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LATTICES OF FREE EXTENSIONS
IN CATEGORIES OF PARTIALLY ALGEBRAIC STRUCTURES

It 18 not a big risk to say that the olass of surjective
epimorphisme is big enough if we deal with classical problems
of the theory of total algebras. None of the basic concepts
and fundamenital theorems needs others then surjeoctive epis,
Only in some special varieties non-surjeotive epis are con-
gidered - for example, looalizations in the theory of rings.
In our opinion among all reasons of 1t the most lmportant are
the following. rirst - each epl in a category of all algebras
of a given type is surjeotive. Second - each algebra in a given
variety V is a surjective image of a sultable free V-algebra,
And third - in any variety there exists a factorization system
(Surjections, Monos).

But working with partial algebras we ocan not restriot our
attention to surjective epis only. One can easily oheck that
none of these three postulates remains true for surjections
in the theory of partial algebras. Hence we propose to distine-
guish another olass of epis in categories of partially alge-
braic structures which may play the same role as surjections
play for total algebras, More precisely; in each variety V
of partial algebras we distinguish a composition class By =
= Clepiy+Exty, where Cleply is a class of all closed 2]

This paper is based on the lecture presented at the Con-
terence on Universal Algebra held at the Technioal University
of Warstw (Wilga), May 20-25, 1986,
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2 G.Jarzembski

(strong in [3]) surjections in V and 3xt, is a class of "free
extensions in V" defined in this paper. Free exiensions in

a category Palg @ of all partial Q-algebras are precisely
extendable epis. But in many varietiss these classes msy be
different,

What makes the universal algebra succesful is that surjec-
tions are described by kongrusnces. The caloulus of con-
gruences is a one of the most important tools of this theory.
It will be very useful to get a similar tool in the theory of
partial algebras. Closed epis have their description - they
are described by closad {strong) congrusnces, Hence in the
present paper we deal only with free extensions; to give a
framework of a description of lattices of free extsnsions is
a main goal of the present paper., Then combining together de-
scriptions of both classes we can obtain a full description
of all epis from the distinguished class,

Our approach is of the categorical nature. Backgrounds
are pressnted in sections 1 and 2. We use spectral algebraic
theories [6] to define free extensions, examine their basie
properties and describe lattices of free extensions (sec~
tion 3). Moreover, we show that our starting point and basio
example -~ extendable epis in Palg $2is rather a very peculiar
one (section 4). Next section is more conorete. First, con-
gidering free extensions in Palg 2we introduce & eoncept of
a saturated initial segment which playe a role of a congruences
in s desired desoription of free extensions. Then, considering
free extensions in a given variety Vc Palg2we describe a re-
lationship betwesn free extensions in both categories.

1. Preliminaries ~ varieties of partial algebras as oca-
tegories

For all unexplained concepts and notationse concerning
partial slgebras we refer the reader to [2]. The only diffe-
rence is that closed homomorphisms are called here perfect.
We shall use Palg2to denote & category of all partial ©-alge=~
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Lattices of free extensions 3

bras of a given type Ugp:Palgf? —Set is the obvious forgetful
functor. $2X denotes a set of all {2-terms over a set X, 22X
is an absolutely free total Q-algebra over X (with a ocarrier
QX).

The following observation, due to J.Schmidt [11] , forms
a base of our categorical description of partial zlgebras,

Theorem 1.17. For each set X there exsits an
ordered family {gi} 1es,x Of partial Q-algebras such that

i. for each ie SpX there is a function Q}i{:X-——UQJ_(i = Xi»

ii, if 1< in SpX, then there exists a unique homomorphism
. X _ X
Py 3:%; —= Xy suoh that g, ep5 = Py .
and the following holds: for each A in- PalgQand a function
hiX—=UyA there exists a unique ie SpX together with a perfect

map H:l(i—-_l_s_ such that B"?}i( = h, Moreover, if h1 :gj — 4

and hy*pY = h, then j<i and hy = Begy,.

Recall a construction of the family {}—{i}ieS;;x (called a
Q-spectrum over X). By an initial Q-segment over X we mean
each subset X;cQX containing'X and such that together with
any term +te X; contains each subterm of t. Then the desired
family consists of all initial f2-segments over X endowed with
structures of relative subalgebras of QX,

From now we will assume that @ is a finitary type.

