ , r( (y>ik)*( p)) = rfqf^ 

Note that 

q(P1,... ,PnJ e A i iff q(p 1 l...,p n)6A i and then their va-
lues in ^ are equal. 
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18 G . J a r z e m b s k i 

T h u s , i f i t i s t h e c a s e , ( p ) ~ ( 9 > i k ) * ( p ) » O t h e r w i s e , 

r ( ( e £ - a ) * ( p ) ) = q [ r ( f . , ) r ( $ f t j ] a n d 

r ( 9 i k ) * p - q [ r ( p . , ) , . . . , r ( p Q ) ] . 

N o w , d i r e c t l y f r o m t h e d e f i n i t i o n o f ~ o n e e a n s h o w t h a t a l s o 

i n t h a t c a s e ( 2 k * a ) * ( p ) ~ ( 9 > l k ) * ( p ) . 

L e t e : A k — - A ^ / ^ b e a , p r o j e c t i o n a n d a t A ^ / ^ — < — Ajj. b e a 

f u n o t i o h s u c h t h a t f o r e a a b « « A ^ , » f ( a ( s 1 ) , . . » , a ( s n ) 

i f f r ( t ) = f [ • 1 » . » . » s n ] ( f l 1 , s 2 , . . . , a n € f i e a t e r m s y m b o l ) . 

One c a n ohaofc t h a t t h e d i a g r a m 

f u l f i l s t h e a s s u m p t i o n s o f Lemma 2 . 4 . 

T h e p r o o f i s c o m p l e t e * 

T h i s T h e o r e m i s a s t r o n g e r v e r s i o n o f Lemma 3 * 2 * 1 1 - t h e 

e q u a t i o n d o m ( g £ * a ) * * d o m ( 9 > i k ) * i m p l i e s t h e e x i s t e n c e 

a p e r f e c t e o e q u a l i z e r o f t h i s p a i r . B u t i t i s t r u e o n l y f o r 

f i n i t a r y p a r t i a l a l g e b r a s . I t f a i l s t o be t r u e f o r i n f i n i t a r y 

c a s e * 

E x a m p l e , L e t P = be a p o w e r s e t m o n a d . 

I t i a a p b - m o n a d « # c ? A » 2 A i s o p e n i n ( P A ^ i * ) i f , 

{ a ) e J f f o r e a c h a e A a y ) f o r A 1 , k Q z J i p r o v i d e d t h a t 

A ^ j f . P a r t i a l P - a l g e b r a s a r e p o s e t s w i t h a l e a s t e l e m e n t 

a n d w i t h e v e r y a p f w r b o u n d e d s u b s e t h a v i n g a s u p r e m u n u & p o s e t 

( A , < ) s a t i s f y i n g t h 9 3 e p r o p e r t i e s i p r e p r e s e n t e d a s a t r i p l e 

( A , j i i t a ) , ' w h e r e ^ i s a f a m i l y o f a l l ufcfcer b o u n d e d s u b s e t s 

o f ( A , « ) , a ( A 0 ) « s u p A 0 f o r e a c h A Q i p Jl^» F o r e a c h ^ 

d o r a ^ ' a ) " ^ « d o m I f f f o r sac*1 f a m i l y { a J k g K c J l ^ 

U A k 6 ^ i f f ( s » s > A k : k e k ) c A y h : ( A , « ) — - ( B , « ) i s 'an 

L p - m o r p n i s n i i f a F r s s < f r v ® 8 e x i s t i n g s u p r e m a . h i s p e r f e c t 

i f i t r e f l e c t s tneffl ( i . e . i f A ^ c A a n d 3 u p h ( A Q ) e x i s t s , t h e n 

s u p A 0 e x i s t s i n 

- 160 -



L a t t i c e s o f f r e e e x t e n s i o n s 19 

C o n s i d e r an S p - a l g e b r a A. = ( A U { o } , ^ ) w h e r e 0 i s a i a a s t 

e l e m e n t o f £ and A i s a d i s j o i n t sum o f { D n U C n : n e l « " } , = 

= { d f . d g . d ^ . d j } . C n = f o r . e a c h n i l and s u p f d ^ d ^ } = 

= c 1 = s u p | d 1 , d 2 J , s u p | d 2 , d 4 | = c 2 = s u p j d - j , d 4 J . 

L e t ( a , ^ . , a ) b e t h e t r i p l e r e p r e s e n t a t i o n o f A and l e t 
p 

b e an o p e n s u b s e t o f ( P A „ u A ) c o n s i s t i n g o f a l l f i n i t e s u b s e t s 

o f A . T h e n , o b v i o u s l y , J l* c Jl . and d o m ( p N a ) * = dom(a>. . ) * . 