A class VcPalg Ris called a variety if V is closed under
products, perfect epi images and (closed) subalgebras, i.e.
V is a H 5 P-closed class in the sense of [1]. Eaoch variety
is a clase of models of a set  of formulas of the form

(+) (\V/ Jlti> =>p = q [1]

iel
(Reoall that A in Palg® satisfies It at a given valuation k
if the term t is defined in A at the valuation k)., In other
words, each variety is a class of models of "generalized

BCB-equationg" o
e

jel
in the sense of P.Burmeister [2].
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4 G.Jarzembski

4 variety V is called a J-variety if for each perfeot map
h:d—=B, AeV provided B eV, Each I-variety is a class of
models of a set of formulas of the form

{++) <\v/ Elti>a]t.

iel

We will identify varieties with the corresponding full
subcategories. FV:Pang———V will always denote a left adjoint
left inverse to the embedding functor Zy sV — Palg. Note that
for each A in Palg® the universal arrow GAzi———ZVFVA is epi.

Observe that the Theorem 1,1 remains true if we replace
Palg2by V in each place it appsars in the theorem, Let
{zi}iesvx denote a V~-spectrum over a given set X, First define

SyX as a subset of SpX (with the induced ordering) as follows:
for each 1 1in SpX, leSyX iff Ox. 3%y —= ZyFyXy is perfeot,
24

g ~X X
Then put Xy = ByXy, f3 = Ox, °P1e

By 3V we denote a smallest 3J-variety containing a given
variety V.

Lemma 1.2 i, For any A in Palg®, Ae¢ IV iff A
satisfies all formulas of the form (++) valid in V.

ii. va = SEIVX’ for each set X,

iii. if V = 3V, then for each ie5;X, X, = X; and for
each A in Palgf®, <5A is an extendable epi.

iv. The embsdding ZO:V—.—E]]V has a left adjoint left
inverse F, and each universal arrow 6zsg--Z°F°A {(ae 3IV)
18 perfect and surjective.

Only the second part of iv 1is nontrivial, We will prove
it in the end of section 2.

2. Categorical backgrounds

By a spectral algebraic theory [6] in Set (s.a.t., for
short) we mean each 4-tuple S = (5,J,p,( )*) such that

S:0bSet — ObPOS (PGS =, the category of posets),
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Lattices of free extensions 5

- Xu —

J = (Jgi8X —=Set)y grsagr 2= (27X JIy)xcopset
(A is a "constant" functor) and ( }* assigns to each pair
(f:X—-—JYj,j) a pair (£,j)% = (f;:JXi——-JYj,i) such that the
following hold:

C

1, fjog§ = f,

i1, %,0)" - (idJXi,i) for each set X and i e SX,

idi, if (£,3)* = (£],1), (8,1)" = (g],k), then (f’j‘g,j)* =
= (f Si,k)-

ive if j<k in SY, then JY(;} <k])o f (J {j<k} f)k-Jx(i<r)
for the sultable i <r in SX.

Notation. For the simplicity we will write X; instead
of Jzi and ¢, , instead of Jy (isr). If it will be no danger
of confusion for (f: X—-—Yj.a) we will write f£* instead of £

J
The equation domf™ = X; will always mean (£,3)% = (£%,1).
S-algebras are triples A = (4,ie SA,azd; —4) {we will

also write (A,4;,a)) such that aogi = id, and for each padr

£,8tX == 4;, if af = ag, then domf™ = domg* and af* = ag*.
We extend the object function S to a contravariant functor
S1S6t°P——POS as follows; for each h:X —=Y and Je SY,
Sh{j) = 1, where dom(g en)¥ = bop
By an S~-morphism from (A, Ai,a) to (B, Bj,b) we mean each
function hiA —= B such that i <Sh(j) = r and bo(gj-h)
= hea, If, moreover, Sh(Jj) = i, then h is called perfect.
Note that ror each set X and ie SX, X; = (Xi,dom(idxi)“’,

(1dy )¥) 4is an S-algebra and for j <i in SX, @,; is an
Xy i

S-morphisam from gj to X;. We shall use S-Alg to denote the
category of S-algebras, US:S-Alg —~Set is the torgetful func-
tor. But for a simplicity instead of Ush we will often write
simply h.

A 8.8.%t. S 18 ocomplete (pointed) if each SX is a complete
lattice (has a greatest element iy) and for each h:X —Y,
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6 GeJarzembseki

with k = inf{j:je J}, (k =i,), domh™ = X, where s= inf{sjzjeJ}
where X, = dom(¢kj-h)*,(s = iy},

S is complete iff S~Alg has all concrete limits [7],

Examples. 1. Let SoX denote a lattics of all
initial Q~segments over a given set X, Jx(x } = X o= XK.
For each hiY —X; we put n* UQn (compare Theorem 1.1).
Then Sq = (Sp, Jy4p s ( )¥) 18 & seacte, S;-Alg and Palg® are
concretely isomorphic ([5], [8]). Concepts of perfect maps
in both categories coincide, total S~algebras correspond to
total Q-algebras, Partial Q~Hlgebra A with a carrier A is re-
presented as a triple (A,Ai,a) where A, is the initial Q-seg-
ment consisting of all terme over A defined in A and a:4d;— A
is a valuation mape.

We will identify both categories in the sequel.

2. For "a given variety Vc Palg® we construct a s.a.t.
Sy = (8y, J,Q { )*), where va is a subset of S,X defined in
section 1, Jxxi = U,F X, and 7,( )* are determined in the
obvious way. Again, one can easily show that V and Sy-Alg are
ooncretely isomorphio,

Note that S, and Sy are complete s.a.ts,

We tinish this seotion with some results illusirating the
similarity between partial algebras and S-algebras, To save
the space the routine proofs are omitted.

Lemmsa 2,1, (generalization of Theorem 1.1). Let
hiX —=Ugh for some A in S-Alg. Then*there exists a unique
ie sx together with a perfect S~morphism h‘xi__’iA Bete
h'gi = h. Moreover, if h,:X; —— A in S-Alg, h,epy, then j<i

and h1 = h~¢ i1 I1f, moreover, £:4 — B is perfect, then
fh = f.h.
Proof . Fora-= (44,a), put h = a-(gﬁ-h)*.
Lenma 2.2 Bach perfect S-morphism is uniquely
factorizable as a pertect surjeotive S~morphism followed by
a perfect S=-mono, '
Assume now that S is pointed. We call a2z S~algebra
A= (A,Ai,a) total iff i = 1,
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Lattices of frese extensions 7

Lemma 2.3.1, The full suboategory TotS-Alg of total
S-algebra is monadic over Set,

ii, The smbedding functor Zt:TotS-Alg-—*-S-Alg has a left
edjoint left inverse Ft:S-Alg—-TotS-Alg,

Proof., We sketoh 1i. only. For each A = (4,A,,a)
we oonstiruct a universal arrow xAxA-—-ZtFtA as follows:

let e be a coequalizer of a pair({ A «a)*, (o )*) in
?1A 11,

TotS-Alg. Then 7, = 3022 » Note that then e = F.a.
TA
Lemma 2.4, Assume that h,gi(A,4;,a) ::(B,Bd,b)
are perfect S-morphisms and there exist functions e:B —C,
8:C — 3B, rsB—= 4
h e

A—=B——~C
\g_/ B

T

suoh that es = id, eh = eg, hr = id, gr = se, Then thers
exists a unique S-algebra (C,Ck,o) making e a perfect eo-
equalizer of (h,g).

Proof. Putk=Ss{(j). Then (?g-e)* is a coequaliser

of (g?h)*, (lg?g)* in Set. But eva equalizes this pair, Hence

eea = o-(rzg-e)*. One ean check that (C,Cy,c) is the desired
S-algebra.

Now we prove Lemma 1.2.iv. Let A = (k,4;,a) ¢ 3V and let
SJV be the corresponding s.a.t. Then i‘%s;vA = SVA and
ashy—=4, agi‘éi—'zvl’véi are perfect and surjeotive. Perfect
surjective epis correspond to strong (closed) congruences.
Consider the diagram

Say |
A ~ZyFyhy = Ay/o
a l 8
£
Ai/""o = _A_ )Ai/fvof-r\.
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8 Ge.Jarzembski

where ~ + ~, is a smallest squivalence relation containing
~U~oe It is a strong congruence because 2 is a finitary
type. Hence a projection £ is perfect. Now it is not hard to
show that f = 6:.

3. Free extensiona-gensral theory

Recall that an epimorphism of partial ®-algebras h:4 —3B
is called extendable if tor each g:A —+C with C being total,
g = g1-h for some homomorphism 84 Equivalently, h is exten~
dable if F¢h is iso (Ft:Pang-—'-TotPalgs?- compare Lem=-
ma 2+.3.ii)e This conoept is of a pure categorical nature and
it has its categorical generalization ([4], def, 37.8). But
we want to obtain a factorization system (?, Perfeot S-mor=
phisms) hence we need a more precise generalization. To see
the problem consider the following. Let 2= 2. = {p,q},
V = Mod( 3 p(x)=> x = y). Then the only total V-algebra is
a one-point algebra. Hence each spli in V is an extendable
epl so there is no desired factorization system in V,

Let S = (5,d,p,( )¥) be an arbitrary but fixed s.a.t.
in Set.