B u t a c o e q u a l i z e r o f t h i s p a i r c a n n o t b e p e r f e c t . I n d e e d , 

i f n : J t ^ — - B i s an S p - m o r p h i s m e q u a l i z i n g t h i s p a i r , t h e n 

h ( D . , ) = h . ( 9 i ; j f ( { d ] , d ^ } , { d j , d j } ) - = 

= h ( C ^ ) = h . ( g j . a ) * ( { d f , d | } , ( d ^ l d j } ) = . . . = M D g J = h ( C 2 ) = 

. . . = h ( C n ) = M D n ) . . . • H e n c e h ( A ) i s u p p e r b o u n d e d i n 6 

i . e . , i t h a s a s u p r e a u m i n B . B u t A h a s no supremum i n ^ 
w 

b e c a u s e A i s i n f i n i t e . H e n o e h i s no t p e r f e c t . 

D e f i n i t i o n 5 . 4 . L e t Q b e a f i n i t a r y t y p e 

and A = ( A , A i , a ) e P a l g Q . We c a l l a n i n i t i a l Q - s e g m e n t A ^ e flfiA 

A - s a t u r a t e d i f f A ^ c A^ and f o r e a c h p e £ 2 A , i f p = f ( t 1 , . . . , t f i ) , 

w h e r e t 1 t , . . , t n e A^ and f i s a t e r m s y m b o l , t h e n f ( t 1 , . . . , t n ) e 

6 A j i f f f ( a ( t 1 ) a ( t n ) ) 6 A j . 

O b v i o u s l y , A^ a n d Q A a r e A - s a t u r a t e d . A - s a t u r a t e d i n i t i a l 

O - s e g m e n t s f o r m a s u b l a t t i c e o f S 0 A . We d e n o t e i t by S A T . . 
a * — *• 

One c a n c h e o k t h a t A^ i s A - a a t u r a t e d i f f d o m ^ t p a ) = d o a u ' j p . ^ . 

H e n c e , by T h e o r e m 5 . 4 we o b t a i n 

T h e o r e m 5 . 5 . L e t Q be a f i n i t a r y t y p e , 

A e P a l g £ . T h e n S x t p a l g i ? A i s i s o m o r p h i c t o H A T ^ . I f V < = p a i g « 

i B a v a r i e t y , A e V , t h e n E x t y A = B x t J V A i s i s o m o r p h i c ( a s 

a m e e t - s e m i l a t t i c e ) t o S A T ^ S j y A ( A i e a c a r r i e r o f A ) . 

We f i n i s h o u r p a p e r w i t h t w o l e n m a s w h i c h g i v e us s i m p l e 

e x a m p l e s o f r e s u l t s w h i c h c a n b e o b t a i n e d by u s i n g method 

p r o p o s e d h e r e * 

L e m m a 5 . 5 . F o r e a c h v a r i e t y V c p « l g i ? t h e f o l l o w i n g 

a r e e q u i v a l e n t 

- 181 -



20 G.Jarzsmbski 

i . For each A in V, SxtyA is (isomorphic to) a sublattice 
of SpA, 

i i . For each set A, SyA i s a sublattice of SpA. 
i i i . There exists a set y of formulas of the form 

I t i = s > 3 p i such that IV = Mody. 
I f any of these condition i s va l id , then for each A in V, 

ExtyA i s distributive and algebraic. 
P r o o f . i . i i . because SyA = E x t y ( F y A ° ) , where 

A0 i s a discrete partial algebra with a carrier A. 
i i . =s> i . fol lows from Theorem 5.4. i i i . i i . needs only 
a straightforward ver i f i ca t i on , i i . ==> i i i . Assume that 
Jt1(x1 , . . . f x n ) A 3 t 2 ( x 1 t . . . , x n ) ==s»3p(x 1 , . . . ,xn ) i s val id 
in V (compare Lemma 1.2*1.) and there exist V-algebras 
together with valuations h^X = j x . j , . . . , x n | — - such that 
A^ does not sat is fy the formula 3tj t=»-3p at these valuations 
( i = 1,2) . Let = dom ^ fo r i = 1,2. Then X 1 ,X 2eS yX, but 
X1UX2^SyX. A contradiction. The laslt assertion fol lows from 
Proposition 4.Y. 

L e m m a 5.6. For eaoh variety Vcpa l g j j the following 
are equivalent. 

i . For each A in V, ExtyA i s (isomorphic to ) a meet-sub-
semilattice closed under suprema of directed subsets, 

i i . For each set A, SyA i s closed jinder direoted suprema 
within SQA, 

i i i . 3V i s axiomatizable within P a l g Q i . e . , thlere exists 
a set *f' of formulas of the form at1 A a t g A . . . A 

such that V « Modi/. I f any of those condition i s va l id , then 
fo r each A in V ExtyA. i s an algebraio l a t t i c e . 

We omit the proof because i t needs the same method as the 
proof of Lemma 5*5. 
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