Definition 3.1 An S-morphism h:d =
= (A,Ai,a)-—-g is called a free extension {of A) if the com-
mutative square

~

h

Ay B (b = the perfect extension of
Op t T h hyd —UB - see Lemma 2.1)
a
Ay A

is a pushout in S~Alg.

Note that each free extension is epi, each iso is a free
extension and each free extension of a total S-algebra is iso.
Lemma 3.2, Let (4,A;,a) be an S-algebra. Then
i. For h:(A,Ai,a)——*-(B,B ,b) with Sh(j) = k, h 1is
a free extension iff dom(eﬁoai* = dom(gpy, )* and B 1is a per-

fect coequalizer of this pair in S-aAlg.
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Lattlices of free extensions 9

i1, If i<s in SA, dom(phea)* = dom(p, )* and this pair
has a pertect coequalizer e:d ,——D in S~Alg, then the unique
S~morphism g:A — D s.%. ge8 = LI is a free extension,

iii, If S is pointed, then for sach S~aglgebra 4,
JA:A———ZtFtA_ is a free extension,

Prootfs of i, and ii, are straightforward.
iii, follows from ii. and the comstruction of ¥,.

Lemma 3.3 Free extensions divide perfect morphisms,
i.e. whenever we are given a commutative square in S-Alg

where e 1is a free extension and g is perfect, then there
exists £ :B—= D suoch that £ e = £ and g+ £ = h,
Proof., Consider the commutative diagram in S-Alg:

.A_k ° g h 9_ = (C’CP'O)
Pik T a T £ T g
-A- A. 2. = (D.Dsfd)

Then Sf(s) = SfSg(p) = She(p)>k, i.e. there exists £:4 —D
such that f-gﬁ = £ (compare Lemma 2.1). Mareover, f-(rgﬁoa)* =

= f-(QJik)* and, by Lemma 3.2.ii., ¥ =tea, Then £ e =f, g*t=h,
Corollary 3.4 If S is pointed and h:4d —B
is a free extension, then F.h is iso and T = h-a‘B. In parti-

cular, each rree extension in Palg® is an extendable epi.

By Exts-Alg {or simply Ext) we shall denote a olass of
free oxtensions in S-Alg. PerfS_Als(Perf) denotes a class
of perfect maps,.

Theorem 3.5 Assume that cosqualizers of pairs
of perfect S-morphisme exist in S-Alg. Then a pair (Exts_ug,
Perfs_us) forms a factorization system in S-Alg.
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10 Ge.Jarzembski

Proof. By Lemma 3.3 we must show only that each
S-morphism has the required factorization. Let g:(4,4;,a) —
———(B,Bj,b). Consider the diagram

()™ /F_\
D B

A
<k

(q’ik)* l T
A

Pk 8
(pa)”

|

id, )*
( A

dom(zﬁ-a)* = dom(¢ik)* because g is perfect {Lemma 2.1}, Let

e be a coequalizer of this pair. g = r+e, hence e is perrect,
By lLemma 2,2 perfect coequalizers are surjective, hence

is perfect too. a is a cosgualiger of (nga)*, (idAi)*, hence’

8e9sp =Vyea for some y and by Lemma 3,2.il. ¥y 1is a free ex-
tension, Obviously, g = rey. The proof is ocomplete.

Remark, Ithas been proved in [7] that for each
oomplete s.8.%s S, S~-Alg is coocomplete, Hence, in particular,
Theorem 3.5 is valid for an arbiirary variety of paritisl alge=-
bras.

Throughout the rest of this seotion we assume S %o be
complete,

Lemma 3.6, An S-morphism h is a free extension iff
h divides each perfect S-morphism,

Proof. By Lemma 3.3 it is enough to show the suffi-
cilency. Assume that h divides each perfedt map and let h= fee
for some perrect t and a free extension e, Then there exisis
g Sete g*h = 6, fes = 1d, Thus g i a perfect split mono
and epl (because e is epil), Then g 1is iso and conseguently,
h 1is a free extenslon,

Corollary 3.7. (1) ¢tor sach set X, 1< J in SX,
Qije.Ext, (11) e:X;—B is a free extension if e = k-gzid
for some je SX, ke Iso, (iii) Free extensions form a subcate-
gory of S=Alg.
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(iv) if the square

is a pushout in S-Alg, he BExt, then h, e Ext,
(v) 1t teee Ext and e 1is epi, then f e Ext,

Combining together Lemma 2.2 and 1heorem 3.5 we obtain
that each S-morphism h has a (unigue) factorization hs= Wee,4°6
where m is perfeot and injectivae, 84 = perfect and surjective,
e, = free extension. The composition c¢lass E = Perfsur'Ext
is a class of S~epimorphisms which, in our opinion, plays the
same role as surjective epis play in the theory of total alge-
bras.

For eaoh S-algebra A by Bxt4 we denote the set of repre-
sentatives of fres extensions of A, It is a poset with a
greatest elemsnt T, and a least element idA. By Corollary 3.7.iv
ExtA is a complete lattice with suprema determined by pushouts,
For each 1 in S4, kxti, is a sublattice of SA.

Lemomma 3.8, Let g:B——A be perfect. Then thers
exist monotone functions

4g

BxtA == ExtB
Fg
such that Ag'r'g‘id,’ idsr'g-Ag. If, moreover, g is surjective,
then Agor'g = 1d,
Proof, For gecExta, let go-r"g((p) be an (Ext,Perf)-
-factorization of p<g. For yeExtiB, Ag(v) is a unique S-mor=-
phism making the square

e 84—

8

a pushout. The desired inequations are obvious. If g is sur-
Jeotive, then t sq uare
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12 Ge.Jarzembski

(pReg)*

(Pps jk
(rz?°g)*

is a pushout in S-4}g for each j< k in SB. Now using a routine
calculation one can show that (r"g((p),g) together with (p,g,)
form a pushout in S=Alg. Hence A -r' (gp) = ¢ for each pe ExiB,

Corollary 3.% For eaoh S-algebra 4 = (4, Ai,a),
I"a:Ex*._A_—-ExtAic SA is an embedding preserving infs .and for
sach e,fe Exta, ]?;éa—&{e,f} = Aa(g“l\p{r’a“)’ f"a(f)} Je

But in general ExtA is only a meet-sublattice of SA.
Example, LetQ=g0, {p,1,s§}
= Mod{ 3s (x)/\ msz(x),:»m“tp(x), 7y { ,y} pi(s) = y) and
nothing more is defined in A, Let Bi = ({x,y,s x}, p Hx) = 3,
si(x) = 8;x) and nothing more is defined (i = 1,2). One can
verify that FaxA ——SVA does not preserve the supremum of B1
and B2 because Blv B2 ({x,y,e1x 8,%, 43}, B(x) = 3, t(y) = ty,
si(x) = 84% for 1 = 1,2, (Here we identify free extensions
of A-identity embeddings into go"s ~with their codomains),

4, Free extensions in ocategories of partial monadic alge=
bras

Recall from [5] that a monad T = (T,47,5') in Set is
called a pb~-monad if for each mono m:X—=Y the 4-tuples of
functions (m,gi,l‘m,rg%) and (,u%,TTm,pg,Tm) are pullbacks and
for each g:2 —7Y, T preserves pullback of m and g.

We call a subset Bc A open in 4 = (4,a)e SetT ir
a~1(B)c TB i.e., a pullback of a and m:B <~A has the form

a
TA

A
Tm J j

{+) 1B B
B

J b
C

If T is a pb~monad, then for esch A in Se'cT u2en subsets of A

form a oomplete lattice with set~theoretical join and meet
as lattice operations,
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Lattices of free algebras 13

Starting from a given pb-monad 1 we construct a s.a.t.
Sp = (Sp,Jsp,( }¥) as follows: for each set X, SpX consists

of all open subsets of (Tx;ui) containing X. For each
X; € SpX and h:Y —X; = JyX,, h* is a unique function making
the square (where x,, y; are suitable embeddings)

yT~T(xih1
TY TX
33 \J o J Xy
Yj Xi

a pullback, Note that Sy is pointed, TotSp-Alg = Set.
ST-algebras are called partial monadic T~-algebras. Note also
that the s.a.te S 1s constructed just in that way starting
from the monad T¢ corresponding to the ocategory of all total
QR=-algebras, Hence Palg 2= the category of partial monadie
Ip-algebras,

We will show that in categories of partisl monadio alge-
bras free extensions are precisely extendable epis (with res-
pect to s.nT). To show it we will need the following facts
{to save the space we omit the routine proofs of them):

Pact 4.1 Let B be an open subset of (A,a) e SetT
(T is always assumed to be & pb-monad). Then in the diagram
(+) C is open in (TB,yg) and B = (B,C,b) ie an Sp-algebra,

We call B an open subalgebra of A. Moreover, m:B —— A is an
initial Sp-morphism from B to A (i.e. whenever h:UsD — B
and meh is an ST-morphism from D to A, then h is an Sp-mor=-
phism from D to B).

Faot 4.2, For each Sp-algebra A = (4,4;,a) there
exists a total Sp-algebra A' = (Au1,a:T(Aul) — Aul1)(1={g})
such that A is an open subalgebra of Aﬁ.

Fact 4.3, Let h:C —— 4 be an Syp-morphism between
total ST-algebraa and let m:B<— 4 bs an opan subalgebra,
Consider a pullback in Set
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14 GeJarzembski

h
UgC = ¢ ———=4 = Ugh
4 1
8

D———=3B = UgB

Then D i8 open in C and g is a8 perfect map between open sub=~
algebras D and B.

Lenma 4.4, Bach ST-algebra is an open subalgebra
of its free cqompletion.

Proof., Lot Fyla,h,8) = (FA,8) and £:(Fa,a) —4' =
= (Au1,a) be an Sp~morphism s.t. fo7, = pyzac—4aul, By
Facts 4.2 and 4.3 it is enough to show that in the diagram

Fta g
TA FA Aui
J B
&8 - =
Ay A A

the right squave is a pullback in Set, Obviously, fF,asp; =p,)
hence f.Fta = E-TpA. It easily implies that the outer square
is a pullback. Then the right square is a pullbaock beocause
F.a 1s a surjective (F,a is surjective since it is a coequali~
gser in SotT). '

Now we are ready to prove the main theorem of this seotion.

Theorem 4.5 Let T be an srbitrary pb-monad.
Thea for each ST-morphism 6:A —B the following are equi=-
valent:

i, ee ExtST_Alg

ii. PTo is an isomorphism, o a

1ii, B is an open subalgebra of Fi4, 7, = A—=B—F.A.

Prroof., i. =11, See Corollary 3.4.

ji,=1ii., See Lemma 4.4.

114,=>1. Let A = (A,A;,8)s By Fact 4.3 We pay assume
that ptdlback of Fia:TA —FA = UgF.A and m:B =~ FA has ths
forn

- 176 -



Lattices of free extensions 15

Fta
TA FA
) It
8
STA 3 Ak—————— B

and g is a perfect map from 4, to B. g is surjective because
F.a is. Obviously, Ajc Ay. We show that the square

&
a
Ay A

1s a pushout in Sp~Alg. Let h:dy —=X, £:4 —=X, h-yaik = fea,
Then Fih = th-Fta {because Py) € Bxt) and yyeh = tho."n-g.

But g is surjeotive and 3*; is an initial mono. Hence there
exiete S.r-morphism y B —X a8,t. V *g = h, Obviously,

yeo = £, Now the theorem follows directly from Definition 3.1
becauss, obviously, g = ¢,

Corollary 4,6, For each Sp-algebra 4 =
= (4,A448) the lattice BxtA is isomorphio to a lattice of all
open subsets of F .4 containing A. M sExtd —S5Sp4 is a lattioce
embedding. Since partial 2=algebras are partial monadia
To-algebras we obtain:

Proposition 4.7, Let Q be an arbiirary
finitary type. Then for each A e Palge, ExtPalg A is a complete,
distributive, algebraic lattice.

Examples. LetV be aregular variety [10],

V = Mod(t} o 1), ;. Then the corresponding monad T(V) 1s

a pb-monad and Sn.(v )-Alg is (oconoretely isomorphic toi a va-:L
riety of partial Q-algebras Vp, where Vp = Mod { 18] =131,
alt1'=>t% = t%)iel‘ Theorem 4.5 and Proposition 4,7 remain
true for these varieties of partial algebras.

The oategory of loocally compact spaces may be regarded
as a category of partial monadic B ~albebras where A3 is an
ultrafilter monad [9]. Total algébras are compact spaces,
perfect Sg-morphisams are perfect maps (and this is a reason
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16 GedJarzembski

of our proposal to replace the name "closed" by "perfect").

By Corollary 4.6, the lattice of free extensions of & given

locally compact space H is isomorphic to the lattice of open
subsets of its Stone-Cech compactification containing H.

5. Free extensions in varieties of partial algebras

We follow the notation establishad in section 1. Throughout
we assume that V 1s an arbitrary but fixed variety of partial
{=-algebras and Q is a finitary type. First note that because
ZV preserves perfsct morphisms, FV:Pang——V preserves free
extensions. Moreover,

Proposition 5.1, For each h:dA— B in ¥V
the following are equivalent

i. heExtv,.

ii, 4An (EXtPalg Palsg)-factorization of h in Palge

has the form h = (i-GC)'e, for some ¢ in Palg 2 with
Gg:g —= ZyFyC perfect, i€ Iso and °eE“Palgﬂ'

Proof., Let he Exty, h = gee be an {Ext,Perf)-facto-
rization of h in Palg®. Then g = d-sg_ for some d:FyC —= B,
Note that 4 é‘c are perfect. But é‘coe is epi in V and d- (6 v0) =
= he ExtV, By Corollary 3.7.v, de ExtV, Hence d is iso.

The converse follows from Lemma 3.6 because Zy preserves
perfect maps. Let AecPalgRand §, = ‘e *6,34—C ——Z;Fyd4 be
an (BExt,Perf)~-factorization of &, in Palg®, Then C = Z  F, ,4
and e tA—2, F 4, 6,2 FJVA L F,(FyyA) are suitable uni-
versal arrows (we omit the obvious proof), Hence, by Theo=
rem 5.1 we have

Corollary 5.2 For each variety Vc PalgQ®,

ie Bxtyy = Bxtpey.oN 3V,

ii. for each A in V, the lattices Bx¥ A and Ext; A aTe
isomorphioc.

Theorem 5.3 Let A= (4,4,a)ec Palg? Then

~ . A, ¥ - *
PangA ¥ {keSQA. k>1i and dom(py°a) dom{p, ) }.

Q,Perf

Ext
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Proof . 4ssume that (Qﬁwa)*, (gpik)*:(Ai).l::Ak.
By Lemma 3.2,ii it is enough to show that this palr has a per-
fect coequalizer. We shall use hers Lemma 2.4. First we define
a function r:a, — {4 )1. For each peQA; define induotively
Fan(p)} as follows:

if pe Ay, then Fun{p) =

if p = q[t1,...,tn]; tysesesty€ Qb;y 9 € R, then

n
Fun(p) = Z_,'1 Pun(ty) + 1
1=

(we will use square brackets to denotse 2=-terms over Ai and
usual brackets for terms over 4).

Now using an algebraic induction one can show that for
each t €A, C Q4 there exists a unigue »(t;e (Ai)1 such that
(goik)*(r(t)) = t and if pe(4y), (<pik)*(p) = t, then p = r(t)
or Pun(p)>Fun r(t), Moreover, if t = q(t1,...,tn) € Ay then
alq(ty,eeeyty) if gty e, )e Ayc Ay

r(t, =
q [r(t1 ) ,...,r(tn)] otherwisa.

Hence r:A, — (Ai)1 is defined, (Spik)*-r = id,

Define an equivalence relation ~ on 4, as follows:
for each t,t,€ 4, t~u, iff r{t) = f[p1,...,pk'_], 5y =
= f[s1,...,sk]p“...,pk.sl,...,ske Ay, £ is a term symbol and
a(p;) = alsy) for 1 = 1,2,..0,k.

Let pe(Ai)1. We olaim that (p °a)*(p)~(¢lk)*(p). It is
obvious if peA;< (4;),4 Lot p = q[p1,...,pn], Proesssbpe(Ay)gy
qun and

/Sj = (Qﬁ-a)*(pj),\,(y,ik)*(pj) = ﬁ;j for J=1,2,ece4hle
Tthen
I'((Qﬁ'a)*(p))"ﬁ r(q(éﬂ""?n)' r((?ik)*(p)) = r(Q(61""'6n))o
Note that

q(p1,...,pn) €4y iff q(p1,...,pn)eAi and then their va-
lues in 4 are equal,
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Thus, if it is the case, (gﬁoai*(p)N (soik)*(p)o Otherwise,

r((phea)*(p)) = a[r(B,)yeee,2(B] and
ey f¥p = q[r(ﬁ1)....,r($n)].

Now, directly from the definition of ~ one ean show that also
in that case (Qﬁ-a)*(p)'\' (930" (p)e
Let ezAk—-—Ak/ be a.projection and std /., —— 4y be a
funotion such that for each tea,, s[t]. = fla(e ),e.v,afs)
iff r(%) = £[Bysenes8 ](h.',sg,...,a ¢ 4g, T is a term symbol).
One can check that the diagram
(q’ik)* e

Ay, ———4

(ag)4 T

T

fulfils the assumptions of Lemma 2.4,

The proof is complete.

This Lheorem is a stronger version of Lemma 3.2.ii -« the
eguation dom(gﬁ-a)* = dom(gpik)* implies the existence eof*
a perfect coequalizer of this pair, But it is true omly for
finitary partial algebras, It fails to be true for infinitary
cEB6,

Example, Let?P = (P,y N ) be a power set monad.
1% is a pb-monad FcPA = 2A is open in (PA,'uA) if ¢fef ,
{a}e.l for each ae A agg for 4 < A, A ef provided that
A.leﬁ « FPartigl P-slgebras are posets with. a least elemant
and with every uppar bounded subset having a supremum. 4 pomet
{4,<) satisfying these properties is vepresented as a triple
(iy# ,a), 'whers #; is a family of all upper bounded subsets
of (4,), alhy) = suph, for each A, in 4. For each .dj DAy,

oom(rza'a) - d°m[9°ia) iff for sach family {Ak}ke}{c )
Uy € #; 128 {supn ke k) ¢ A5 nifa,€)—= (3,<) 18'an
u.r\-morpnis'q if o presgrves exmtlng suprema. h is perfect
if it reflects tanem (i.e. if A c 4 and suph(Ao) exlsts, then

suph, exists in fap€))a
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Consider an Sp-algebra & = (AU{ } <) where O is 2 lsast

element of A and A is a disjoint sum of {D uc .ne.«}, L, =

= {d1, 2,d3,d } Cn = {01,c2} for each ne X and Tup{d1 d3} =
n n+1 n+1 n.n) _ .n_ abt n+
= ¢y = sup{ »d> }. sup{dz,d4} = c.‘2 = Bup{ 3 d4 }.
Let (a, £y ,a) be the trlple representation of 4 and lat
be an open su‘oset of (PA,yA) consisting of wll finifte sudsets

of 4. Then, obviously, #£;c Jij and dom(?‘gva)* = dom(goij)*.
But a coequalizer of this pair cannot be perfect. Indeed,

if n: £.— B is an SP-morphism equalizing this pair, then
h(D1) = h°(9’ij)*({d}.d;} {dzod }) = h'(? 'a) ({ 1:d } {dz‘,’dl}):
= n(cy) = n.(ggoa)*({d1.d§},[ 3,d§}) = ees = h(D,) = hlCy) =
ceo = h(Cn) = h(Dn) eoe o Hence h(a) is upper bounded in 8
i,e., it has a supremum in B, But A has nc supremum in fj
because & is infinite., Hence h is not perfect,

Definition 5.4, Let © be a finitary typa
and & = (A,Ai,a)ePang. e call an initial Q-segment &je€ Soh
A-saturated iff Ajc Ay and for each peQ A, if p=f(t yeeayty ),
where %,,e.0,5,€ 4; and f is g term symbol, then f(t1,...,tn)e
€ Aj iff f(a(t1),...,a(tn))€ Ase

Obviously, A; and QA are A-saturated. A-saturated initial
¢-segments form a sublattice of SgoA. We denote it by Sar,
One can cheok that A; is A-saturated ift dom(gjoa) = dom;oia.)*.
Hence, by Theorem 5.4 we obtain

Theorem 5.5 Let Q be a tinitary type,
A € PalgR, Then EXtPang— is isomorphic to SATA. If VcTPalg$
is a variety, A eV, then ExtyA = Ext A is isomorphic (as
a meet-semilattice) to SATAn Sqvh (A is a carrier of A),

We finish our paper with two lemmas which give us simple
examples of resulte which can be obtained by using method
proposed here. '

Lemma 554 For each variety Vc Palgs? the following
are equivalent
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20 G.Jarzembski

ie For each 4 in V, Extvﬁ is (isomorphic to) a sublattice
of Spd,

ii. For each set 4, SyA is a sublattice of Spai.

. i1i. There exists a set y of formulas of the form

i—s 3pt such that IV = Mod v.

If any of these condition is valid, then for each A in V,
Exth is distributive and algebraic.

Proof, i.=> ii. Dbecause Syi = Extv(FVAO), where
Ao is a discretfe partial algebra with a ocarrier A.
ii,=> i, follows from Theorsm 5.,4. iii. == ii. needs only
a straightforward verification, ii.=>3iii. Assume that
3t1(x1,...,xn) A ate(x1,...,xn)===-3p(x1,...,xn) is valid
in V (compare Lemma 1.2.1i.) and there exist V-algebras Ai
together with valuations hi:X = {x1,...,xn}——~ qagi such that
A; does not satisfy the formula ath===-ap at these valuations
(i = 1,2). Let X, = dom hy for 1 = 1,2, Then x1,x2e:svx, but
X1 u X2¢ SVX. A contradiction. The last assertion follows from
Proposition 4.fe

Lemma 5.6, For each variety Vc Palg the following
are equivalent,

i. For each 4 in V, ExtyA is (isomorphic to) a meet-sub=-
semilattice closed under suprema of direoted subsets,

ii, For sach set A, SVA is closed under directed suprema
within SpA,

jii. 3V is axiomatizable within Palg Qi.e., there exists
a set ¥’ of formulas of the form 1ty A It,A.ee A Dt =>13p
such that V = Mody, If any of those condition is valid, then
for each A in V ExtyA is an algebralo lattice.

We omit the proof because it needs the same method as the

proof of Lemma 5.5.
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